运筹与决策PPT:运输问题和指派问题
合集下载
最短路径、指派、运输问题PPT共54页

人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
最短路径、指派、运输问题
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
最短路径、指派、运输问题
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
(第四章)运输问题和指派问题

产地
能力
Ⅰ
10.8 10.8+0.15 10.8+2*0.15 10.8+3*0.15 25
Ⅱ
-
11.1 11.1+0.15 11.1+2*0.15 35
Ⅲ
-
-
11
11+0.15
30
Ⅳ
-
-
-
11.3
10
销量
10
15
25
20
100
70
销地 Ⅰ
产地
Ⅰ
10
Ⅱ
-
Ⅲ
-
Ⅳ
-
销量
10
生产与储存方案
Ⅱ
A2 6 4 -1 5
0
Vj 6
4
5
以上所有检验数≤0,故初始方案已是最优方案 不用进行第三步的调整
不平衡运输问题
• 当总供应量≠总需求量时,称为不平衡运输问 题
• 不平衡运输问题的求解:先化为平衡的运输 问题,再用表上作业法
• 供>求,虚设一个收点,收量为供求之差,各发 点到该虚收点的单位运价为0
运输问题的扩展--指派问题
现实生活之中,我们也经常遇到指派人员做某 项工作的情况。指派问题的许多应用都用来帮 助管理人员解决如何为一项将要开展进行的工 作指派人员的问题。其他的一些应用如为一项 任务指派机器、设备或者是工厂 。
还有哪些这样的问题呢?
想想看!
实例
有4 个工人,要指派他们分别完成4 项 工作,每人做各项工作所消耗的时间如下 表。要求1人只做1件事,如何指派使总 的消耗时间最少?
• 由于某种原因,不能指派某个人做某件事
• 如A1由于技能不达标,不能做B3,只须在一般模 型中去掉x13变量。
运筹学课堂PPT5.4指派问题

A
BCD
甲 85 92 73 90
效率表 乙 95 87 78 95
丙 82 83 79 90
丁 86 90 80 88
例5-15 人事部门欲安排四人到四个不同的岗位工作, 每个岗位一个人。经考核四人在不同岗位的成绩(百 分制)如下表所示,问如何安排他们的工作使总成绩 最好。
➢这个问题的求解可以采用枚举法。将所有分配方案 求出,总分最大的方案就是最优解。本例的方案有 4×3×2×1 = 24 种。
(0) 6 17 17 (0) 6 17 17
x22 x32
x23 x33
x24 x34
1 1
x41 x42 x43 x44 1
A 甲 x11 乙 x21
丙 x31 丁 x41
1
BCD 1 x12 x13 x14 1 x22 x23 x24 1 x32 x33 x34 1 x42 x43 x44
111
x11 x21 x31 x41 1
27 0 45 45
27
0
40
40
27
0
40
40
由于最少直线数 3 m 4 ,因此修改矩阵:
(1)从矩阵未被直线覆盖的数字中找出一个最小数5, 并且减去5; (2)直线相交处的元素加上5,被直线覆盖而没有相交 的元素不变。
重复步骤3,直到最少直线数=4。
3.用最少的直线覆盖所有0,最少直线数= 4。
第五章 运输与指派问题
5.1 运输问题的数学模型及其特征 5.2 运输单纯形法 5.3 运输模型的应用 5.4 指派问题
5.4 指派问题
指派问题也称为分配或配置问题。是资源合理配 置或最优匹配问题。
5.4.1 数学模型
例5-15 人事部门欲安排四人到四个不同的岗位工作, 每个岗位一个人。经考核四人在不同岗位的成绩(百 分制)如下表所示,问如何安排他们的工作使总成绩 最好。
运筹学运输与指派问题 ppt课件

a1 a2
am
18
设xk( =0或1)表示第k个中转站启用次数,xik表示从第i个仓库运到第k个中转站的 物资数量,ykj表示从第k个中转站运到第j个单位的物资数量,则
p
mp
pn
z f k x k
d ik x ik
e kj y kj
k 1
i1 k 1
k 1 j1
p
x ik a i
… … … …… …
Am cm1 cm2 … cmn am
Am+1 0
0 … 0 am+1
销量 b1 b2 … bn
mn
minz
cij xij
n
i1
xij ai
j1
i 1, 2,..., m
j1
s.t. m xij bj j 1, 2,..., n
i1
xij 0 i 1, 2,..., m; j 1, 2,..., n
mn
minz
cij xij
n
i1 j1
xij ai
i 1, 2,..., m
s.t.
j 1 m
xij
bj
j 1, 2,..., n
i1
xij 0 i 1, 2,..., m; j 1, 2,..., n
若用表上作业法求之,可设一个假想销地, 使其销
量为bn+1=∑ai-∑bj,ci,n+1=0.
已知该厂的生产能力与生产成本如下表。若生产出的产品当季不交货,则需
储存、维护等费用1500元。要求在完成合同的情况下,做出全年生产费用最
小的决策。
生产能力与生产成本
季度
1 2 3 4
生产的能力(台)
am
18
设xk( =0或1)表示第k个中转站启用次数,xik表示从第i个仓库运到第k个中转站的 物资数量,ykj表示从第k个中转站运到第j个单位的物资数量,则
p
mp
pn
z f k x k
d ik x ik
e kj y kj
k 1
i1 k 1
k 1 j1
p
x ik a i
… … … …… …
Am cm1 cm2 … cmn am
Am+1 0
0 … 0 am+1
销量 b1 b2 … bn
mn
minz
cij xij
n
i1
xij ai
j1
i 1, 2,..., m
j1
s.t. m xij bj j 1, 2,..., n
i1
xij 0 i 1, 2,..., m; j 1, 2,..., n
mn
minz
cij xij
n
i1 j1
xij ai
i 1, 2,..., m
s.t.
j 1 m
xij
bj
j 1, 2,..., n
i1
xij 0 i 1, 2,..., m; j 1, 2,..., n
若用表上作业法求之,可设一个假想销地, 使其销
量为bn+1=∑ai-∑bj,ci,n+1=0.
已知该厂的生产能力与生产成本如下表。若生产出的产品当季不交货,则需
储存、维护等费用1500元。要求在完成合同的情况下,做出全年生产费用最
小的决策。
生产能力与生产成本
季度
1 2 3 4
生产的能力(台)
运筹学-第三章-运输问题ppt课件

45
46
首先建立电子表格
47
区域名称
产量 单位运价 实际产量 实际销量 销量 运输量 总费用
单元格 I9:I11 C4:F6 G9:G11 C12:F12 C14:F14 C9:F11
I14
48
49
Excel 求解结果为:
50
9
§3-2 表上作业法(运输单纯形法)
表上作业法的计算步骤: 1. 确定初始方案,即找出初始基可行解; 2. 求非基变量检验数,判断最优; 3. 用闭回路法调整; 4. 重复2, 3 ,直至求出最优解。
10
一、确定初始基可行解(两种方法)
1. 最小元素法(“就近调运”) 1)找到运价中最小的元素,确定供销关系;
34
解:
v 该问题要求满足不同顾客的需求(采购量),即最小采购 量实际供给量最大采购量。三个工厂的总产量为20000件, 4个顾客的最低采购量为12000件,最高采购量为30000件, 大于总产量。为保持产销平衡,虚拟一个工厂4,其产量 为10000件。
v 由于每个顾客的需求分为必须满足和不一定满足两部分, 故将其视为两个顾客。必须满足的顾客其采购量不能由虚 拟工厂提供,令其单位利润为M (M为任意大正数),不 一定满足的顾客其采购量能由虚拟工厂提供,令其单位利 润为0。由此可得该问题的产销平衡及单位利润表,如表324所示。
§3-1 运输问题的数学模型
一、示例 例1
4
二、运输问题描述
v 有m 个产地Ai ,产量为 ai, i=1,2, …m (sources) v 供n 个销地 Bj , 需求量 bj, j=1,2, …n (destinations)
v 已知 Ai到 Bj的单位运价为 cij v 问如何调运使总运费最小?
46
首先建立电子表格
47
区域名称
产量 单位运价 实际产量 实际销量 销量 运输量 总费用
单元格 I9:I11 C4:F6 G9:G11 C12:F12 C14:F14 C9:F11
I14
48
49
Excel 求解结果为:
50
9
§3-2 表上作业法(运输单纯形法)
表上作业法的计算步骤: 1. 确定初始方案,即找出初始基可行解; 2. 求非基变量检验数,判断最优; 3. 用闭回路法调整; 4. 重复2, 3 ,直至求出最优解。
10
一、确定初始基可行解(两种方法)
1. 最小元素法(“就近调运”) 1)找到运价中最小的元素,确定供销关系;
34
解:
v 该问题要求满足不同顾客的需求(采购量),即最小采购 量实际供给量最大采购量。三个工厂的总产量为20000件, 4个顾客的最低采购量为12000件,最高采购量为30000件, 大于总产量。为保持产销平衡,虚拟一个工厂4,其产量 为10000件。
v 由于每个顾客的需求分为必须满足和不一定满足两部分, 故将其视为两个顾客。必须满足的顾客其采购量不能由虚 拟工厂提供,令其单位利润为M (M为任意大正数),不 一定满足的顾客其采购量能由虚拟工厂提供,令其单位利 润为0。由此可得该问题的产销平衡及单位利润表,如表324所示。
§3-1 运输问题的数学模型
一、示例 例1
4
二、运输问题描述
v 有m 个产地Ai ,产量为 ai, i=1,2, …m (sources) v 供n 个销地 Bj , 需求量 bj, j=1,2, …n (destinations)
v 已知 Ai到 Bj的单位运价为 cij v 问如何调运使总运费最小?
运输问题(运筹学教学)演示课件.ppt

精选课件
2、求检验数--闭回路法: 例1
销地 产地
B1 3
B2 11
B3 3
B4
ai
10
注: 1)数字格检 验数均为0
A1
④
③
7 2)空格检验数
1
2
A2
③1
9
2
①
8
以某空格为起点,用水平或垂直
4 线往前划,每碰到一个数字格转
1
-1
90。,然后继续前进,直到回到起
7
4
10
5
A3
⑥
③
9 点。根据回路计算该空格对应变
精选课件
用网络优化软件
运费 一区1 一区2 二区 三区1 三区2 供应量
山西盂县 1.65 1.65 1.7 1.75 1.75 4000
河北临城 1.6 1.6 1.65 1.7
1.7 1500
假想地点 M
0
M
M
0
500
6000 需求量 2700 300 1000 1500 500
6000
精选课件
运输问题的表格表示
需求地
1
供应地
16
28
35
合计 13
2
7 4 9 21
3
5 2 10 9
4
3 7 6 7
合计
25 10 15
精选课件
运输问题线性规划模型
min z = 6x11 + 7x12 + 5x13 + 3x14 + 8x21 + 4x22 + 2x23 + 7x24 + 5x31 + 9x32 +10x33 + 6x34
2、求检验数--闭回路法: 例1
销地 产地
B1 3
B2 11
B3 3
B4
ai
10
注: 1)数字格检 验数均为0
A1
④
③
7 2)空格检验数
1
2
A2
③1
9
2
①
8
以某空格为起点,用水平或垂直
4 线往前划,每碰到一个数字格转
1
-1
90。,然后继续前进,直到回到起
7
4
10
5
A3
⑥
③
9 点。根据回路计算该空格对应变
精选课件
用网络优化软件
运费 一区1 一区2 二区 三区1 三区2 供应量
山西盂县 1.65 1.65 1.7 1.75 1.75 4000
河北临城 1.6 1.6 1.65 1.7
1.7 1500
假想地点 M
0
M
M
0
500
6000 需求量 2700 300 1000 1500 500
6000
精选课件
运输问题的表格表示
需求地
1
供应地
16
28
35
合计 13
2
7 4 9 21
3
5 2 10 9
4
3 7 6 7
合计
25 10 15
精选课件
运输问题线性规划模型
min z = 6x11 + 7x12 + 5x13 + 3x14 + 8x21 + 4x22 + 2x23 + 7x24 + 5x31 + 9x32 +10x33 + 6x34
第4章 运输问题和指派问题ppt课件

x13
x 23
x 33
5
x14 x 24 x34 6
x
ij
0 (i
1, 2 , 3;
j
1,2,3,4 )
4.2 运输问题的数学模型和电子表格模型
运输问题是一种特殊的线性规划问题,一般采用“表上作
业法”求解运输问题,但Excel的“规划求解”还是采用
“单纯形法”来求解。
例4.1的电子表格模型
4.2 运输问题的数学模型和电子表格模型
需要注意的是,运输问题有这样一个性 质(整数解性质),即只要它的供应量 和需求量都是整数,任何有可行解的运 输问题就必然有所有决策变量都是整数 的最优解。因此,没有必要加上所有变 量都是整数的约束条件。
由于运输量经常以卡车、集装箱等为单 位,如果卡车不能装满,就很不经济了 。整数解性质避免了运输量(运输方案 )为小数的麻烦。
i1
x
ij
0
(i 1, 2,
, m ; j 1, 2,
, n)
4.2 运输问题的数学模型和电子表格模型
(2)产大于销(供过于求)运输问题
的数学模型
(以满足小的销量为准)
m
n
ai bj
mn
m in z
cij xi j
i 1
j 1
i1 j 1
n
xij ai
Байду номын сангаас(i 1, 2,
,m)
m in
z 1 6 0 x A1 1 3 0 x A 2 2 2 0 x A3 1 7 0 x A4 1 4 0 xB1 1 3 0 xB 2 1 9 0 xB3 1 5 0 xB 4 190 xC1 200 xC 2 230 xC 3
运输问题与指派问题讲义(PPT 40页)

§3 Transportation Network 运输问题的网 络表示
销地
供应量
产地
B1
B2
B3
B3
ai
A1
6
7
5
3
25
A2
8
4
2
7
10
A2
5
9
10
16
15
需求量 bj
13
21
9
7
Transportation Network 运输问题的网络表示
sources
运价
Destinations 需求地
Warehouses
Destinations目的地
Output from a cannery
Supply from a source运出量
Allocation to a warehouse
Demand at a destination需求量
Shipping cost per truckload from a Cost per unit distributed from a
Eugene
125 truckloads
Salt Lake City
Albert Lea
100 truckloads
Rapid City
Total
300 truckloads
Albuquerque
Total
总产量=总的需求量=300车,产销平衡
分配量Allocation 80 truckloads 65 truckloads 70 truckloads 85 truckloads 300 truckloads
运输模型
例1、某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的 产量、各销地的销量和各产地运往各销地每件物品的运费如下表所示,
运输问题和指派问题_图文

表4-1 各工厂到各销售点的单位产品运价(元/吨)
B1
B2
B3
B4 产量(吨)
A1
3
11
3
10
7
A2
1
9
2
8
4
A3
7
4
10
5
9
销量(吨) 3
6
5
6
3.2 运输问题数学模型和电子表格模型
(1)产销平衡运输问题的数学模型
具有m个产地Ai(i=1,2,,m)和n个销地
Bj(j=1,2,,n)的运输问题的数学模型为
运输问题是一种特殊的线性规划问题,一般采用“表上作 业法”求解运输问题,但Excel的“规划求解”还是采用 “单纯形法”来求解。
例4.1的电子表格模型
3.2 运输问题数学模型和电子表格模型
需要注意的是:运输问题有这样一个性质 (整数解性质),只要它的供应量和需求 量都是整数,任何有可行解的运输问题必 然有所有决策变量都是整数的最优解。因 此,没有必要加上所有变量都是整数的约 束条件。
工厂1 工厂2 工厂3 需求量
表4-7 产品生产的有关数据
产品1 41 40 37 20
单位成本(元)
产品2 27 29 30 30
产品3 28 - 27 30
产品4 24 23 21 40
生产能力
75 75 45
3.3 各种运输问题变形的建模
解:指定工厂生产产品 可以看作运输问题来求 解。本题中,工厂2不能 生产产品3,这样可以增 加约束条件x23=0 ;并 且,总供应( 75+75+45=195)>总需求 (20+30+30+40=120)。 其数学模型如下: 设xij为工厂i生产产 品j的数量
《指派问题》课件

指派问题的扩展研究
多目标指派问题
应用场景:生产调度、资源 分配等
解决方法:线性规划、启发 式算法等
定义:指派问题在多个目标 下的扩展
挑战:如何在多个目标之间 找到最优解
动态指派问题
动态指派问题的定 义
动态指派问题的应 用场景
动态指派问题的求 解方法
动态指派问题的优 化策略
大规模指派问题
问题定义:大规模 指派问题是指在给 定一组任务和一组 资源,如何将任务 分配给资源,使得 总成本最小化或总 收益最大化。
混合算法
混合算法的概念: 将多种算法进行 组合,以获得更 好的优化效果
混合算法的优点: 能够充分利用各 种算法的优点, 提高优化效果
混合算法的应用: 在指派问题中, 混合算法可以结 合多种算法,如 遗传算法、模拟 退火算法等,以 提高优化效果
混合算法的挑战: 如何合理选择和 组合各种算法, 以获得最佳的优 化效果
应用场景:大规 模指派问题广泛 应用于物流、供 应链、生产调度 等领域。
研究方法:大规 模指派问题的研 究方法包括启发 式算法、遗传算 法、神经网络等。
挑战与展望:大规 模指派问题的挑战 在于如何设计高效 的算法,以及如何 解决大规模问题中 的优化问题。未来 的研究方向包括分 布式计算、并行计 算等。
禁忌搜索法:在搜索过程中引入禁忌表,避免重复搜索已搜索过的解
元启发式方法
基本概念:元启发式 方法,也称为元启发 式算法,是一种基于 启发式策略的优化方 法。
特点:元启发式方 法具有自适应性、 鲁棒性和易于实现 等特点。
应用:元启发式方法 在指派问题、路径规 划、调度等问题中都 有广泛的应用。
实例:遗传算法、模 拟退火算法、蚁群算 法等都是元启发式方 法的典型代表。
第4章 运输问题和指派问题[1]
![第4章 运输问题和指派问题[1]](https://img.taocdn.com/s3/m/92328a497375a417866f8f6d.png)
表4-1 各工厂到各销售点的单位产品运价(元/吨)
B1
B2
B3
B4 产量(吨)
A1
3
11
3
10
7
A2
1
9
2
8
4
A3
7
4
10
5
9
销量(吨) 3
6
5
6
天津财经大学 珠江学院
4.2 运输问题数学模型和电子表格模型
第4章 运输问题 和指派问题
(1)产销平衡运输问题的数学模型
m
n
ai b j
i 1
j 1
第4章 运输问题 和指派问题
实用运筹学 -运用Excel建模和求解
第4章 运输问题和指派问题
天津财经大学 珠江学院
第4章 运输问题 和指派问题
本章内容要点
运输问题的基本概念及其 各种变形的建模与应用
指派问题的基本概念及其 各种变形的建模与应用
天津财经大学 珠江学院
本章节内容
第4章 运输问题 和指派问题
天津财经大学 珠江学院
4.1 运输问题基本概念
第4章 运输问题 和指派问题
▪ 例4.1 某公司有三个加工厂A1、A2、A3生产某产品, 每日的产量分别为:7吨、4吨、9吨;该公司把这些产 品分别运往四个销售点B1、B2、B3、B4,各销售点每 日销量分别为:3吨、6吨、5吨、6吨;从各工厂到各 销售点的单位产品运价如表4-1所示。问该公司应如何 调运这些产品,在满足各销售点的需要量的前提下,使 总运费最少?
第4章 运输问题 和指派问题
(3)约束条件
M in z 3 x11 1 1 x12 3 x13 1 0 x14
①满足产地产量 (3个产地的 产品都要全部 配送出去)
《指派问题》课件

的专业知识,让大家更好地 了解和应用指派问题的解决方法。
什么是指派问题
指派问题是一种在实际生活和工作中常见的问题,涉及到任务分配和资源调 度。考虑如何最优地分配任务或者资源,以达到特定的目标。
指派问题的应用场景
工作管理
有效分配工作任务,提高团队效率。
比较与总结
不同算法之间有各自的特点,选择合适的解决方法需要考虑问题的性质和目 标。解决指派问题时,我们需要根据具体情况选择最合适的算法。
总结
指派问题是一个具有挑战性的问题,并且有广泛的应用领域。算法在解决指 派问题的应用和发展中发挥着重要的作用。展望未来,我们期待能够进一步 提升算法在指派问题中的性能和效果。
暴力搜索是一种穷举所有可能解的方法,通过对比所有解决方案,选择最优 解。尽管时间复杂度较高,但可以保证找到最优解。
贪心算法
贪心算法是一种根据当前情况选择最优解的方法,不考虑未来可能出现的情 况。它的时间复杂度相对较低,但可能无法达到最优解。
分支界定算法
分支界定算法通过限制搜索空间来快速找到最优解。它可以大大减少搜索时间,但仍需权衡精确 度与效率。
运输调度
合理安排运输车辆和货物,降低成本,提高效率。
任务分配
根据工作需求分派任务给不同的人员,确保工作顺利完成。
指派问题的解决方法
暴力搜索
尝试所有可能的解决方案, 选择最优解。
贪心算法
根据当前情况,选择当前最 优解,不考虑未来可能出现 的情况。
分支界定算法
通过限制搜索空间,快速找 到最优解。
暴力搜索
什么是指派问题
指派问题是一种在实际生活和工作中常见的问题,涉及到任务分配和资源调 度。考虑如何最优地分配任务或者资源,以达到特定的目标。
指派问题的应用场景
工作管理
有效分配工作任务,提高团队效率。
比较与总结
不同算法之间有各自的特点,选择合适的解决方法需要考虑问题的性质和目 标。解决指派问题时,我们需要根据具体情况选择最合适的算法。
总结
指派问题是一个具有挑战性的问题,并且有广泛的应用领域。算法在解决指 派问题的应用和发展中发挥着重要的作用。展望未来,我们期待能够进一步 提升算法在指派问题中的性能和效果。
暴力搜索是一种穷举所有可能解的方法,通过对比所有解决方案,选择最优 解。尽管时间复杂度较高,但可以保证找到最优解。
贪心算法
贪心算法是一种根据当前情况选择最优解的方法,不考虑未来可能出现的情 况。它的时间复杂度相对较低,但可能无法达到最优解。
分支界定算法
分支界定算法通过限制搜索空间来快速找到最优解。它可以大大减少搜索时间,但仍需权衡精确 度与效率。
运输调度
合理安排运输车辆和货物,降低成本,提高效率。
任务分配
根据工作需求分派任务给不同的人员,确保工作顺利完成。
指派问题的解决方法
暴力搜索
尝试所有可能的解决方案, 选择最优解。
贪心算法
根据当前情况,选择当前最 优解,不考虑未来可能出现 的情况。
分支界定算法
通过限制搜索空间,快速找 到最优解。
暴力搜索
运输问题与指派问题讲义.pptx

销地Bj的运输量,得到下列一般运输量问题的模型:
m
n
Min f = cij xij
i =1 j =1
s.t.
xij = ai i = 1,2,…,m
xij = bj j = 1,2,…,n
xij ≥ 0 (i = 1,2,…,m ; j = 1,2,…,n)
运输问题的特征Characteristics of Transportation Problems
30
30
40
Question: 哪个工厂应生产何种产品及数量
电 子 表 格 模 型
B
3 Unit Cost
4
Plant 1
5
Plant 2
6
Plant 3
7
8
9
10 Daily Production
11
Plant 1
12
Plant 2
13
Plant 3
14
Products Produced
15
16
运输问题的假定数学模型为: 1、需求假设:每一个出发地都有一个固定的供应量,所有的供应量都必
须配送到目的地。与之相类似,每一个目的地都有一个固定的需求量, 整个需求量都必须由出发地满足 2、 可行解假定:当且仅当供应量的总和等于需求量的总和时,运输问题 才有可行解,且有最优解 3、成本假设:从任何一个出发地到任何一个目的地的货物配送成本和所 配送的数量成线性比例关系,因此这个成本就等于配送的单位成本乘 以所配送的数量 4、整数解性质:当供应量和需求量都是整数,必存在决策变量均为整数 的最优解
运输模型
例1、某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的 产量、各销地的销量和各产地运往各销地每件物品的运费如下表所示,
最新版运筹学计算精品课件运筹学中运输与指派问题

有些问题表面上与运输问题没有多大关系,也可以建立与 运输问题形式相同的数学模型 看一个例子: 【例5-2】有三台机床加工三种零件,计划第i台的生产任务 为a i (i=1,2,3)个零件,第j种零件的需要量为bj (j=1,2,3),第i台 机床加工第j种零件需要的时间为cij ,如表5-2所示。问如何安 排生产任务使总的加工时间最少? 表5-2
ai bj
i 1, , m j 1, , n i 1, , m; j 1, , n
ij ij
x
i 1
ij
•
xij 0,
5.1 运输模型 Model of Transportation Problems
5.1.2 模型特征
设平衡运输问题的数学模型为:
min z
产地
A1
10
3
5 4 2
销地 B1
5
A2 8
3 1
8 2 2 9 图5.1
B2
7
6
B3
8
A3
5
3 B4
3
•
5.1 运输模型 Model of Transportation Problems
【例5-1】现有A1,A2,A3三个产粮区,可供应 粮食分别为10, 8,5(万吨),现将粮食运往B1,B2,B3,B4四个地区,其需 要量分别为5,7,8,3(万吨)。产粮地到需求地的运价(元/ 吨)如表5-1所示,问如何安排一个运输计划,使总的运输费用 最少。 表5-1
i 1 i j 1
m
n
j
。
从第i个产地到j 个销地的单位运价为cij ,在满足各地需要的前提 下,求总运输费用最小的调运方案。 设xij(i=1,2,…,m; j=1,2,…,n)为第i个产地到第j个销地的运量,则数学模型为:
运筹学ch3运输问题ppt课件

第三章 运输问题
Transportation Problem
运输问题的表示 网络图、线性规划模型、运输表 初始基础可行解 西北角法、最小元素法 非基变量的检验数 闭回路法、位势法 确定进基变量,调整运量,确定离基变量
08.10.2020
1
一.运输问题的一般提法
人们在从事生产活动中,不可避免地要进行物资调运工作。如 某时期内将生产基地的煤、钢铁、粮食等各类物资,分别运到 需要这些物资的地区,根据各地的生产量和需要量及各地之间 的运输费用,如何制定一个运输方案,使总的运输费用最小。
n
供过于求:即产量大于销量时有ai bj
1
1
这两种情形都 a可 i 以 bj的 化形 为式来
求解
08.10.2020
8
二.运输问题的模型
产销平衡问题模型
m
n
M i n z a i j x i j
1
1
n
x ij a i
i 1,......m
j1
m
x ij b j j 1 , . . . . . . n
1.变量多(mn
1 1
个),但结构
简单。
11
技术系数矩阵
A
=
1
1
1 1 1
08.10.2020
11
1 11
系数矩阵的特点: (1)约束条件的系数矩阵的元素只有两个:0,1. (2)元素 xij 对应于每一个变量在前m个约束方程中(第i个 方程中)出现一次,在后n个约束方程中(第m+j 个方程中) 也出现一次. (3)产销平衡问题为等式约束. (4)产销平衡问题中各产地产量之和与各销售地点的销量 之和相等.
i1
j 1
Transportation Problem
运输问题的表示 网络图、线性规划模型、运输表 初始基础可行解 西北角法、最小元素法 非基变量的检验数 闭回路法、位势法 确定进基变量,调整运量,确定离基变量
08.10.2020
1
一.运输问题的一般提法
人们在从事生产活动中,不可避免地要进行物资调运工作。如 某时期内将生产基地的煤、钢铁、粮食等各类物资,分别运到 需要这些物资的地区,根据各地的生产量和需要量及各地之间 的运输费用,如何制定一个运输方案,使总的运输费用最小。
n
供过于求:即产量大于销量时有ai bj
1
1
这两种情形都 a可 i 以 bj的 化形 为式来
求解
08.10.2020
8
二.运输问题的模型
产销平衡问题模型
m
n
M i n z a i j x i j
1
1
n
x ij a i
i 1,......m
j1
m
x ij b j j 1 , . . . . . . n
1.变量多(mn
1 1
个),但结构
简单。
11
技术系数矩阵
A
=
1
1
1 1 1
08.10.2020
11
1 11
系数矩阵的特点: (1)约束条件的系数矩阵的元素只有两个:0,1. (2)元素 xij 对应于每一个变量在前m个约束方程中(第i个 方程中)出现一次,在后n个约束方程中(第m+j 个方程中) 也出现一次. (3)产销平衡问题为等式约束. (4)产销平衡问题中各产地产量之和与各销售地点的销量 之和相等.
i1
j 1
Chapter06运输问题和指派问题

The Transportation Problem is an LP
•subject to (约束)
Cannery 1: x11 + x12 + x13 + x14 = 75 Cannery 2: x21 + x22 + x23 + x24 = 125 Cannery 3: x31 + x32 + x33 + x34 = 100 Warehouse 1: x11 + x21 + x31 = 80 Warehouse 2: x12 + x22 + x32 = 65 Warehouse 3: x13 + x23 + x33 = 70 Warehouse 4: x14 + x24 + x34 = 85 and xij ≥ 0 (i = 1, 2, 3; j = 1, 2, 3, 4)
PPT文档演模板
Chapter06运输问题和指派问题
P&T Company Distribution Problem
•试建立该网络 配送问题的数 学模型?
PPT文档演模板
Chapter06运输问题和指派问题
运输问题
•运输问题关心的是以最 低的总配送成本把出发 地的任何产品运送到每 一个目的地
PPT文档演模板
Network Representation
PPT文档演模板
Chapter06运输问题和指派问题
运输问题的网络表述
• 忽略出发地和目的地在地理上的 布局
• 左边一列为出发地(S),旁边的数 字代表供应量
• 右边一列为目的地(D),旁边的 数字代表需求量
• 箭头表示可能的运输途径,其上 面的数字代表单位运输成本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+ 690x23 + 791x24 + 995x31 + 682x32 + 388x33 + 685x34
s.t.
工厂 1: 工厂 2: 工厂 3: 仓库 1: 仓库 2: 仓库 3: 仓库 4:
x11 + x12 + x13 + x14
x21 + x22 + x23 + x24
= 75 供
= 125 x31 + x32 + x33 + x34 = 100
运输问题的Excel求解模型- 案例1
B
C
3 Unit Cost
4
5 Source
Bellingham
6 (Cannery)
Eugene
7
Albert Lea
8
9
10 Shipment Quantity
11 (Truckloads)
12 Source
Bellingham
13 (Cannery)
Eugene
问题:如何改进运输策略以降低成本?
案例1:P&T公司的配送问题
CANNERY1 Bellingham
最偏远的厂
CANNERY2 Eugene
WAREHOUSE 3 Rapid City
WAREHOUSE 2 Salt Lake City
WAREHOUSE 1 Sacramento
WAREHOUSE 4 Albuquerque
4、运输问题和指派问题
引例
案例1:P&T公司的配送问题
▪ 家族经营的小公司,加工蔬菜罐头并分销到各地:
– 三个食品厂,四个分销仓库
▪ 面临的问题:运输成本不断攀升 ▪ 目前的运输策略:
– 首先考虑最偏远的厂,先将其产品充分满足距它最近的仓库,再运 至 次之的仓库;
– 再考虑最偏远的仓库,优先从距其最近的工厂进货; – 距离居中的工厂用于补充不足的部分。
因此,没有必要加上所有变量都是整数的约束 条件。
运输问题的参数表表示- 案例1
目的地 Sacramento
出发地
Bellingham
$464
Eugene
352
Albert Lea
995
需求量
80
单位成本($/车)
Salt Lake City Rapid City Albuquerque 供应量
$513 416 682 65
小 的成本把货物从一系列出发地(如工厂、仓库)运
输到 一系列目的地(如仓库、顾客)。
运输问题的主要特征
▪ 需求假设:
– 每个出发地都有一个固定的供应量,且所有供应量均须配送到目的地; – 每个目的地都有一个固定的需求量,且所有需求量均须被满足
▪ 可行解特征:
– 运输问题有可行解,当且仅当供应量总和等于需求量总和(供求平衡 )
$654 690 388 70
$867
75
791
125
685
100
85
运输问题的网络表示- 案例1
Supplie s
Unit distribution cost
Sources
(Bellingham) 75 (Eugene) 125
464
S1
513
654 867
352 416
S2
690
791
995
(Albert Le a1)00 S3
需求量 80 65 70 85 300
案例1:P&T公司的配送问题
当前运输计划
From \ To
Sacramento
工厂
Bellingham
75
Eugene
5
Albert Lea
0
仓 Salt Lake
City
0 65 0
库 Rapid City Albuquerque
0
0
55
0
15
85
案例1:P&T公司的配送问题
运 费 数 据 ($/每车)
仓
库
From \ To
Sacramento
Salt Lake City
Rapid City
Albuquerque
工厂
Bellingham $464
$513
$654
$867
Eugene
352
416
690
791
Albert Lea
995
682
388
685
总运费: Total shipping cost = 75($464) + 5($352) + 65($416) + 55($690)
应
x11 x12 x13
+ x21 + x22 + x23
+ x31 + x32 + x33
= 80
= 65 需 = 70 求
x14
+ x24
+ x34 = 85
非负: xij ≥ 0 (i = 1, 2, 3; j = 1, 2, 3, 4)
定义 xij = 从工厂i 运到仓库j 的车数 (i = 1, 2, 3; j = 1, 2, 3, 4)
▪ 成本假设:
– 从任一出发地到任一目的地的配送成本与所配送的货物量成正比, 即 配送成本等于单位配送成本乘以配送量
供应量、需求量和单位成本提供了运输问题所需的一切数据
运输问题的主要特征
▪ 整数解:
如何保证?
– 运输问题通常以运送的车数作为计量单位,因此其解一般为整数
整数解性质:
只要运输问题的供应量和需求量都是整数,任 何有可行解的运输问题必然有使所有决策变量都是 整数的最优解。
682 388
685
Demands Destinations
D1 80 (Sacramento) D 2 65 (Salt Lake City
D3 70 (Rapid City) D 4 85 (Albuquerque)
运输问题的线性规划模型- 案例1
Min Cost = 464x11 + 513x12 + 654x13 + 867x14 +$352x21 + 416x22
+ 15($388) + 85($685) = $165,595
4.1 运输问题的基本概念与模型
运输问题的基本术语
P&T 公司问题 罐头
一般模型 货物
罐头厂
出发地(产地
仓库
) 目的地(销
罐头厂的产量
地) 供应量(
各仓库的需求量
产量) 需求量
每车运费
(销量)
单位配送成本(运价) 运输问题是物流中的一个重要问题,即如何以尽可能
14
Albert Lea
15
Total Received
16
17
Demand
Range Name Cells
Demand
D17:G17
ShipmentQuantity D12:G14
Supply
CANNERY3 Albert Lea
最偏远的仓库
案例1:P&llingham Eugene Albert Lea
产量(车) 75 125 100
合计
300
仓库 Sacramento Salt Lake City Rapid City Albuquerque 合计