初三上册数学期中考试试卷2017及答案

合集下载

2016-2017学年新人教版九年级上册数学期中测试卷含答案

2016-2017学年新人教版九年级上册数学期中测试卷含答案

2016-2017学年新人教版九年级上册数学期中测试卷含答案2016-2017学年九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程3x²-4x-1=0的二次项系数和一次项系数分别为()A。

3和4B。

3和-4C。

3和-1D。

3和12.二次函数y=x²-2x+2的顶点坐标是()A。

(1,1)B。

(2,2)C。

(1,2)D。

(1,3)3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A。

130°B。

50°C。

40°D。

60°4.用配方法解方程x²+6x+4=0,下列变形正确的是()A。

(x+3)²=-4B。

(x-3)²=4C。

(x+3)²=55.下列方程中没有实数根的是()A。

x²-x-1=0B。

x²+3x+2=0C。

2015x²+11x-20=0D。

x²+x+2=06.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()A。

(3,-2)B。

(2,3)C。

(-2,-3)D。

(2,-3)7.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,A。

5cmB。

8cmC。

6cmD。

4cm8.已知抛物线C的解析式为y=ax²+bx+c,则下列说法中错误的是()A。

a确定抛物线的形状与开口方向B。

若将抛物线C沿y轴平移,则a,b的值不变C。

若将抛物线C沿x轴平移,则a的值不变D。

若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变9.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A。

64B。

16C。

24D。

3210.已知二次函数的解析式为y=ax²+bx+c(a、b、c为常数,a≠),且a²+ab+ac<0,下列说法:①b²-4ac<0;②ab+ac<0;③方程ax²+bx+c=0有两个不同根x1、x2,且(x1-1)(1-x2)>0;④二次函数的图象与坐标轴有三个不同交点。

2017届九年级上期中考试数学试题含答案

2017届九年级上期中考试数学试题含答案

2016-2017学年第一学期期中试卷初三数学(时间:120分钟满分:130分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 81的平方根是()A .9B .C .D .2.下列一元二次方程中,两实数根的积为4的是()A .2x 2-5x +4=0B .3x 2-5x +4=0C .x 2+2x +4=0D .x 2-5x +4=0 3.若关于x 的方程022=+-n x x 无实数根,则一次函数n x n y --=)1(的图像不.经过() A .第一象限 B.第二象限 C.第三象限 D.第四象限4:则该日这6个时刻的PM2.5的众数和中位数分别是()A. 0.032, 0.0295B. 0.026,0.0295C. 0.026, 0.032D. 0.032, 0.0275.如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是() A . S 1> S 2 B .S 1 = S 2 C .S 1<S 2 D .S 1、S 2的大小关系不确定6.如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是()A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)7.据调查,2011年11月无锡市的房价均价为7530元/m 2,2013年同期将达到8120元/m 2,假设这两年无锡市房价的平均增长率为x ,根据题意,所列方程为()A .27530(1%)8120x -=B .27530(1%)8120x +=C.27530(1)8120x -=D .27530(1)8120x +=8.如图,四边形ABCD 中,AD ∥BC ,∠D=90°,以AB 为直径的⊙O 与CD 相切于E ,与BC 相交于F ,若AB=8,AD=2,则图中两阴影部分面积之和为( ) A . B .3C .D .9.如图,直线343+=x y 与x 轴、y 轴分别交于A 、B 两点,已知点C (0,-1)、D (0,k ),且0< k < 3,以点D 为圆心、DC 为半径作⊙D ,当⊙D 与直线AB 相切时,k 的值为( ) A .95 B .32 C .97 D .98 10.如图,在平面直角坐标系xOy 中,点(1,0)A ,(2,0)B ,正六边形ABCDEF 沿x 轴正方向无滑动滚动,保持上述运动过程,经过的正六边形的顶点是().第5题图第6题图 第8题图A.C或E B.B或D C.A或E D.B或F二、填空题(本大题共8小题,每小题2分,共16分.)11.写出一个以2与-3为根的一元二次方程________________________.12. 若方程()22570m x x++-=是关于x的一元二次方程,则m的取值范围是.13.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.14.将一个底面半径为5cm,母线长为12cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为.16. 如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.17.已知正方形ABCD边长是2,点P从点D出发沿DB向点B运动,至点B停止运动,连结AP,过点B作BH⊥AP于点H,在点P运动过程中,点H所走过的路径长是.18.如图,Rt△AOB中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数y=1x(x>0)的图象上运动,那么点B在函数(填函数解析式并写出自变量取值范围)的图象上运动.三、解答题(本大题共10小题,共84分.解答时应写出文字说明、证明过程或演算步骤)19.(本题8分,每小题4分) 计算或化简:(1)()023200921)1(---+-(2)22121x xxx x x--⎛⎫÷-⎪+⎝⎭20.(本题8分,每小题4分)解方程:(1) 5x(x-3)=2(3-x).(2)0242=-+xx;21.(本题6分)在正方形方格纸中,我们把顶点都在“格点”上的三角第9题图第15题图第16题图第17题图第18题图形称为“格点三角形”,如图,△ABC 是一个格点三角形.(1)请你在所给的方格纸中,以O 为位似中心,将△ABC 放大为原来的2倍,得到一个△A 1B 1C 1. (2)若每一个方格的面积为1, 则△A 1B 1C 1的面积为_____.22.(本题7分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分) (1)两个班的平均得分分别是多少?(2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.23.(本题7分)如图,BD 为⊙O 的直径,点A 是弧BC 的中点, AD 交BC 于E 点,2AE =,4ED =. (1)求证:△ABE ∽△ADB ; (2)求BE 长;24.(本题8分)如图,△ABC 中,AB=AC ,F 为BC 的中点,D 为CA 延长线上一点,∠DFE=∠B .(1)求证:△CDF ∽△BFE ;(2)若EF ∥CD ,求证:2CF 2=AC•CD .25.(本题8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2? (2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?26.(本题10分)如图,已知AB 为⊙O 的直径,点E 是OA 上任意一点,过E 作弦CD ⊥AB ,点F 是⊙O 上一点,连接AF 交CE 于H ,连接AC 、CF 、BD 、OD .(1)求证:△ACH ∽△AFC ;(2)猜想:AH•AF 与AE•AB 的数量关系,并说明你的猜想; (3)当AE=______AB 时,S △AEC :S △BOD =1:4.27.(本题10分)如图,在平面直角坐标系中,O 为坐标原点,⊙C 的圆心坐第24题图第26题图第25题图第23题图标为(-2,-2),半径为2.函数y =-x +2图象与x 轴交于点A ,与y 轴交于点B ,点P 为线段AB 上一动点(包括端点).(1)连接CO ,求证:CO ⊥AB ;(2)当直线PO 与⊙C 相切时,求∠POA 的度数; (3)当直线PO 与⊙C 相交时,设交点为E 、F ,点M 为线段EF 的中点,令PO =t ,MO =s ,求s 与t 之间的 函数关系,并写出t 的取值范围;(4)请在(3)的条件下,直接..写出点M 运动路径的长度.28.(本题12分)如图,在平面直角坐标系中,等腰直角△ABC 的直角顶点C 为(﹣4,0),腰长为2,将三角形绕着顶点C 旋转.(点A 在x 轴的上方)分别过点A 、点B 向x 轴作垂线,垂足分别为O 1,O 2.(1)如图①和图②证明在点B 不在坐标轴上的情况下,△ACO 1与△BCO 2全等吗?选择其中一幅图说明你的理由;(2)如图③所示,点B 运动到x 轴上时,点O 1与C 重合,以C 为圆心CA 为半径作圆,得到如图所示的⊙C ,在⊙C 上有一个动点P (点P 不在x 轴上),过点P 作⊙C 的切线与y 轴的交点为点Q ,直线BP 交y 轴于点M .①如图,当点Q 在y 轴的正半轴时,写出线段PQ 与线段QM 之间的数量关系,并说明理由;②随着点P 的运动(点P 在坐标轴上除外)①中的两条线段之间的关系变吗?若变说明理由,若不变,则它们有最小值吗?最小值为多少?第28题图第27题图初三数学期中试卷参考答案2016.11(时间:120分钟满分:130分)一、选择题(每题3分,共30分)BDBAA CDACD二、填空题(每空2分,共16分)11.答案不唯一;12.m-2___;13.2__;14.___150゜;15.__25゜;16.__50_;17._π__;18.___(x>0).三、解答题19.(1)(2)20.(1)x1=3,x2=-0.4(2)x1=-2+,x2=2-21.(1)图略(2)___16________.22.解:(1)一班的平均得分:(95+85+90)÷3=90,二班的平均得分:(90+95+85)÷3=90,(2)一班的加权平均成绩:85×25%+90×35%+95×40%=90.75,二班的加权平均成绩:95×25%+85×35%+90×40%=89.5,所以一班的卫生成绩高.23.(1)略(2)BE=424.(1)证明:∵∠DFB=∠DFE+∠EFB=∠C+∠FDC,∴∠EFB=∠FDC,∵AB=AC,∴∠C=∠B,∴△CDF∽△BFE;(2)解:∵EF∥CD,∴∠EFD=∠FDC,∵∠B=∠C,∠DEG=∠B,∴∠FDC=∠C=∠B,∴△CDF∽△BCA,∴,∵BC=2CF,DF=CF,∴,∴2CF2=AC•CD.25.(本题8分).(1)解:(1)设该项绿化工程原计划每天完成x米2,根据题意﹣=4解得:x=2000经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合题意,舍去). 答:人行道的宽为2米. 26.(1)∵直径AB ⊥CD ,∴∴∠F=∠ACH ,又∠CAH=∠FAC,∴△ACH ∽△AFC (2)AH ·AF=AE ·AB ,连接FB ,∵AB 是直径,∴∠AFB=∠AEH=90°,又∠EAH=∠FAB , ∴Rt △AEH ∽Rt △AFB ,∴AH ·AF=AE ·AB ;(3)27.解:(1)延长CO 交AB 于D ,过点C 作CG⊥x轴于点G .∵易得A(2,0),B(0,2),∴AO =BO =2.又∵∠AOB =90°, ∴∠DAO =45°.∵C(-2,-2),∴∠COG =45°,∠AOD =45°,∴∠ODA =90°. ∴OD ⊥AB ,即CO ⊥AB .(2)当直线PO 与⊙C 相切时,设切点为K ,连接CK ,则CK ⊥OK .由点C 的坐标为(-2,-2),易得CO =∴∠POD =30°,又∠AOD =45°, ∴∠POA=75°,同理可求得∠POA 的另一个值为15°. (3)∵M 为EF 的中点,∴CM ⊥EF ,又∵∠COM =∠POD ,CO ⊥AB ,∴△COM ∽△POD ,所以CO MOPO DO =,即MO ·PO =CO ·DO .∵PO =t ,MO =s ,CO = DO st =4.但PO 过圆心C 时,MO =CO =PO =DO即MO ·PO =4,也满足st =4.∴s =4t t(4)28.解:(1)△ACO1与△BCO2全等如图①,∵∠ACB=90°,∴∠ACO1+∠BCO2=90°,∵AO1⊥OC,BO2⊥OC,∴∠AO1C=∠BO2C=90°,∴∠BCO2+∠CBO2=90°,∴∠ACO1=∠CBO2,在△ACO1和△CBO2中,,∴△ACO1≌△CBO2,如图2,同①的方法可证;(2)①∵PQ是⊙C的切线,∴∠QPC=90°,∴∠QPM+∠CPB=90°,∵CP=CB,∴∠CPB=∠CBP,∴∠QPM+∠CBP=90°,∵∠CBP=∠OBM,∴∠QPM+∠OBM=90°,∵∠OBM+∠OMB=90°,∴∠QPM=∠OMB,∴QP=QM,②不变,理由:同(1)连接CQ,在Rt△CPQ中,PQ2=CQ2﹣CP2,∵CP是⊙C的半径,∴CP为定值是2,∴CQ最小时,PQ最小,∵点Q在y轴上,点C在x轴,∴点Q在点O处时,CQ最小,最小值为CO=4,=2,∴PQ最小=第28题图。

江西省宜春市2017届九年级上期中数学试卷含详细答案

江西省宜春市2017届九年级上期中数学试卷含详细答案

2017届江西省宜春市第三中学九年级上学期期中考试数学试卷一、单选题(共6小题)1.下列安全标志图中,是中心对称图形的是()A.B.C.D.2.一元二次方程的根是()A.1B.-1C.0.5D.±13.用配方法解方程,变形后的结果正确的是()A.B.C.D.4.如图,把菱形ABOC绕O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的是()A.∠COF B.∠AOD C.∠BOF D.∠COE5.根据下列表格的对应值,判断方程ax2+bx+c=0一个解的范围是()A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.266.把抛物线向左平移2个单位,再向上平移1个单位,所得的抛物线的解析式是()A.B.C.D.二、填空题(共6小题)7.若x=2是一元二次方程x2﹣2a=0的一个根,则a=.8.平面直角坐标系中,点P(1,-2)关于原点对称的点的坐标是__________.9.抛物线与x轴的交点坐标是.10.将两块直角三角尺的直角顶点重合为如图的位置, 若∠AOD=110°,则∠BOC= .11.如图所示,在直角坐标系中,△A′B′C′是由△ABC绕点P旋转一定的角度而得,其中A(1,4),B(0,2),C(3,0),则旋转中心点P的坐标是.12.如图,正方形ABCD与等边三角形AEF的顶点A重合,将△ AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠ BAE的大小可以是.三、解答题(共11小题)13.解方程14.已知抛物线的最高点为P(3,4),且经过点A(0,1),求的解析式。

15.随着市民环保意识的增强,烟花爆竹销售量逐年下降.宜春市2013年销售烟花爆竹20万箱,到2015年烟花爆竹销售量为9.8万箱.求宜春市2013年到2015年烟花爆竹年销售量的平均下降率.16.已知二次函数(a≠0)的图象如图所示,该抛物线与x轴的一个交点(-1,0)为请回答以下问题(1)求抛物线与x轴的另一个交点坐标;(2)一元二次方程的解为;(3)不等式的解集是 .17.如下图,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF =AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是点______,旋转的最小角度是______度;(2)AC与EF的位置关系如何,并说明理由。

2017九年级数学上期中试卷(附答案和解释)

2017九年级数学上期中试卷(附答案和解释)

2017九年级数学上期中试卷(附答案和解释)2016-2017学年陕西省西安XX学校九年级(上)期中数学试卷一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等.对角线互相平分D.对角线互相垂直2.如图,在菱形ABD中,A=8,BD=6,则△ABD的周长等于()A.18B.16.1D.143.如图,是矩形ABD对角线A的中点,是AD的中点,若B=8,B=,则的长为()A.1B.2.3D.44.如图,正方形ABD的边长为4,则图中阴影部分的面积为()A.62B.82.162D.不能确定.下列条之一能使菱形ABD是正方形的为()①A⊥BD ②∠BAD=90°③AB=B ④A=BD.A.①③B.②③.②④D.①②③6.若关于x的一元二次方程(﹣1)x2+4x+1=0有两个不相等的实数根,则的取值范围是()A.<B.<,且≠1.≤,且≠1D.>7.若关于x的方程x2+(+1)x+ =0的一个实数根的倒数恰是它本身,则的值是()A.﹣B..﹣或D.18.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于的概率是()A.B..D.9.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是()A.B..D.10.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7.(x+2)2=13D.(x+2)2=19二.填空题11.在一个不透明的口袋中,装有A,B,,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+x+2=0的一个解,则的值为.13.如图:在矩形ABD中,对角线A,BD交于点,已知∠AB=60°,A=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABD的外侧,作等边△ADE,则∠BED的度数是.1.矩形的两条邻边长分别是6和8,则顺次连接各边中点所得的四边形的面积是.三、解答题16.解方程:(1)x2﹣1=2(x+1)(2)2x2﹣4x﹣=0.17.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3,现从中任意摸出一个小球,将其上面的数字作为点的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点的纵坐标.(1)写出点坐标的所有可能的结果;(2)求点的横坐标与纵坐标之和是偶数的概率.18.已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一根.19.如图,在菱形ABD中,A,BD相交于点,E为AB的中点,DE ⊥AB.(1)求∠AB的度数;(2)如果,求DE的长.20.已知:如图,在&#9649;ABD中,点E是B的中点,连接AE并延长交D的延长线于点F,连接BF.(1)求证:△ABE≌△FE;(2)若AF=AD,求证:四边形ABF是矩形.2016-2017学年陕西省西安XX学校九年级(上)期中数学试卷参考答案与试题解析一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等.对角线互相平分D.对角线互相垂直【考点】菱形的性质;平行四边形的性质.【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.2.如图,在菱形ABD中,A=8,BD=6,则△ABD的周长等于()A.18B.16.1D.14【考点】菱形的性质;勾股定理.【分析】根据菱形对角线互相垂直平分的性质,可以求得B=D,A=,在Rt△AD中,根据勾股定理可以求得AB的长,进而△ABD的周长.【解答】解:菱形对角线互相垂直平分,∴B=D=3,A==4,∴AB=,∴△ABD的周长等于++6=16,故选B.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.3.如图,是矩形ABD对角线A的中点,是AD的中点,若B=8,B=,则的长为()A.1B.2.3D.4【考点】矩形的性质.【分析】首先由是矩形ABD对角线A的中点,可求得A的长,然后由勾股定理求得AB的长,即D的长,又由是AD的中点,可得是△AD 的中位线,继而求得答案.【解答】解:∵是矩形ABD对角线A的中点,B=,∴A=2B=10,∴D=AB= = =6,∵是AD的中点,∴= D=3.故选.【点评】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质.注意利用直角三角形斜边上的中线等于斜边的一半,求得A的长是关键.4.如图,正方形ABD的边长为4,则图中阴影部分的面积为()A.62B.82.162D.不能确定【考点】正方形的性质.【分析】根据正方形的轴对称的性质可得阴影部分的面积等于正方形的面积的一半,然后列式进行计算即可得解.【解答】解:S阴影= ×4×4=82.故选B.【点评】本题考查了正方形的性质以及轴对称的性质.注意利用轴对称的性质,将阴影面积转化为三角形面积求解是解题的关键..下列条之一能使菱形ABD是正方形的为()①A⊥BD ②∠BAD=90°③AB=B ④A=BD.A.①③B.②③.②④D.①②③【考点】正方形的判定.【分析】直接利用正方形的判定方法,有一个角是90°的菱形是正方形,以及利用对角线相等的菱形是正方形进而得出即可.【解答】解:∵四边形ABD是菱形,∴当∠BAD=90°时,菱形ABD是正方形,故②正确;∵四边形ABD是菱形,∴当A=BD时,菱形ABD是正方形,故④正确;故选:.【点评】此题主要考查了正方形的判定,正确掌握正方形的判定方法是解题关键.6.若关于x的一元二次方程(﹣1)x2+4x+1=0有两个不相等的实数根,则的取值范围是()A.<B.<,且≠1.≤,且≠1D.>【考点】根的判别式;一元二次方程的定义.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:<且≠1.故选B.【点评】本题考查了根的判别式以及一元二次方程的定义,解题的关键是得出关于的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合一元二次方程的定义以及根的判别式得出不等式组是关键.7.若关于x的方程x2+(+1)x+ =0的一个实数根的倒数恰是它本身,则的值是()A.﹣B..﹣或D.1【考点】一元二次方程的解.【分析】由根与系数的关系可得:x1+x2=﹣(+1),x1&#8226;x2= ,又知一个实数根的倒数恰是它本身,则该实根为1或﹣1,然后把±1分别代入两根之和的形式中就可以求出的值.【解答】解:由根与系数的关系可得:x1+x2=﹣(+1),x1&#8226;x2= ,又知一个实数根的倒数恰是它本身,则该实根为1或﹣1,若是1时,即1+x2=﹣(+1),而x2= ,解得=﹣;若是﹣1时,则= .故选:.【点评】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系.解此类题目要会把代数式变形为两根之积或两根之和的形式,代入数值计算即可.8.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于的概率是()A.B..D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和等于的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和等于的有4种情况,∴两次摸出的小球的标号之和等于的概率是:.故选.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.9.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是()A.B..D.【考点】列表法与树状图法.【专题】计算题.【分析】画树状图得出所有等可能的情况数,找出落地后出现两个正面一个反面朝上的情况数,即可求出所求的概率.【解答】解:画树状图得:所有等可能的情况有8种,其中两个正面一个反面的情况有3种,则P= .故选B.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7.(x+2)2=13D.(x+2)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.二.填空题11.在一个不透明的口袋中,装有A,B,,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)= =故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事有n种可能,而且这些事的可能性相同,其中事A出现种结果,那么事A的概率P(A)= .12.方程2x﹣4=0的解也是关于x的方程x2+x+2=0的一个解,则的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+x+2=0,求出的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+x+2=0得:4+2+2=0,解得:=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+x+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABD中,对角线A,BD交于点,已知∠AB=60°,A=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出D=AB,B=D= BD,A== A=8,BD=A,推出B=D=A==8,得出△AB是等边三角形,推出AB=A=8=D.【解答】解:∵A=16,四边形ABD是矩形,∴D=AB,B=D= BD,A== A=8,BD=A,∴B=D=A==8,∵∠AB=60°,∴△AB是等边三角形,∴AB=A=8,∴D=8,即图中长度为8的线段有A、、B、D、AB、D共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABD的外侧,作等边△ADE,则∠BED的度数是4°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=10°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=1°,∠BED=∠DAE﹣∠AEB=60°﹣1°=4°,故答案为:4°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.1.矩形的两条邻边长分别是6和8,则顺次连接各边中点所得的四边形的面积是242.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、A、BD,设AB=6,AD=8,∵四边形ABD是矩形,E、F、G、H分别是四边的中点,∴HF=6,EG=8,A=BD,EH=FG= BD,EF=HG= A,∴四边形EFGH是菱形,∴S菱形EFGH= ×FH×EG= ×6×8=242.故答案为242.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题16.解方程:(1)x2﹣1=2(x+1)(2)2x2﹣4x﹣=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)移项后分解因式得出(x+1)(x﹣1﹣2)=0,再解两个一元一次方程即可;(2)用一元二次方程的求根公式x= 可求出方程的两根.【解答】解:(1)∵x2﹣1=2(x+1),∴(x+1)(x﹣1)﹣2(x+1)=0,∴(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(2)∵2x2﹣4x﹣=0,∴a=2,b=﹣4,=﹣,∴b2﹣4a=16+40=6,∴x= = ,∴x1=1+ ,x2=1﹣.【点评】本题主要考查了解一元二次方程的知识,根据方程的特点选择合适的方法解一元二次方程是解决此类问题的关键.一般解一元二次方程的方法有直接开平方法、因式分解法、公式法、配方法.17.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3,现从中任意摸出一个小球,将其上面的数字作为点的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点的纵坐标.(1)写出点坐标的所有可能的结果;(2)求点的横坐标与纵坐标之和是偶数的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)列表得出所有等可能的情况结果即可;(2)列表得出点的横坐标与纵坐标之和是偶数的情况数,即可求出所求的概率.【解答】解:(1)列表如下:1 2 31(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)则点坐标的所有可能的结果有9个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)求出横纵坐标之和,如图所示:1 2 31234234346得到之和为偶数的情况有种,故P(点的横坐标与纵坐标之和是偶数)= .【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18.已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)写出根的判别式,配方后得到完全平方式,进行解答;(2)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根.【解答】解:(1)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a ﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得a= ;方程为x2+ x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1&#8226;x1=﹣,解得x1=﹣.【点评】本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.19.如图,在菱形ABD中,A,BD相交于点,E为AB的中点,DE ⊥AB.(1)求∠AB的度数;(2)如果,求DE的长.【考点】菱形的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据菱形的四条边都相等可得AB=AD,然后求出AB=AD=BD,从而得到△ABD是等边三角形,再根据等边三角形的性质求出△DAB=60°,然后根据两直线平行,同旁内角互补求解即可;(2)根据菱形的对角线互相平分求出A,再根据等边三角形的性质可得DE=A.【解答】解:(1)∵E为AB的中点,DE⊥AB,∴AD=DB,∵四边形ABD是菱形,∴AB=AD,∴AD=DB=AB,∴△ABD为等边三角形.∴∠DAB=60°.∵菱形ABD的边AD∥B,∴∠AB=180°﹣∠DAB=180°﹣60°=120°,即∠AB=120°;(2)∵四边形ABD是菱形,∴BD⊥A于,A= A= ×4 =2 ,由(1)可知DE和A都是等边△ABD的高,∴DE=A=2 .【点评】本题考查了菱形的性质,等边三角形的判定与性质,熟记各性质是解题的关键.20.(2014春&#8226;仙游县校级期末)已知:如图,在&#9649;ABD 中,点E是B的中点,连接AE并延长交D的延长线于点F,连接BF.(1)求证:△ABE≌△FE;(2)若AF=AD,求证:四边形ABF是矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)根据平行四边形性质得出AB∥D,推出∠1=∠2,根据AAS证两三角形全等即可;(2)根据全等得出AB=F,根据AB∥F得出平行四边形ABF,推出B=AF,根据矩形的判定推出即可.【解答】证明:(1)如图.∵四边形ABD是平行四边形,∴AB∥D 即AB∥DF,∴∠1=∠2,∵点E是B的中点,∴BE=E.在△ABE和△FE中,,∴△ABE≌△FE(AAS).(2)∵△ABE≌△FE,∴AB=F,∵AB∥F,∴四边形ABF是平行四边形,∴AD=B,∵AF=AD,∴AF=B,∴四边形ABF是矩形.【点评】本题考查了平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定等知识点的应用,本题主要考查学生运用定理进行推理的能力.。

黄浦区2017学年度第一学期九年级期中考试数学试卷(含答案)

黄浦区2017学年度第一学期九年级期中考试数学试卷(含答案)

OBA D C(图2)S 1S 2S 3S 4黄浦区2017学年第一学期九年级期中考试数学试卷2017年11月(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.已知52a b =,那么下列等式中,不一定正确的是(▲)(A )25b a =;(B )52a b =;(C )7a b +=;(D )25a b =.2.如图1,若△ABC 中,D 、E 分别为边AB 、AC 上的点,DE ∥BC ,则下列判断错误..的是(▲)(A )AD AE DB EC =;(B )AD DE DB BC =;(C )AD AE AB AC =;(D )AD DEAB BC=.3.若△ABC ∽△DEF ,相似比为3∶2,则△ABC 与△DE 的周长比是(▲)(A )3∶2;(B )3∶5;(C )9∶4;(D )4∶9.4.Rt △ABC 中,90C ∠=︒,A ∠所对的边为a ,则边AC 的长可表示为(▲)(A )sin a A ⋅;(B )cos a A ⋅;(C )tan a A ⋅;(D )cot a A ⋅.5.如果平行四边形ABCD 对角线AC 与BD 交于O ,AB a =uu u r r ,BC b =uu u r r,那么下列向量中与向量1()2a b -r r相等的是(▲)(A )AO uuu r ;(B )BO uu u r ;(C )CO uu u r ;(D )DO uuu r .6.如图2,在梯形ABCD 中,AD ∥BC ,BC =2AD .如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,错误..的是(▲)(A )S 1=S 3;(B )1324S S S S +=+;(C )S 2=2S 1;(D )4231S S S S ⋅=⋅.二、填空题:(本大题共12题,每题4分,满分48分)7.如果34x y =,那么x yy-的值是▲.8.计算:3(24)5()a b a b ---=r r r r▲.(图1)图1(图5)图1(图6)图1(图7)图19.若向量a r 与单位向量e r 的方向相反,且||4||a e =r r ,则a r =▲.(用e r表示)10.若点P 是线段AB 的黄金分割点,4AB cm =,则较长线段AP 的长是▲cm .11.如图3,在□ABCD 中,E 是AB 延长线上的一点,DE 与边BC 相交于点F ,如果27BE AE=,那么BFFC的值为▲.12.如图4,在梯形ABCD 中,D 、E 分别为边AB 、AC 上的点,若AE ∶BE =3∶5,CD =12,那么CF 的长等于▲.13.如图5,已知D 、E 分别是△ABC 的边BC 和AC 上的点,且DE ∥AB ,CD =2BD ,△CDE 的面积是1,则梯形ABDE 的面积是▲.14.在Rt △ABC 中,90C ∠=o,若AB =4,BC =3,则sin B 的值是▲.15.已知等腰△ABC 中,5AB AC ==,3cos 5B ∠=,则△ABC 的面积是▲.16.如图6,AD 是△ABC 中BC 边上的中线,点G 是△ABC 的重心,若AB a =uu u r r ,BC b =uu u r r,则AG uuu r 用a r 、b r可表示为▲.17.在△ABC 中,点D 、E 分别在AB 、AC 边上,若2AD =,4BD =,4AC =,且△ADE 与△ABC 相似,则AE 的长为▲.18.在如图7的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格处,AB 与CD 相交于O ,则tan ∠BOD 的值等于▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)ABDC(图3)FE(图4)图1ABCDG(图9)图1(图10)图1(图11)计算:sin 30cos60tan 45cot 30++︒o oo .20.(本题满分10分)如图8,已知点D 、E 分别在△ABC 的边BA 、CA 的延长线上,且12AE AC =,12AD AB =.(1)求证:DE ∥BC ;(2)若AE a =uu u r r ,AD b =uuu r r ,则BC uu u r 用a r ,b r可表示为▲.21.(本题满分10分)如图9,在△ABC 中,∠C =90°,点D 在BC 上,BD =4,AD =BC ,3os 5c ADC ∠=.(1)求DC 的长;(2)求∠B 的正弦值.22.(本题满分10分)如图10,在△ABC 中,AB =AC ,点D 、E 、F 分别在边AB 、BC 、AC 上,且满足∠DEF =∠B .(1)求证:△BDE ∽△CEF ;(2)当点E 是BC 中点时,求证:DE 平分∠BDF .23.(本题满分12分)如图11,在△ABC 中,点D 在边BC 上,点E 是△ABC 外一点,且EAB DAC ∠=∠,AB =8,AC =AE =6,92AD =.(1)求证:EBA DCA ∠=∠;(2)当72BE =时,求BEFAFDS S ∆∆的值.(图8)(图12-1)图1(图12-2)图1(备用图)(备用图)(图13)24.(本题满分12分)如图12-1,已知矩形ABCD 中,AB =4,AD =6,E 是线段AD 上一点,将△ECD 沿CE 翻折,点D 落在点F 上.(1)如图12-2,当B ,D ,F 三点在同一直线上时,求线段ED 的长;(2)当点F 到BC 的距离等于1时,求线段ED的长.25.(本题满分14分)如图13,已知在直角梯形ABCD 中,AD ∥BC ,90ABC ∠=︒,BC =CD ,AB =2,AD =1,点E 在CB 延长线上,点F 在边DC 上,且BE =2DF ,联结EF 分别交AB 、BD 于点M 、N .(1)求tan C ∠的值;(2)设BE x =,BM y =,求y 关于x 的函数解析式,并写出它的定义域;(3)联结AN ,当AN ⊥EF 时,求线段BE 的长.。

初三数学期中考试试卷上册附答案2017

初三数学期中考试试卷上册附答案2017

初三数学期中考试试卷上册附答案2017期中对我们来说是一次考验,又是一次检验,考验学习态度是否端正,检验前半学期学到的成果。

以下是店铺为大家搜索整理的初三数学试卷上册附答案2017,希望能给大家带来帮助!更多精彩内容请及时关注我们应届毕业生!一、选择题(本大题共15个小题,每小题3分,共45分)1.一元二次方程x2-3x+2=0的两根为x1,x2,则x1+x2的值是( )A.2B.-2C.3D.-32.一元二次方程x2-4x+5=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.如果2是方程x2-3x+c=0的一个根,那么c的值是( )A.4B.-4C.2D.-24.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.45.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )A.14B.12C.12或14D.以上都不对6.下列命题正确的是( )A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形7.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为( )A.x(x-11)=180B.2x+2(x-11)=180C.x(x+11)=180D.2x+2(x+11)=1808.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.359.关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是( )A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠210.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )A.4B.6C.8D.1011.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( )A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢12.将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8 000元,则售价应定为( )A.60元B.80元C.60元或80元D.70元13.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是( )A.70°B.75°C.80°D.95°14.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使平行四边形ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )A.①②B.②③C.①③D.②④15.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG=12(BC-AD);⑤四边形EFGH是菱形,其中正确的个数是( )A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,每小题5分,共25分)16.一元二次方程x2+x=0的解是________________.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=________.18.若x1、x2是方程2x2-3x-4=0的两个根,则x1x2+x1+x2的值为________.19.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.20.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)用适当的方法解方程:(1)x2-4x+3=0; (2)(x-2)(3x-5)=1.22.(8分)如图,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB.23.(10分)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.24.(12分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为________;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法或列表法求出他恰好买到雪碧和奶汁的概率.25.(12分)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.26.(14分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表(不需化简):时间第一个月第二个月清仓时单价(元) 80 40销售量(件) 200(2)如果批发商希望通过销售这批T恤获利9 000元,那么第二个月的单价应是多少元?27.(16分)已知: ABCD的两边AB,AD的长是关于x的方程x2-mx+m2-14=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么 ABCD的周长是多少?参考答案1.C2.D3.C4.C5.B6.D7.C8.C9.D 10.C 11.B12.C 13.C 14.B 15.C 16.x1=0,x2=-1 17.5 18.-12 19.2320.2221.(1)x1=1,x2=3.(2)x1=11+136,x2=11-136.22.证明:∵四边形ABCD为矩形,∴∠A=∠B=90°,AD=BC.∵∠AOC=∠BOD,∴∠AOC-∠DOC=∠BOD-∠DOC,即∠AOD=∠BOC.∴△AOD≌△BOC(AAS).∴AO=OB.23.设这个增长率为x.依题意得20(1+x)2-20(1+x)=4.8.解得x1=0.2,x2=-1.2(不合题意,舍去).0.2=20%.答:这个增长率是20%.24.(1)14(2)画树状图:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16. 25.证明:连接MC.∵在正方形ABCD中,AD=CD,∠ADM=∠CDM,又∵DM=DM,∴△ADM≌△CDM.∴AM=CM.∵ME∥CD,MF∥BC,∴四边形CEMF是平行四边形.又∵∠ECF=90°,∴ CEMF是矩形.∴EF=MC。

2017年重点中学九年级上学期期中数学试卷两套汇编一附答案解析

2017年重点中学九年级上学期期中数学试卷两套汇编一附答案解析

2017年重点中学九年级上学期期中数学试卷两套汇编一附答案解析中学九年级(上)期中数学试卷一、选择题(共14小题,每题3分,总分值42分)1.以下函数关系式中,是二次函数的是()A.y=x3﹣2x2﹣1 B.y=x2C.D.y=x+12.抛物线y=(x﹣2)2+3的对称轴是()A.直线x=﹣2 B.直线x=2 C.直线x=﹣3 D.直线x=33.二次函数y=(x﹣1)2+2的最小值是()A.﹣2 B.﹣1 C.1 D.24.已知二次函数y=ax2+bx+c的图象如下图,那么a、b、c知足()A.a<0,b<0,c>0 B.a<0,b<0,c<0 C.a<0,b>0,c>0 D.a>0,b<0,c>05.二次函数y=﹣(x+3)2+2图象的开口方向、对称轴和极点坐标别离为()A.向下,x=3,(3,2) B.向下,x=﹣3,(3,2)C.向上,x=﹣3,(3,2)D.向下,x=﹣3,(﹣3,2)6.抛物线y=x2+2x﹣2的图象的极点坐标是()A.(2,﹣2)B.(1,﹣2)C.(1,﹣3)D.(﹣1,﹣3)7.与抛物线y=2(x﹣1)2+2形状相同的抛物线是()A.B.y=2x2C.y=(x﹣1)2+2 D.y=(2x﹣1)2+2 8.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,那么平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3 B.y=﹣(x+1)2﹣3 C.y=﹣(x﹣1)2+3 D.y=﹣(x+1)2+39.把方程x(x+2)=5(x﹣2)化成一样式,那么a、b、c的值别离是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,2 10.一元二次方程x2﹣2x+2=0的根的情形是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根 D.有两个相等的实数根11.某城市2021年末已有绿化面积300公顷,通过两年绿化,绿化面积逐年增加,到2021年末增加到363公顷,设绿化面积平均每一年的增加率为x,由题意,所列方程正确的选项是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1﹣x)2=30012.要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,那么()A.a≠0 B.a≠3C.a≠1且b≠﹣1 D.a≠3且b≠﹣1且c≠013.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,那么原先这块木板的面积是()A.100m2 B.64m2C.121m2 D.144m214.抛物线y=﹣(x+2)2与y轴交点坐标为()A.(0,2)B.(0,﹣2)C.(﹣2,0)D.(2,0)二.填空题15.把方程3x(x﹣1)=(x+2)(x﹣2)+9化成ax2+bx+c=0的形式为.16.函数y=9﹣4x2,当x= 时有最大值.17.二次函数y=x2的图象开口方向.当x= 时,y有最值,是,当x<0时,y随x的增大而.18.二次函数y=x2﹣2x﹣3的图象与x轴交点的坐标是,y轴的交点坐标是,极点坐标是.三、解答题(共62分)19.(15分)用适当的方式解以下方程:(1)2x2﹣8x=0.(2)x2﹣3x﹣4=0.求出抛物线的开口方向、对称轴、极点坐标.(3)y=x2﹣x+3(公式法).20.(8分)已知关于x的一元二次方程x2﹣(k+1)x﹣6=0的一个根为2,求k的值及另一个根.21.(8分)用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边l的转变而转变,当l是多少时,场地的面积S最大?22.(9分)青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,求水稻每公顷产量的年平均增加率.23.(10分)已知一抛物线与x轴的交点是A(﹣2,0)、B(1,0),且通过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的极点坐标.24.(12分)已知二次函数y=2x2﹣4x﹣6.(1)写出抛物线的开口方向,对称轴和极点坐标.(2)在平面直角坐标系中,画出那个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)求函数图象与两坐标轴交点所围成的三角形的面积.参考答案与试题解析一、选择题(共14小题,每题3分,总分值42分)1.以下函数关系式中,是二次函数的是()A.y=x3﹣2x2﹣1 B.y=x2C.D.y=x+1【考点】二次函数的概念.【分析】依照二次函数的概念条件对四个选项进行一一分析即可.【解答】解:A、自变量的最高次数是3,错误;B、正确;属于二次函数的一样形式;C、原函数可化为:y=2x﹣2﹣3,自变量的最高次数是﹣2,错误;D、自变量的最高次数是1,错误.应选B.【点评】此题考查二次函数的概念.2.抛物线y=(x﹣2)2+3的对称轴是()A.直线x=﹣2 B.直线x=2 C.直线x=﹣3 D.直线x=3【考点】二次函数的性质.【分析】直接依照极点式的特点可直接写出对称轴.【解答】解:因为抛物线解析式y=(x﹣2)2+3是极点式,极点坐标为(2,3),因此对称轴为直线x=2.应选B.【点评】要紧考查了求抛物线的对称轴的方式.3.二次函数y=(x﹣1)2+2的最小值是()A.﹣2 B.﹣1 C.1 D.2【考点】二次函数的最值.【分析】依照二次函数的性质求解.【解答】解:∵y=(x﹣1)2+2,∴当x=1时,函数有最小值2.应选D.【点评】此题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右边,y随x的增大而增大,因为图象有最低点,因此函数有最小值,当x=﹣,函数最小值y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右边,y随x的增大而减少,因为图象有最高点,因此函数有最大值,当x=﹣,函数最大值y=.4.已知二次函数y=ax2+bx+c的图象如下图,那么a、b、c知足()A.a<0,b<0,c>0 B.a<0,b<0,c<0 C.a<0,b>0,c>0 D.a>0,b<0,c>0【考点】二次函数图象与系数的关系.【分析】由于开口向下能够判定a<0,由与y轴交于正半轴取得c>0,又由于对称轴x=﹣<0,能够取得b<0,因此能够找到结果.【解答】解:依照二次函数图象的性质,∵开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,又∵对称轴x=﹣<0,∴b<0,因此A正确.应选A.【点评】考查二次函数y=ax2+bx+c系数符号的确信.5.二次函数y=﹣(x+3)2+2图象的开口方向、对称轴和极点坐标别离为()A.向下,x=3,(3,2)B.向下,x=﹣3,(3,2)C.向上,x=﹣3,(3,2)D.向下,x=﹣3,(﹣3,2)【考点】二次函数的性质.【分析】已知抛物线解析式为极点式,依照二次项系数可判定开口方向,依照解析式可知极点坐标及对称轴.【解答】解:由二次函数y=﹣(x+3)2+2,可知a=﹣1<0,故抛物线开口向下;极点坐标为(﹣3,2),对称轴为x=﹣3.应选D.【点评】极点式可判定抛物线的开口方向,对称轴,极点坐标,最大(小)值,函数的增减性.6.抛物线y=x2+2x﹣2的图象的极点坐标是()A.(2,﹣2) B.(1,﹣2) C.(1,﹣3) D.(﹣1,﹣3)【考点】二次函数的性质.【分析】把抛物线解析式化为极点式可求得答案.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴抛物线极点坐标为(﹣1,﹣3),应选D.【点评】此题要紧考查二次函数的性质,把握二次函数的极点式是解题的关键,即在y=a(x﹣h)2+k中,极点坐标为(h,k),对称轴为x=h.7.与抛物线y=2(x﹣1)2+2形状相同的抛物线是()A.B.y=2x2C.y=(x﹣1)2+2 D.y=(2x﹣1)2+2【考点】二次函数的图象.【分析】当二次项系数相同时,抛物线的形状相同.【解答】解:∵抛物线y=2(x﹣1)2+2中,a=2,∴与已知抛物线形状相同的是抛物线y=2x2.应选B.【点评】二次项系数决定了抛物线的开口方向和开口大小.8.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,那么平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3 B.y=﹣(x+1)2﹣3 C.y=﹣(x﹣1)2+3 D.y=﹣(x+1)2+3【考点】二次函数图象与几何变换.【分析】利用二次函数平移的性质.【解答】解:当y=﹣x2向左平移1个单位时,极点由原先的(0,0)变成(﹣1,0),当向上平移3个单位时,极点变成(﹣1,3),那么平移后抛物线的解析式为y=﹣(x+1)2+3.应选:D.【点评】此题要紧考查二次函数y=ax2、y=a(x﹣h)2、y=a(x﹣h)2+k的关系问题.9.把方程x(x+2)=5(x﹣2)化成一样式,那么a、b、c的值别离是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,2【考点】一元二次方程的一样形式.【分析】a、b、c别离指的是一元二次方程的一样式中的二次项系数、一次项系数、常数项.【解答】解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值别离是1、﹣3、10;应选A.【点评】此题考查了一元二次方程的一样形式.一元二次方程的一样形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一样形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c别离叫二次项系数,一次项系数,常数项.10.一元二次方程x2﹣2x+2=0的根的情形是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根 D.有两个相等的实数根【考点】根的判别式.【分析】依照根的判别式△=b2﹣4ac的符号来判定一元二次方程x2﹣2x+2=0的根的情形.【解答】解:∵一元二次方程x2﹣2x+2=0的二次项系数a=1,一次项系数b=﹣2,常数项c=2,∴△=b2﹣4ac=4﹣8=﹣4<0,∴一元二次方程x2﹣2x+2=0没有实数根;应选C.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.某城市2021年末已有绿化面积300公顷,通过两年绿化,绿化面积逐年增加,到2021年末增加到363公顷,设绿化面积平均每一年的增加率为x,由题意,所列方程正确的选项是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1﹣x)2=300【考点】由实际问题抽象出一元二次方程.【分析】一样用增加后的量=增加前的量×(1+增加率),若是设绿化面积平均每一年的增加率为x,依照题意即可列出方程.【解答】解:设绿化面积平均每一年的增加率为x,依照题意即可列出方程300(1+x)2=363.应选B.【点评】此题为增加率问题,一样形式为a(1+x)2=b,a为起始时刻的有关数量,b为终止时刻的有关数量.12.要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,那么()A.a≠0 B.a≠3C.a≠1且b≠﹣1 D.a≠3且b≠﹣1且c≠0【考点】一元二次方程的概念.【分析】此题依照一元二次方程的概念求解,一元二次方程必需知足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:依照一元二次方程的概念中二次项系数不为0得,a﹣3≠0,a≠3.应选B.【点评】一元二次方程的一样形式是:ax2+bx+c=0(a,b,c是常数且a≠0)专门要注意a≠0的条件.当a=0时,上面的方程就不是一元二次方程了,当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只只是是不完全的一元二次方程.13.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,那么原先这块木板的面积是()A.100m2B.64m2C.121m2D.144m2【考点】一元二次方程的应用.【分析】从一块正方形木板上锯掉2m宽的长方形木条,剩下的仍然是一个长方形,现在那个长方形的长等于原先正方形木板的边长,宽等于正方形木板的边长减去2m,依照剩下的长方形的面积是48m2,列出方程,求出解,进而求出原先正方形木板的面积.【解答】解:设原先正方形木板的边长为xm.由题意,可知x(x﹣2)=48,解得x1=8,x2=﹣6(不合题意,舍去).因此8×8=64.应选B.【点评】此题考查了一元二次方程的应用,明白得从一块正方形木板上锯掉2m 宽的长方形木条,剩下的仍然是一个长方形,是解此题的关键.14.抛物线y=﹣(x+2)2与y轴交点坐标为()A.(0,2)B.(0,﹣2) C.(﹣2,0) D.(2,0)【考点】二次函数图象上点的坐标特点.【分析】求抛物线y=﹣(x+2)2与y轴交点坐标,只需把 x=0代入解析式取得y的值即可求解.【解答】解:∵抛物线y=﹣(x+2)2与y轴交点,∴把x=0代入解析式中的y=﹣2,∴抛物线y=﹣(x+2)2与y轴交点坐标为:(0,﹣2),应选:B.【点评】此题考查了二次函数图象上点的坐标特点,依照y轴上点的横坐标为0求出交点的纵坐标是解题的关键.二.填空题15.把方程3x(x﹣1)=(x+2)(x﹣2)+9化成ax2+bx+c=0的形式为2x2﹣3x﹣5=0 .【考点】一元二次方程的一样形式.【分析】方程整理为一样形式即可.【解答】解:方程整理得:3x2﹣3x=x2﹣4+9,即2x2﹣3x﹣5=0.故答案为:2x2﹣3x﹣5=0.【点评】此题考查了一元二次方程的一样形式,一元二次方程的一样形式是:ax2+bx+c=0(a,b,c是常数且a≠0)专门要注意a≠0的条件.这是在做题进程中容易轻忽的知识点.在一样形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c别离叫二次项系数,一次项系数,常数项.16.函数y=9﹣4x2,当x= 0 时有最大值9 .【考点】二次函数的最值.【分析】此题考查利用二次函数极点式求最大(小)值的方式.【解答】解:由于﹣4<0,因此函数y=9﹣4x2有最大值,当x=0时有最大值9.【点评】求二次函数的最大(小)值有三种方式,第一种可由图象直接得出,第二种是配方式,第三种是公式法.17.二次函数y=x2的图象开口方向向上.当x= 0 时,y有最小值,是0 ,当x<0时,y随x的增大而减小.【考点】二次函数的性质.【分析】二次函数y=ax2+bx+c (a,b,c为常数,a≠0)且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下.在极点处,y具有最大或最小值,在对称轴的双侧,y随x的转变相反.【解答】解:二次函数y=x2的图象开口方向向上,当x=0时,y有最小值,是0,当x<0时,y随x的增大而减小.【点评】此题要紧考查二次函数图象的性质.18.二次函数y=x2﹣2x﹣3的图象与x轴交点的坐标是(﹣1,0),(3,0),y轴的交点坐标是(0,﹣3),极点坐标是(1,﹣4).【考点】二次函数图象上点的坐标特点.【分析】求函数与x轴交点,令y=0,代入求解即可,同理求与y轴交点坐标,可令x=0,代入解析式求解即可,把二次函数化为极点坐标形式可求得极点坐标.【解答】解:依照题意,令y=0,代入函数解析式得,x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴与x轴交点坐标为(﹣1,0),(3,0),同理令x=0,代入解析式得,y=﹣3,∴与y轴交点为(0,﹣3),把二次函数解析式化为极点坐标形式得,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴极点坐标为(1,﹣4).【点评】此题考查了二次函数图象上点的坐标特点,是基础题.三、解答题(共62分)19.(15分)(2016秋•海南期中)用适当的方式解以下方程:(1)2x2﹣8x=0.(2)x2﹣3x﹣4=0.求出抛物线的开口方向、对称轴、极点坐标.(3)y=x2﹣x+3(公式法).【考点】二次函数的性质;解一元二次方程-因式分解法.【分析】(1)利用因式分解法求解即可;(2)利用因式分解法求解即可;(3)利用极点坐标公式求解.【解答】解:(1)原方程可化为x2﹣4x=0,因式分解可得x(x﹣4)=0,∴x=0或x﹣4=0,∴x1=0,x2=4;(2)因式分解可得(x﹣4)(x+1)=0,∴x﹣4=0或x+1=0,∴x1=4,x2=﹣1;(3)在y=x2﹣x+3中,∵a=>0,∴抛物线开口向上,∵﹣=﹣=1, ==,∴抛物线对称轴为x=1,极点坐标为(1,).【点评】此题要紧考查一元二次方程的解法及二次函数的性质,把握因式分解的方式及二次函数的极点式是解题的关键.20.已知关于x的一元二次方程x2﹣(k+1)x﹣6=0的一个根为2,求k的值及另一个根.【考点】一元二次方程的解.【分析】由于一根为2,把x=2代入方程即可求得k的值.然后依照两根之积即可求得另一根.【解答】解:∵方程x2﹣(k+1)x﹣6=0的一个根为2,∴22﹣2(k+1)﹣6=0,解得k=﹣2,设另一根为x,∵2x=﹣6,∴x=﹣3,∴k=﹣2,另一根为﹣3.【点评】考查了一元二次方程的解的知识,解题时可利用根与系数的关系使问题简化,难度不大.21.用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边l的转变而转变,当l是多少时,场地的面积S最大?【考点】二次函数的应用.【分析】依照矩形面积公式,需要确信矩形的长,宽别离是l、(30﹣l),由矩形面积公式列函数关系式,由二次函数的极点坐标公式可求面积最大值.【解答】解:由S=l(30﹣l)=﹣l2+30 l.(0<l<30)当l=时,S有最大值.即当l=15m时,场地的面积最大.【点评】此题考查点了矩形面积的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.22.青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,求水稻每公顷产量的年平均增加率.【考点】一元二次方程的应用.【分析】此题依据题中的等量关系水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,依照增加后的产量=增加前的产量(1+增加率),设增加率是x,那么2003年的产量是7200(1+x)2据此即可列方程,解出后查验即可.【解答】解:设水稻每公顷产量的年平均增加率为x,那么有:7200(1+x)2=8450,解得:x1=≈0.0833,x2=﹣=﹣2.0833(应舍去).∴水稻每公顷产量的年平均增加率为8.33%.【点评】假设原先的数量为a,平均每次增加或降低的百分率为x,通过第一次调整,就调整到a×(1±x),再通过第二次调整确实是a×(1±x)(1±x)=a(1±x)2.增加用“+”,下降用“﹣”.23.(10分)(2007•天津)已知一抛物线与x轴的交点是A(﹣2,0)、B(1,0),且通过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的极点坐标.【考点】待定系数法求二次函数解析式;二次函数的性质.【分析】此题考查了待定系数法求a、b、c的值,依照题意可得三元一次方程组,解方程组即可求得待定系数的值;利用配方式或公式法求极点坐标即可.【解答】解:(1)设那个抛物线的解析式为y=ax2+bx+c;由已知,抛物线过A(﹣2,0),B(1,0),C(2,8)三点,得;解那个方程组,得a=2,b=2,c=﹣4;∴所求抛物线的解析式为y=2x2+2x﹣4.(2)y=2x2+2x﹣4=2(x2+x﹣2)=2(x+)2﹣,∴该抛物线的极点坐标为(﹣,﹣).【点评】此题考查了用待定系数法求函数解析式的方式,方程组的解法,同时还考查了抛物线极点坐标的求法.24.(12分)(2016秋•海南期中)已知二次函数y=2x2﹣4x﹣6.(1)写出抛物线的开口方向,对称轴和极点坐标.(2)在平面直角坐标系中,画出那个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)求函数图象与两坐标轴交点所围成的三角形的面积.【考点】抛物线与x轴的交点.【分析】(1)依照二次项系数大于0判定出开口向上,将二次函数解析式整理成极点式形式,然后写成对称轴和极点坐标即可;(2)求出二次函数与坐标轴的交点,然后作出函数图象即可;(3)依照函数图象与二次函数的增减性解答;(4)利用三角形的面积公式列式计算即可得解.【解答】解:(1)∵a=2>0,∴抛物线的开口向上,∵y=2x2﹣4x﹣6=2(x﹣1)2﹣8,∴抛物线对称轴为直线x=1,极点坐标为(1,﹣8);(2)令y=0,2x2﹣4x﹣6=0,解得x1=﹣1,x2=3,因此,抛物线与x轴的交点坐标为(﹣1,0),(3,0),令x=0,那么y=﹣6,因此,抛物线与y轴的交点坐标为(0,﹣6),作出函数图象如下图;(3)x<1时,y随x的增大而减少;(4)函数图象与x轴的交点设为A、B,那么AB=3﹣(﹣1)=3+1=4,设与y轴的交点坐标为(0,﹣6),那么OC=6,因此,函数图象与两坐标轴交点所围成的三角形的面积=AB•OC=×4×6=12.【点评】此题考查了抛物线与x轴的交点问题,要紧利用了二次函数的性质,二次函数图象的作法,将抛物线解析式整理成极点式形式求解更简便.九年级(上)期中数学试卷(解析版)一、选择题1.以下命题正确的选项是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相互垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形2.已知菱形的边长和一条对角线的长均为2cm,那么菱形的面积为()A.3cm2B.4cm2C. cm2D.2cm23.以下方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B. +﹣5=0 C.ax2+bx+c=0 D.x2+2x=x2﹣1 4.关于x的一元二次方程x2﹣k=0有实数根,那么()A.k<0 B.k>0 C.k≥0 D.k≤05.以下条件不能判定△ABC与△DEF相似的是()A.B.,∠A=∠DC.∠A=∠D,∠B=∠E D.,∠B=∠E6.一个用于防震的L形包装塑料泡沫如下图,那么该物体的俯视图是()A.B.C.D.7.在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,那么k的值能够是()A.﹣1 B.0 C.1 D.28.有一个正方体,6个面上别离标有1~6这6个整数,抛掷那个正方体一次,那么显现向上一面的数字为偶数的概率是()A.B.C.D.二、填空题9.如图,菱形ABCD的两条对角线相交于O,假设AC=6,BD=4,那么菱形ABCD 的周长是.10.已知方程x2﹣3x+m=0的一个根是1,那么m的值是,它的另一个根是.11.方程x2﹣16=0的解为.12.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,那么小明的影子AM长为米.13.如图:使△AOB∽△COD,那么还需添加一个条件是:.(写一个即可)14.写一个反比例函数的解析式,使它的图象在第一、三象限:.三、计算题(15题按要求方式解答,16题用适当方式解答)15.(12分)解方程:(1)x2+4x+1=0(用配方式);(2)x(x﹣2)+x﹣2=0.16.(12分)解方程(1)4x2﹣169=0(2)x2﹣4x+2=0.四、解答题:17.(7分)如图,矩形ABCD中,点E,F别离在AB,CD边上,连接CE、AF,∠DCE=∠BAF.试判定四边形AECF的形状并加以证明.18.(8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)假设AB=3,AC=4.求DE的长.19.(6分)画出下面实物的三视图:20.(8分)如图,是小亮晚上在广场散步的示用意,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)在小亮由B处沿BO所在的方向行走抵达O处的进程中,他在地面上的影子长度的转变情形为;(2)请你在图中画出小亮站在AB处的影子;(3)当小亮离开灯杆的距离OB=4.2m时,身高(AB)为1.6m的小亮的影长为1.6m,问当小亮离开灯杆的距离OD=6m时,小亮的影长是多少m?21.(8分)某水果批发商场经销一种高级水果,若是每千克盈利10元,天天可售出500千克.经市场调查发觉,在进货价不变的情形下,假设每千克涨价1元,日销售量将减少20千克.现该商场要保证天天盈利6000元,同时又要使顾客取得实惠,那么每千克应涨价多少元?22.(8分)如图,甲、乙两人在玩转盘游戏时,预备了两个能够自由转动的转盘A,B,每一个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规那么:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.若是指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求乙获胜的概率;(2)那个游戏规那么对甲、乙两边公平吗?请判定并说明理由.23.(9分)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于M、N 两点.(1)求反比例函数与一次函数的解析式;(2)依照图象写出使反比例函数的值大于一次函数的值的x的取值范围.参考答案与试题解析一、选择题1.以下命题正确的选项是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相互垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【考点】命题与定理;平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.【分析】分析是不是为真命题,需要别离分析各题设是不是能推出结论,从而利用排除法得出答案.【解答】解:A、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故A选项错误;B、对角线相互垂直的四边形也可能是一样四边形,故B选项错误;C、对角线相等的四边形有可能是等腰梯形,故C选项错误.D、一组邻边相等的矩形是正方形,故D选项正确.应选:D.【点评】此题考查特殊平行四边形的判定,需熟练把握各特殊四边形的特点.2.已知菱形的边长和一条对角线的长均为2cm,那么菱形的面积为()A.3cm2B.4cm2C. cm2D.2cm2【考点】菱形的性质.【分析】依照菱形的性质可得该对角线与菱形的边长组成一个等边三角形,利用勾股定理求得另一条对角线的长,再依照菱形的面积公式:菱形的面积=×两条对角线的乘积,即可求得菱形的面积.【解答】解:由已知可得,这条对角线与边长组成了等边三角形,可求得另一对角线长2,那么菱形的面积=2×2÷2=2cm2应选D.【点评】此题要紧考查菱形的面积等于两条对角线的积的一半.3.以下方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B. +﹣5=0 C.ax2+bx+c=0 D.x2+2x=x2﹣1【考点】一元二次方程的概念.【分析】利用一元二次方程的概念判定即可.【解答】解:一元二次方程是指ax2+bx+c=0(a≠0),B选项含有分式,不符合条件;C选项没有说明a≠0;D选项经化简后不含二次项,应选A【点评】此题考查了一元二次方程的概念,熟练把握一元二次方程的概念是解此题的关键.4.关于x的一元二次方程x2﹣k=0有实数根,那么()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】解一元二次方程-直接开平方式.【分析】依照直接开平方式的步骤得出x2=k,再依照非负数的性质得出k≥0即可.【解答】解:∵x2﹣k=0,∴x2=k,∴一元二次方程x2﹣k=0有实数根,那么k≥0,应选:C.【点评】此题考查了直接开平方式解一元二次方程,用直接开方式求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b ≥0);a(x+b)2=c(a,c同号且a≠0).法那么:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.5.以下条件不能判定△ABC与△DEF相似的是()A.B.,∠A=∠DC.∠A=∠D,∠B=∠E D.,∠B=∠E【考点】相似三角形的判定.【分析】相似的判定有三种方式:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似,逐项分析即可.【解答】解:A、利用三边法能够判定△ABC与△DEF相似;B、不能判定相似,因为∠B、∠D不是这两组边对应的夹角;C、∠A=∠D,∠B=∠F,能够判定△ABC与△DEF相似;D、利用两边及其夹角的方式可判定△ABC与△DEF相似;应选B.【点评】此题考查了相似三角形的判定,把握相似三角形判定的三种方式是解答此题的关键.6.一个用于防震的L形包装塑料泡沫如下图,那么该物体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】依照组合体的排放顺序能够取得正确的答案.【解答】解:从上面看该组合体的俯视图是一个矩形,而且被一条棱隔开,应选B.【点评】此题考查几何体的三种视图,比较简单.解决此题既要有丰硕的数学知识,又要有必然的生活体会.7.在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,那么k的值能够是()A.﹣1 B.0 C.1 D.2【考点】反比例函数的性质.【分析】关于函数来讲,当k<0时,每一条曲线上,y随x的增大而增大;当k>0时,每一条曲线上,y随x的增大而减小.【解答】解:反比例函数的图象上的每一条曲线上,y随x的增大而增大,∴1﹣k<0,∴k>1.应选:D.【点评】此题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运用.易错易混点:学生对解析式中k的意义不睬解,直接以为k<0,错选A.8.有一个正方体,6个面上别离标有1~6这6个整数,抛掷那个正方体一次,那么显现向上一面的数字为偶数的概率是()A.B.C.D.【考点】概率公式.【分析】抛掷那个正方体会显现1到6共6个数字,每一个数字显现的机遇相同,即有6个可能结果,而这6个数中有2,4,6三个偶数,那么有3种可能.【解答】解:依照概率公式:P(显现向上一面的数字为偶数)=.应选C.【点评】用到的知识点为:概率等于所求情形数与总情形数之比.二、填空题9.如图,菱形ABCD的两条对角线相交于O,假设AC=6,BD=4,那么菱形ABCD 的周长是4.。

江苏省常州市2017届九年级(上)期中数学试卷(含解析)

江苏省常州市2017届九年级(上)期中数学试卷(含解析)

2016-2017学年江苏省常州市九年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.2.用配方法解方程x(x﹣2)﹣5=0时,可将原方程变形为()A.(x﹣1)2=6 B.(x+1)2=6 C.(x﹣1)2=5 D.(x﹣2)2=53.若一元二次方程2x2﹣mx﹣6=0的一个根为2,则m的值为()A.1 B.2 C.﹣1 D.﹣24.三角形的内心是该三角形的()A.三条高线的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三条中线的交点5.下列方程中,有两个整数实数根的是()A.(x﹣1)2﹣2=0; B.x2﹣4x+4=0 C.2x﹣6=x﹣3 D.2x2﹣2x﹣1=06.已知一个数的平方与6的差等于这个数与5的积,则这个数为()A.6 B.﹣2 C.6或﹣2 D.6或﹣17.已知圆锥底面的半径是3,高是4,则这个圆锥侧面展开的扇形的圆心角的度数是()A.108°B.135°C.216°D.270°8.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD至点C,使得DC=BD,连接AC,O C.若AB=5,BD=,则OC的长为()A.4 B.C.D.二、填空题(每小题2分,共20分)9.方程x2=x的根是.10.请写一个一元二次方程,使得它的一个根为2,另一个根为负数,则这个一元二次方程可以是.(写一个即可)11.已知扇形的半径为3cm,圆心角为120°,则此扇形的弧长为cm,扇形的面积是cm2.(结果保留π)12.一个正八边形绕它的中心至少旋转°能与原来的图形完全重合.13.已知⊙O的直径为6,圆心O到直线l的距离是4,则直线l与⊙O的位置关系是.14.如图,⊙O的直径AB长为6,点C、E是圆上一点,且∠AEC=30°.过点C作CD⊥AB,垂足为点D,则AD的长为.15.如图,在平面直角坐标系xOy中,一条圆弧经过网格点A、B、C,其中B点坐标为(4,4),则该圆弧所在圆的圆心的坐标为.16.在等腰△ABC中,∠A>90°,若它的两边长分别是方程x2﹣13x+40=0的两根,则该等腰三角形的面积为.17.某工厂2016年一月份的总产值为20万元,以后每月都在逐步增长,预计第一季度的总产值将达到95万元.设平均每月增长的百分率是x,根据题意可得方程:.18.如图,两个正方形都在⊙O的直径MN的同侧,顶点B、C、G都在MN上,正方形ABCD 的顶点A和正方形CEFG的顶点F都在⊙O上,点E在CD上.若AB=5,FG=3,则OC的长为.三、解下列方程(每小题16分,共16分)19.解下列方程(1)(2x﹣1)2﹣2=0 (2)x2﹣8x+12=0(3)2x2﹣4x﹣5=0 (4)2x﹣4=(x﹣2)2.四、作图题(共6分)20.如图,点M、N是∠ABC的边BC上不重合的两点.请你利用直尺与圆规在平面上画出点P,使得点P到边BA、BC的距离相等,且∠MPN=90°.(保留作图痕迹)五、解答题(共42分)21.已知关于x的方程2x2+(4k+1)x+2k2=0有两个不相等的实数根.(1)求k的取值范围;(2)试说明:无论k取何值,x=2都不可能是原方程的根.22.如图,AB是⊙O的直径,点D在⊙O上,以AB、AD为邻边作▱ABCD,∠C=45°.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4cm,求图中阴影部分的面积(结果保留π).23.如图,为美化乡村环境,某村计划在一块长为80米,宽为60米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道.如果通道所占面积是整个长方形空地面积的22%,试求出此时通道的宽.24.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB于D,AD=2,CD=4.∠BCD的角平分线CE与过点B的切线l交过点E.(1)求⊙O半径的长;(2)求点E到直线BC的距离.25.某商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,如果每件提价1元出售,其销售量就减少20件;现在要获利12 000元,且销售成本不超过24 000元,问这种服装销售单价确定多少为宜?这时应进多少服装?26.如图1,在平面直角坐标xOy中,直线l1经过点(1,2)和(﹣2,﹣1),点P是直线l1上一动点,以点P为圆心、5为半径的圆在直线l1上运动.(1)请直接写出直线l1的解析式.(2)当⊙P与坐标轴只有3个不同的公共点时,直接写出点P的坐标.(3)如图2,若直线l2的解析式是y=2x﹣1,点Q是直线l2上一点,PQ=,当以点Q为圆心,为半径的圆与直线l1相切时,求点P的坐标.2016-2017学年江苏省常州市九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、该图形不是中心对称图形,故本选项错误;B、该图形既是轴对称图形又是中心对称图形,故本选项正确;C、该图形不是中心对称图形,故本选项错误;D、图形不是中心对称图形,故本选项错误;故选:B.2.用配方法解方程x(x﹣2)﹣5=0时,可将原方程变形为()A.(x﹣1)2=6 B.(x+1)2=6 C.(x﹣1)2=5 D.(x﹣2)2=5【考点】解一元二次方程﹣配方法.【分析】先将已知方程转化为一般式方程,然后再配方.【解答】解:x(x﹣2)﹣5=0,x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6.故选:A.3.若一元二次方程2x2﹣mx﹣6=0的一个根为2,则m的值为()A.1 B.2 C.﹣1 D.﹣2【考点】一元二次方程的解.【分析】将x=2代入方程2x2﹣mx﹣6=0,得8﹣2m﹣6=0,解之可得m.【解答】解:根据题意,将x=2代入方程2x2﹣mx﹣6=0,得:8﹣2m﹣6=0,解得:m=1,故选:A.4.三角形的内心是该三角形的()A.三条高线的交点B.三条角平分线的交点C.三边垂直平分线的交点 D.三条中线的交点【考点】三角形的内切圆与内心;三角形的角平分线、中线和高;三角形的重心.【分析】根据三角形内心的性质求解.【解答】解:三角形的内心就是三角形三个内角角平分线的交点.故选B.5.下列方程中,有两个整数实数根的是()A.(x﹣1)2﹣2=0 B.x2﹣4x+4=0 C.2x﹣6=x﹣3 D.2x2﹣2x﹣1=0【考点】根的判别式.【分析】根据各个选项中的方程可以求出方程的解,从而可以解答本题.【解答】解:∵(x﹣1)2﹣2=0,∴x﹣1=,解得,,故选项A错误;由x2﹣4x+4=0,解得x1=x2=2,故选B正确;由2x﹣6=x﹣3,得x=3,故选项C错误;由2x2﹣2x﹣1=0,解得,,故选项D错误;故选B.6.已知一个数的平方与6的差等于这个数与5的积,则这个数为()A.6 B.﹣2 C.6或﹣2 D.6或﹣1【考点】一元二次方程的应用.【分析】首先设这个数是x,再根据已知得出等式求出答案.【解答】解:设这个数是x,根据题意可得:x2﹣6=5x,整理得:x2﹣5x﹣6=0,(x﹣6)(x+1)=0,解得:x1=6,x2=﹣1,故选:D.7.已知圆锥底面的半径是3,高是4,则这个圆锥侧面展开的扇形的圆心角的度数是()A.108°B.135°C.216°D.270°【考点】圆锥的计算.【分析】先根据勾股定理计算出母线长,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到6π=,再解方程求出n的值即可.【解答】解:∵底面圆的半径为3,高4,∴母线的长==5,∴2π•3=,即得n=216°,即侧面展开扇形圆心角n的度数为216°,故选C.8.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD至点C,使得DC=BD,连接AC,O C.若AB=5,BD=,则OC的长为()A.4 B.C.D.【考点】圆周角定理;等腰三角形的性质.【分析】连接AD,作OH⊥BC于H.利用勾股定理求出AD,利用三角形中位线定理求出OH,在Rt△OHC中,根据OC=即可解决问题.【解答】解:连接AD,作OH⊥BC于H.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥B C.∴在直角△ABD中,AD===2,∵OH⊥BC,AD⊥BC,∴OH∥AD,∵OB=OA,∴BH=HD=,OH=AD=,CH=,在Rt△OCH中,OC==.故选D.二、填空题(每小题2分,共20分)9.方程x2=x的根是x1=0,x2=1.【考点】解一元二次方程﹣因式分解法.【分析】先把方程化为一般式,再把方程左边因式分解得x(x﹣1)=0,方程就可转化为两个一元一次方程x=0或x﹣1=0,然后解一元一次方程即可.【解答】解:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1.故答案为x1=0,x2=1.10.请写一个一元二次方程,使得它的一个根为2,另一个根为负数,则这个一元二次方程可以是x2﹣x﹣2=0.(写一个即可)【考点】根与系数的关系.【分析】令方程的另一个根为﹣1,根据根与系数的关系即可找出该一元二次方程.【解答】解:令方程另一个根为﹣1,则2+(﹣1)=1,2×(﹣1)=﹣2,∴该方程可以为x2﹣x﹣2=0.故答案为:x2﹣x﹣2=0.11.已知扇形的半径为3cm,圆心角为120°,则此扇形的弧长为2πcm,扇形的面积是3πcm2.(结果保留π)【考点】扇形面积的计算;弧长的计算.【分析】分别根据弧长公式和扇形的面积公式进行计算即可.【解答】解:由题意得,扇形的半径为3cm,圆心角为120°,故此扇形的弧长为:=2π,扇形的面积==3π.故答案为:2π,3π.12.一个正八边形绕它的中心至少旋转45°能与原来的图形完全重合.【考点】旋转对称图形.【分析】根据正八边形的性质,旋转中心为正八边形的中心,由于正八边形每个顶点到旋转中心距离相等,两个相邻的顶点可看作对应点.【解答】解:∵正八边形每边所对的中心角是360°÷8=45°,∴至少应将它绕中心顺时针旋转45°后与自身重合,故答案为:45.13.已知⊙O的直径为6,圆心O到直线l的距离是4,则直线l与⊙O的位置关系是相离.【考点】直线与圆的位置关系.【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【解答】解:∵⊙O的直径为6,∴⊙O的半径为3,∵圆心O到直线l的距离是4,∴4>3∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相离.故答案为:相离.14.如图,⊙O的直径AB长为6,点C、E是圆上一点,且∠AEC=30°.过点C作CD⊥AB,垂足为点D,则AD的长为.【考点】圆周角定理.【分析】连接OC,根据圆周角定理求出∠AOC的度数,进而求出OD的长度,即可求出AD的长度.【解答】解:连接OC,∵∠AEC=30°,∴∠AOC=60°,∵⊙O的直径AB长为6,∴OC=3,∴在直角三角形CDO中,∠OCD=30°,∴OD=OC=×3=,∴AD=3﹣=,故答案为.15.如图,在平面直角坐标系xOy中,一条圆弧经过网格点A、B、C,其中B点坐标为(4,4),则该圆弧所在圆的圆心的坐标为(,).【考点】垂径定理;坐标与图形性质.【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(,).故答案为:(,).16.在等腰△ABC中,∠A>90°,若它的两边长分别是方程x2﹣13x+40=0的两根,则该等腰三角形的面积为12.【考点】解一元二次方程﹣因式分解法;等腰三角形的性质;勾股定理.【分析】解方程求得x的值,再根据等腰△ABC中,∠A>90°知等腰三角形的腰AB=AC=8,底边BC=8,由勾股定理可得底边上的高,从而由三角形面积公式可得答案.【解答】解:解方程x2﹣13x+40=0,得:x=5或x=8,∵等腰△ABC中,∠A>90°,∴等腰三角形的腰AB=AC=8,底边BC=8,则底边BC上的高为=3,∴该等腰三角形的面积为×8×3=12,故答案为:12.17.某工厂2016年一月份的总产值为20万元,以后每月都在逐步增长,预计第一季度的总产值将达到95万元.设平均每月增长的百分率是x,根据题意可得方程:20+20(1+x)+20(1+x)2=95.【考点】由实际问题抽象出一元二次方程.【分析】分别根据一月份的产值表示出二月份和三月份的产值,从而利用第一季度总产值为95万元列出方程.【解答】解:∵一月份总产值为20万元,平均增长率为x,∴二月份的总产值为20(1+x),三月份的总产值为20(1+x)2,∵第一季度总产值95万元,∴方程为:20+20(1+x)+20(1+x)2=95,故答案为:20+20(1+x)+20(1+x)2=95.18.如图,两个正方形都在⊙O的直径MN的同侧,顶点B、C、G都在MN上,正方形ABCD 的顶点A和正方形CEFG的顶点F都在⊙O上,点E在CD上.若AB=5,FG=3,则OC 的长为2.【考点】垂径定理;正方形的性质.【分析】由四边形ABCD,EFGC是正方形,得到∠ABC=∠FGC=90°,根据勾股定理即可得到结论.【解答】解:连接AO,OF,∵四边形ABCD,EFGC是正方形,∴∠ABC=∠FGC=90°,∴AB2+BO2=OG2+FG2,∴52+(5﹣OC)2=(3+OC)2,∴OC=2,故答案为:2.三、解下列方程(每小题16分,共16分)19.解下列方程(1)(2x﹣1)2﹣2=0(2)x2﹣8x+12=0(3)2x2﹣4x﹣5=0(4)2x﹣4=(x﹣2)2.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣直接开平方法.【分析】(1)首先把﹣2移到等号右边,然后利用直接开平方法解方程即可;(2)首先把等号左边分解因式可得(x﹣2)(x﹣6)=0,进而可得一元一次方程x﹣2=0,x﹣6=0,再解即可;(3)利用求根公式进行计算即可;(4)首先把等号右边化为零,然后利用因式分解法解方程即可.【解答】解:(1)(2x﹣1)2=2,2x﹣1=,2x﹣1=,2x﹣1=﹣,则x1=,x2=;(2)x2﹣8x+12=0,(x﹣2)(x﹣6)=0,x﹣2=0,x﹣6=0,则x1=2,x2=6;(3)2x2﹣4x﹣5=0,a=2,b=﹣4,c=﹣5,b2﹣4ac=16+40=56,x===,x1=,x2=;(4)2x﹣4﹣(x﹣2)2=0,2(x﹣2)﹣(x﹣2)2=0,(x﹣2)(4﹣x)=0,x﹣2=0,4﹣x=0,则x1=2,x2=4.四、作图题(共6分)20.如图,点M、N是∠ABC的边BC上不重合的两点.请你利用直尺与圆规在平面上画出点P,使得点P到边BA、BC的距离相等,且∠MPN=90°.(保留作图痕迹)【考点】作图—基本作图;角平分线的性质.【分析】先画出∠ABC的平分线,再以MN为直径画圆与∠ABC的平分线交与点P1,P2,则点P1,P2即为所求.【解答】解:如图,点P1,P2即为所求..五、解答题(共42分)21.已知关于x的方程2x2+(4k+1)x+2k2=0有两个不相等的实数根.(1)求k的取值范围;(2)试说明:无论k取何值,x=2都不可能是原方程的根.【考点】根的判别式.【分析】(1)根据方程有两个不相等的实数根结合根的判别式即可得出△=8k+1>0,解不等式即可得出k的取值范围;(2)将x=2代入原方程可得出(k+2)2+1=0,由该方程无解即可得出结论.【解答】解:(1)∵方程2x2+(4k+1)x+2k2=0有两个不相等的实数根,∴△=(4k+1)2﹣4×2×2k2=8k+1>0,解得:k>﹣.(2)将x=2代入原方程得:2×22+2×(4k+1)+2k2=0,化简得:k2+4k+5=0,即(k+2)2+1=0,∵此方程无解,∴无论k取何值,x=2都不可能是原方程的根.22.如图,AB是⊙O的直径,点D在⊙O上,以AB、AD为邻边作▱ABCD,∠C=45°.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4cm,求图中阴影部分的面积(结果保留π).【考点】直线与圆的位置关系;平行四边形的性质;切线的判定;扇形面积的计算.【分析】(1)连接半径OD,证明∠ODC=90°即可,根据平行四边形的对角相等可知:∠A=∠C=45°,由同圆的半径相等和等边对等角,则∠ODA=∠A=45°,所以∠AOD=90°,再由平行线的性质得出结论;(2)可以利用平行四边形的面积﹣空白部分的面积,而空白部分是由直角三角形与90°的扇形组成.【解答】解:(1)直线CD与⊙O相切,理由是:连接OD,∵四边形ABCD是平行四边形,∴∠A=∠C,CD∥AB,∴∠CDO=∠AOD,∵∠C=45°,OA=OD,∴∠ODA=∠A=45°,∴∠AOD=90°,∴∠CDO=90°,∵点D是半径OD的外端,∴CD与⊙O相切;(2)由图形得:S阴影=S平行四边形ABCD﹣S△AOD﹣S扇形OBD,=4×8﹣×4×4﹣,=24﹣4π,答:图中阴影部分的面积为(24﹣4π)cm2.23.如图,为美化乡村环境,某村计划在一块长为80米,宽为60米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道.如果通道所占面积是整个长方形空地面积的22%,试求出此时通道的宽.【考点】一元二次方程的应用.【分析】设通道的宽为x米,则花圃的长为(80﹣2x)米、宽为(60﹣2x)米,根据矩形的面积公式结合通道所占面积是整个长方形空地面积的22%,即可得出关于x的一元二次方程,解方程即可得出结论.【解答】解:设通道的宽为x米,则花圃的长为(80﹣2x)米、宽为(60﹣2x)米,根据题意可得:(80﹣2x)(60﹣2x)=80×60×(1﹣22%),解得:x1=4,x2=66,∵60﹣2x=60﹣2×66=﹣72,∴x的值取4.答:通道的宽为4米.24.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB于D,AD=2,CD=4.∠BCD的角平分线CE与过点B的切线l交过点E.(1)求⊙O半径的长;(2)求点E到直线BC的距离.【考点】切线的性质;勾股定理;垂径定理.【分析】(1)如图1中,连接OC,设⊙O的半径为r.在Rt△CDO中,利用勾股定理即可解决问题.(2)如图2中,过点E作EF⊥CD,垂足为点F,EG⊥CB,垂足为G,则∠EFD=90°,只要证明四边形BDFE是矩形,求出EF,利用角平分线的性质可得EG=EF即可解决问题.【解答】解:(1)如图1中,连接OC,设⊙O的半径为r.∵AD=2,OD=r﹣2,∵CD⊥AB,∴∠CDO=90°,在Rt△CDO中,∵CD2+DO2=CO2,∴42+(r﹣2)2=r2,∴r=5,⊙O的半径为5.(2)如图2中,过点E作EF⊥CD,垂足为点F,EG⊥CB,垂足为G,则∠EFD=90°,∵直线l切⊙O于B,∴AB⊥l,∴∠DBE=90°,∵CD⊥AB,∴∠BDF=90°,∴四边形BDFE是矩形,∴EF=BO+OD=8,∵点E在∠BCD的平分线上,∴EG=EF=8.∴点E到直线BC的距离为8.25.某商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,如果每件提价1元出售,其销售量就减少20件;现在要获利12 000元,且销售成本不超过24 000元,问这种服装销售单价确定多少为宜?这时应进多少服装?【考点】一元二次方程的应用.【分析】设这种服装提价x元,首先用代数式表示出每件的盈利,以及可销售的件数,根据每件的盈利×销售的件数=获利12000元,即可列方程求解.【解答】解:设这种服装提价x元,由题意得:(60﹣50+x)=12000解这个方程得:x1=10,x2=20;当x1=10时,800﹣20×10=600,50×600=30 000>24 000,舍去;∴x=20,800﹣20×20=400,60+20=80.答:这种服装销售单价确定为80元为宜,这时应进400件服装.26.如图1,在平面直角坐标xOy中,直线l1经过点(1,2)和(﹣2,﹣1),点P是直线l1上一动点,以点P为圆心、5为半径的圆在直线l1上运动.(1)请直接写出直线l1的解析式.(2)当⊙P与坐标轴只有3个不同的公共点时,直接写出点P的坐标.(3)如图2,若直线l2的解析式是y=2x﹣1,点Q是直线l2上一点,PQ=,当以点Q为圆心,为半径的圆与直线l1相切时,求点P的坐标.【考点】圆的综合题.【分析】(1)待定系数法求解可得直线l1的解析式为y=x+1;(2)设直线y=x+1上的点P坐标为(b,b+1),根据半径为5的⊙P与坐标轴只有3个不同的公共点,分以下三种情况:①⊙P与x轴相切;②⊙P与y轴相切;③⊙P过原点;分别根据圆心到直线的距离等于半径求解,然后验证可得答案;(3)设点Q的坐标为(a,2a﹣1),点P的坐标为(b,b+1),根据PQ=可得(a﹣b)2+(2a﹣b﹣2)2=2 ①,由以点Q为圆心、为半径的圆与直线l1相切知点Q到直线l1的距离为,根据点到直线的距离公式得=,解之可得a的值,再将a的值代入①求出b,从而得知点P的坐标.【解答】解:(1)设直线l1的解析式为y=kx+b,将(1,2)和(﹣2,﹣1)代入,得:,解得:,∴直线l1的解析式为y=x+1;(2)设点P的坐标为(b,b+1),①当⊙P与x轴相切时,|b+1|=5,即b+1=±5,解得:b=4或b=﹣6,∴点P的坐标为(4,5)或(﹣6,﹣5),若点P为(4,5),点P到x轴距离为5,到y轴距离为4,此时⊙P与坐标轴有3个交点;若点P为(﹣6,﹣5),点P到x轴距离为5,到y轴距离为6,此时⊙P与坐标轴没有交点,舍去;②当⊙P与y轴相切时,|b|=5,即b=5或﹣5,∴点P的坐标为(5,6)或(﹣5,﹣4),若点P为(5,6),点P到x轴距离为6,到y轴距离为5,此时⊙P与坐标轴没有交点,舍去;若点P为(﹣5,﹣4),点P到x轴距离为4,到y轴距离为5,此时⊙P与坐标轴有3个交点;③当⊙P过原点时,则OP=5,即OP2=25,∴b2+(b+1)2=25,整理得:b2+b﹣12=0,解得:b=3或﹣4,∴此时点P的坐标为(3,4)或(﹣4,﹣3),综上,当⊙P与坐标轴只有3个不同的公共点时,点P的坐标为(4,5)或(﹣5,﹣4)或(3,4)或(﹣4,﹣3);(3)设点Q的坐标为(a,2a﹣1),点P的坐标为(b,b+1),∵PQ=,∴PQ2=2,即(a﹣b)2+(2a﹣b﹣2)2=2 ①,又∵以点Q为圆心,为半径的圆与直线l1相切,∴点Q到直线l1:y=x+1的距离为,即=,整理得:|2﹣a|=2,解得:a=0或a=4,将a=0代入①,得:b2+2b+1=0,解得:b=﹣1,∴点P的坐标为(﹣1,0);将a=4代入①,得:b2﹣10b+25=0,解得:b=5,∴点P的坐标为(5,6),综上,点P的坐标为(﹣1,0)或(5,6).2017年3月21日。

【最新】2016-2017学年新课标人教版九年级(上册)期中数学试卷及答案

【最新】2016-2017学年新课标人教版九年级(上册)期中数学试卷及答案

2016-2017学年九年级(上)期中数学试卷一、选择题(每小题3分,共30分.下列各题均有四个选项,其中只有一个是符合题意的.)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=22.若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)3.如图,在△ABC中,DE∥BC,AD:AB=1:3,若△ADE的面积等于4,则△ABC的面积等于()A.12 B.16 C.24 D.364.如图,在4×4的正方形网格中,tanα的值等于()A.B.C.D.5.如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2) B.(4,4) C.(4,5) D.(5,4)6.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A.BC,∠ACB B.DE,DC,BC C.EF,DE,BD D.CD,∠ACB,∠ADB7.将抛物线y=2x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣2x2B.y=﹣2x2+1 C.y=2x2﹣1 D.y=﹣2x2﹣18.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x29.二次函数y=ax2+bx+c的部分对应值如下表:x …﹣2 ﹣1 0 1 2 3 …y … 5 0 ﹣3 ﹣4 ﹣3 0 …当函数值y<0时,x的取值范围是()A.﹣2<x<0 B.﹣1<x<0 C.﹣1<x<3 D.0<x<210.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A .B .C .D .二、填空题(每小题3分,共18分)11.已知△ABC ∽△A 1B 1C 1,AB :A 1B 1=2:3,则S △ABC 与S △A1B1C1之比为.12.在Rt △ABC 中,∠C=90°,BC :AC=3:4,则cosA= .13.点A (x 1,y 1)、B (x 2,y 2)在二次函数y=x 2﹣4x ﹣1的图象上,若当1<x 1<2,3<x 2<4时,则y 1与y 2的大小关系是y 1y 2.(用“>”、“<”、“=”填空)14.二次函数y=m 2x 2+(2m+1)x+1的图象与x 轴有两个交点,则m 取值范围是.15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC ”,小红说“添加AB=DC ”.你同意的观点,理由是.16.如图,在平面直角坐标系xOy 中,二次函数y=﹣x 2﹣2x 图象位于x 轴上方的部分记作F 1,与x轴交于点P 1和O ;F 2与F 1关于点O 对称,与x 轴另一个交点为P 2;F 3与F 2关于点P 2对称,与x 轴另一个交点为P 3;….这样依次得到F 1,F 2,F 3,…,F n ,则其中F 1的顶点坐标为,F 8的顶点坐标为,F n 的顶点坐标为(n 为正整数,用含n 的代数式表示).三、解答题(本题共72分,第17-21题,每小题6分,第22-25题,每小题6分,第26题7分,第27题7分,第28题8分)17.计算:3tan30°+2cos45°﹣sin60°﹣2sin30°.18.已知:二次函数y=ax2+bx+c的图象经过(﹣3,0)、(1,0)、(0,﹣3)三点,(1)求:二次函数的表达式;(2)求:二次函数的对称轴、顶点坐标,并画出此二次函数的图象.19.如图,?ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求AF的长.20.已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD的长和tanB的值.21.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面 3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?22.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东30°方向上的B处.(1)B处距离灯塔P有多远?(2)圆形暗礁区域的圆心位于PB的延长线上,距离灯塔200海里的O处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B处是否有触礁的危险,并说明理由.23.如图,在四边形ABCD中,∠C=60°,∠B=∠D=90°,AD=2AB,CD=3,求BC的长.24.在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=1,且b=﹣2时,τ(0,1)= ;(2)若τ(1,2)=(0,﹣2),则a= ,b= ;(3)设点P(x,y)是直线y=2x上的任意一点,点P经过变换τ得到点P′(x′,y′).若点P与点P′重合,求a和b的值.25.动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P.(可以利用图1中的等距平行线)①在图3中作出点P,使得PM=PN;②在图4中作出点P,使得PM=2PN.26.小东同学在学习了二次函数图象以后,自己提出了这样一个问题:探究:函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:(1)函数的自变量x的取值范围是;(2)下表是y与x的几组对应值.x …﹣2 ﹣1 0 2 3 4 …y …m …则m的值是;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;(4)小东进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其他性质(一条即可):.27.如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.28.已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;②抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是;(2)若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;(3)若抛物线y=mx2+2x+n﹣5的“完美三角形”斜边长为n,且y=mx2+2x+n﹣5的最大值为﹣1,求m,n的值.2016-2017学年九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各题均有四个选项,其中只有一个是符合题意的.)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=2【考点】二次函数的性质.【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出对称轴是x=h.【解答】解:∵抛物线的顶点式为y=(x﹣1)2+2,∴对称轴是x=1.故选B.【点评】要求熟练掌握抛物线解析式的各种形式的运用.2.若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【考点】二次函数图象与几何变换.【分析】先确定出原抛物线的顶点坐标,再根据向左平移横坐标减,向下平移,纵坐标减解答即可.【解答】解:抛物线y=2x2的顶点坐标为(0,0),∵向左平移2个单位,向下平移1个单位,∴新抛物线的顶点坐标是(﹣2,﹣1).故选:B.【点评】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.3.(2015秋?北京校级期中)如图,在△ABC中,DE∥BC,AD:AB=1:3,若△ADE的面积等于4,则△ABC的面积等于()A.12 B.16 C.24 D.36【考点】相似三角形的判定与性质.【分析】由条件证明△ADE∽△ABC,且相似比为,再利用相似三角形的性质可求得△ABC的面积.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=,∵S△ADE=2,∴=,解得S△ABC=36.故选D.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.4.如图,在4×4的正方形网格中,tanα的值等于()A.B.C.D.【考点】锐角三角函数的定义.【专题】网格型.【分析】直接根据锐角三角函数的定义即可得出结论.【解答】解:∵AD⊥BC,AD=3,BD=2,∴tanα==.故选C.【点评】本题考查的是锐角三角函数的定义,熟记锐角三角函数的定义是解答此题的关键.5.如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2) B.(4,4) C.(4,5) D.(5,4)【考点】位似变换.【专题】数形结合.【分析】根据两个图形必须是相似形;②对应点的连线都经过同一点,即可得出F点的坐标.【解答】解:∵△DEF∽△ABC,且F点在CP的连线上,∴可得F点位置如图所示:故P点坐标为(4,4).故选B.【点评】本题考查位似的定义,难度不大,注意掌握两位似图形的对应点的连线都经过同一点,这一点即是位似中心.6.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A.BC,∠ACB B.DE,DC,BC C.EF,DE,BD D.CD,∠ACB,∠ADB【考点】相似三角形的应用.【分析】根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据即可解答.【解答】解:此题比较综合,要多方面考虑,A、因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;B、无法求出A,B间距离.C、因为△ABD∽△EFD,可利用,求出AB;D、可利用∠ACB和∠ADB的正切求出AB;据所测数据不能求出A,B间距离的是选项B;故选:B.【点评】本题考查相似三角形的应用和解直角三角形的应用;将实际问题转化为数学问题是解决问题的关键.7.将抛物线y=2x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣2x2B.y=﹣2x2+1 C.y=2x2﹣1 D.y=﹣2x2﹣1【考点】二次函数图象与几何变换.【分析】根据关于原点对称的两点的横坐标纵坐标都互为相反数求解则可.【解答】解:根据题意,可得﹣y=2(﹣x)2+1,得到y=﹣2x2﹣1.故旋转后的抛物线解析式是y=﹣2x2﹣1.故选D.【点评】此题主要考查了根据二次函数的图象的变换求抛物线的解析式.8.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【考点】根据实际问题列二次函数关系式.【专题】压轴题.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.9.二次函数y=ax2+bx+c的部分对应值如下表:x …﹣2 ﹣1 0 1 2 3 …y … 5 0 ﹣3 ﹣4 ﹣3 0 …当函数值y<0时,x的取值范围是()A.﹣2<x<0 B.﹣1<x<0 C.﹣1<x<3 D.0<x<2【考点】二次函数的性质.【分析】根据图表可以得出二次函数的顶点坐标为(1,﹣4),图象与x轴的交点坐标为(﹣1,0),(3,0),且图象开口向上,结合图象可以得出函数值y<0时,x的取值范围.【解答】解:根据图表可以得出二次函数的顶点坐标为(1,﹣4),图象与x轴的交点坐标为(﹣1,0),(3,0),如右图所示:∴当函数值y<0时,x的取值范围是:﹣1<x<3.故选C.【点评】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值的取值范围.数形结合是这部分考查重点,同学们应熟练掌握.10.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.二、填空题(每小题3分,共18分)11.已知△ABC∽△A1B1C1,AB:A1B1=2:3,则S△ABC与S△A1B1C1之比为4:9 .【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方即可得到答案.【解答】解:∵△ABC∽△A1B1C1,AB:A1B1=2:3,∴.【点评】本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12.(2007?眉山)在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA= .【考点】锐角三角函数的定义.【专题】压轴题.【分析】根据BC:AC=3:4,设BC:AC的长,再根据勾股定理及直角三角形中锐角三角函数的定义求解.【解答】解:∵Rt△ABC中,∠C=90°,BC:AC=3:4,∴设BC=3x,则AC=4x,∴AB=5x,∴cosA===.【点评】本题利用了勾股定理和锐角三角函数的定义,比较简单.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【考点】二次函数图象上点的坐标特征.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.二次函数y=m2x2+(2m+1)x+1的图象与x轴有两个交点,则m取值范围是m>﹣且m≠0 .【考点】抛物线与x轴的交点.【专题】二次函数图象及其性质.【分析】题目考查二次函数图象与x轴的交点个数与二次函数系数之间的关系,当图象与x轴有两个交点时,△>0,当图象与x轴有一个交点时,△=0,当图象与x轴没有交点时,△<0,同时不要遗漏二次函数二次项系数不为零.【解答】解:∵二次函数y=m2x2+(2m+1)x+1的图象与x轴有两个交点,∴△>0即b2﹣4ac>0代入得:(2m+1)2﹣4×m2×1>0解得:m>﹣∵二次函数二次项系数大于零,∴m2>0∴m≠0综上所述:【点评】题目考查二次函数定义及二次函数图象与x轴交点个数与△的关系,在计算△>0取值范围后,不要忘记二次函数不为零的前提.题目较简单.15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意小明的观点,理由是一组对边平行且相等的四边形是平行四边形.【考点】平行四边形的判定.【分析】根据一组对边平行且相等的四边形是平行四边形可得小明正确.【解答】解:四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形,应添加AD=BC,根据一组对边平行且相等的四边形是平行四边形,因此小明说的对;小红添加的条件,也可能是等腰梯形,因此小红错误,故答案为:小明;一组对边平行且相等的四边形是平行四边形.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.16.如图,在平面直角坐标系xOy中,二次函数y=﹣x2﹣2x图象位于x轴上方的部分记作F1,与x 轴交于点P1和O;F2与F1关于点O对称,与x轴另一个交点为P2;F3与F2关于点P2对称,与x轴另一个交点为P3;….这样依次得到F1,F2,F3,…,F n,则其中F1的顶点坐标为(﹣1,1),F8的顶点坐标为(13,﹣1),F n的顶点坐标为[2n﹣3,(﹣1)n+1] (n为正整数,用含n的代数式表示).【考点】二次函数图象与几何变换.【分析】根据抛物线的解析式来求F1的顶点坐标;根据该“波浪抛物线”顶点坐标纵坐标分别为1和﹣1即可得出结论.【解答】解:∵y=﹣x2﹣2x=﹣(x+1)2+1,∴F1的顶点坐标为(﹣1,1).又y=﹣x2﹣2x=﹣x(x+2),∴P1(﹣2,0),∴根据函数的对称性得到:F2的顶点坐标为(1,﹣1),P2(2,0),F3的顶点坐标为(3,1),P3(4,0),…F的顶点坐标为(13,﹣1),8的顶点坐标为[2n﹣3,(﹣1)n+1].Fn故答案是:(﹣1,1);(13,﹣1);[2n﹣3,(﹣1)n+1].【点评】本题考查了二次函数图象与几何变换.解题的关键是找到F n的顶点坐标变换规律.三、解答题(本题共72分,第17-21题,每小题6分,第22-25题,每小题6分,第26题7分,第27题7分,第28题8分)17.计算:3tan30°+2cos45°﹣sin60°﹣2sin30°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=3×+2×﹣﹣2×=+﹣1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18.(2015秋?北京校级期中)已知:二次函数y=ax2+bx+c的图象经过(﹣3,0)、(1,0)、(0,﹣3)三点,(1)求:二次函数的表达式;(2)求:二次函数的对称轴、顶点坐标,并画出此二次函数的图象.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.【专题】计算题.【分析】(1)设交点式二次函数解析式为:y=a(x﹣1)(x+3),然后把(0,﹣3)代入求出a即可;(2)把(1)中解析式配成顶点式,然后根据二次函数的性质得到二次函数的对称轴、顶点坐标,然后利用描点法画函数图象.【解答】解:(1)∵二次函数的图象经过(﹣3,0)、(1,0)两点∴设二次函数解析式为:y=a(x﹣1)(x+3)又∵图象经过(0,﹣3)点,∴﹣3=a(0﹣1)(0+3)解得a=1∴二次函数解析式为:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴二次函数图象的对称轴为直线x=﹣1;顶点坐标为:(﹣1,﹣4);如图,【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象.19.如图,?ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求AF的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)利用平行四边形的性质:对角相等和对边平行可得∠B=∠D和∠FCD=∠E,有两对角相等的三角形相似可判定△EBC∽△CDF;(2)有(1)可知:△EBC∽△CDF,利用相似三角形的性质:对应边的比值相等即可求出AF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠FCD=∠E,∴△EBC∽△CDF;(2)解:∵△EAF∽△EBC,∴,即.解得:AF=2.【点评】本题考查了平行四边形的性质以及相似三角形的判定和相似三角形的性质,难度不大,属于基础性题目.20.已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD的长和tanB的值.【考点】解直角三角形;锐角三角函数的定义.【分析】由sinA=,CD=12,根据三角函数可得AC=15,根据勾股定理可得AD=9,则BD=4,再根据正切的定义求出tanB的值.【解答】解:∵CD⊥AB,∴∠CDA=90°…(1分)∵sinA=∴AC=15.…(2分)∴AD=9.…∴BD=4.…(4分)∴tanB=…【点评】考查了解直角三角形和锐角三角函数的定义,要熟练掌握好边角之间的关系.21.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面 3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?【考点】二次函数的应用.【专题】应用题.【分析】(1)以拱桥最顶端为原点,建立直角坐标系,根据题目中所给的数据写出函数解析式.(2)计算出本问可用两种方法求得,求x=3米时求出水面求出此时y的值,A、B点的横坐标减去y 此时的值到正常水面AB的距离与 3.6相比较即可得出答案.【解答】解:(1)设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,设点B(10,n),点D(5,n+3),n=102?a=100a,n+3=52a=25a,即,解得,∴;(2)∵货轮经过拱桥时的横坐标为x=3,∴当x=3时,∵﹣(﹣4)>3.6∴在正常水位时,此船能顺利通过这座拱桥.答:在正常水位时,此船能顺利通过这座拱桥.【点评】此题考查了坐标系的建立,以及抛物线的性质与求值.22.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东30°方向上的B处.(1)B处距离灯塔P有多远?(2)圆形暗礁区域的圆心位于PB的延长线上,距离灯塔200海里的O处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B处是否有触礁的危险,并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】(1)首先作PC⊥AB于C,利用∠CPA=90°﹣45°=45°,进而利用锐角三角函数关系得出PC的长,即可得出答案;(2)首先求出OB的长,进而得出OB>50,即可得出答案.【解答】解:(1)作PC⊥AB于C.(如图)在Rt△PAC中,∠PCA=90°,∠CPA=90°﹣45°=45°.∴.在Rt△PCB中,∠PCB=90°,∠PBC=30°.∴.答:B处距离灯塔P有海里.(2)海轮到达B处没有触礁的危险.理由如下:∵,而,∴.∴OB>50.∴B处在圆形暗礁区域外,没有触礁的危险.【点评】此题主要考查了解直角三角形的应用,利用数形结合以及锐角三角函数关系得出线段PC的长是解题关键.23.如图,在四边形ABCD中,∠C=60°,∠B=∠D=90°,AD=2AB,CD=3,求BC的长.【考点】解直角三角形.【分析】延长DA、CB交于点E,解直角三角形求出DE、EC,求出∠E=30°,解直角三角形求出EB,即可求出答案.【解答】解:延长DA、CB交于点E,∵在Rt△CDE中,tanC==,cosC==,∴DE=3,EC=6,∵AD=2AB设AB=k,则AD=2k,∵∠C=60°,∠B=∠D=90°,∴∠E=30°,∵在Rt△ABE中,sinE==tanE==,∴AE=2AB=2k,EB=AB=k,∴DE=4k=3,解得:k=,∴EB=,∴BC=6﹣=.【点评】本题考查了解直角三角形的应用,主要考查学生进行计算的能力,是一道比较好的题目,关键是构造直角三角形.24.在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=1,且b=﹣2时,τ(0,1)= (﹣2,2);(2)若τ(1,2)=(0,﹣2),则a= ﹣1 ,b= ;(3)设点P(x,y)是直线y=2x上的任意一点,点P经过变换τ得到点P′(x′,y′).若点P与点P′重合,求a和b的值.【考点】一次函数综合题.【分析】(1)将a=1,b=﹣2,τ(0,1),代入,可求x′,y′的值,从而求解;(2)将τ(1,2)=(0,﹣2),代入,可得关于a,b的二元一次方程组,解方程组即可求解;(3)由点P(x,y)经过变换τ得到的对应点P'(x',y')与点P重合,可得τ(x,y)=(x,y).根据点P(x,y)在直线y=2x上,可得关于a,b的二元一次方程组,解方程组即可求解.【解答】解:(1)当a=1,且b=﹣2时,x′=1×0+(﹣2)×1=﹣2,y′=1×0﹣(﹣2)×1=2,则τ(0,1)=(﹣2,2);(2)∵τ(1,2)=(0,﹣2),∴,解得a=﹣1,b=;(3)∵点P(x,y)经过变换τ得到的对应点P'(x',y')与点P重合,∴τ(x,y)=(x,y).∵点P(x,y)在直线y=2x上,∴τ(x,2x)=(x,2x).∴,即∵x为任意的实数,∴,解得.∴,.故答案为:(﹣2,2);﹣1,.【点评】考查了一次函数综合题,关键是对题意的理解能力,具有较强的代数变换能力,要求学生熟练掌握解二元一次方程组.25.(2015秋?北京校级期中)动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P.(可以利用图1中的等距平行线)①在图3中作出点P,使得PM=PN;②在图4中作出点P,使得PM=2PN.【考点】作图—应用与设计作图.【分析】(1)作法:①在e上任取一点C,以点C为圆心,AB长为半径画弧交b于点D,交d于点E,交c于点F;②以点A为圆心,CE长为半径画弧交AB于点P1,再以点B为圆心,CE长为半径画弧交AB于点P2;则点P1、P2为线段AB的三等分点;(2)①以O为圆心,任意长为半径画弧,交OA于M,交OB于N;在d上任取一点C,以点C为圆心,MN长为半径画弧交b于点D,交c于点E;以点M为圆心,CE长为半径画弧交MN于点P;则P 点为所求;②以O为圆心,任意长为半径画弧,交OA于M,交OB于N;在d上任取一点C,以点C为圆心,MN 长为半径画弧交a于点D,交c于点E,交b于点F;②以点M为圆心,CF长为半径画弧交MN于点P;则P点为所求.【解答】解:(1)如下图所示,点P1、P2为线段AB的三等分点;(2)①如下图所示,点P即为所求;②如下图所示,点P即为所求.【点评】本题考查了作图﹣应用与设计作图,学生的阅读理解能力及知识的迁移能力,理解等距平行线的含义及平行线分线段成比例定理是解题的关键.26.小东同学在学习了二次函数图象以后,自己提出了这样一个问题:探究:函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:(1)函数的自变量x的取值范围是x≠1 ;(2)下表是y与x的几组对应值.x …﹣2 ﹣1 0 2 3 4 …y …m …则m的值是;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;。

安徽省阜阳中学2017届九年级上期中数学试卷含答案解析

安徽省阜阳中学2017届九年级上期中数学试卷含答案解析

……○…………内……○…………装…………○………学校:___________姓名:___________班级:______……○…………外……○…………装…………○………绝密★启用前安徽省阜阳中学2017届九年级上期中数学试卷含答案解析题号 一 二 三 得分注意事项:1.本试卷共XX 页,三个大题,满分128分,考试时间为1分钟。

请用钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

一、单选题(共40分)评卷人 得分1.下列图形中,是中心对称图形的是( )(4分)A.B.C.D.2.如图,在三角形ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB 上,AC 、A′B′交于点O ,则∠COA′的度数是( )试卷第2页,总17页…………○…………订要※※在※※装※※订※※线※※内…………○…………订(4分)A. 50°B. 60°C. 70°D. 80°3.关于抛物线y=x 2﹣2x+1,下列说法错误的是( )(4分) A. 开口向上B. 与x 轴有两个重合的交点C. 对称轴是直线x=1D. 当x >1时,y 随x 的增大而减小 4.如图,在⊙O 中,若点C 是的中点,∠A=50°,则∠BOC=( )(4分)A. 40°B. 45°C. 50°D. 60°5.若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有两个不相等的实数根,则k 的取值范围是( )(4分) A. k <5B. k <5,且k≠1C. k≤5,且k≠1D. k >5…装…………○…………线…………____姓名:___________班级:…装…………○…………线…………6.如图,已知AB 是⊙O 的直径,弦CD⊥AB 于E ,连接BC 、BD 、AC ,下列结论中不一定正确的是( )(4分)A. ∠ACB=90°B. OE=BEC. BD=BCD. △BDE∽△CAE7.二次函数y=ax 2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b ;④b 2﹣4ac >0,其中正确的个数是( )(4分)A. 1B. 2C. 3D. 48.二次函数y=ax 2+bx+c(a≠0)图象上部分点的坐标(x ,y)对应值列表如下:则该函数图象的对称轴是( )试卷第4页,总17页………订…………○………※※线※※内※※答※※题※※………订…………○………(4分)A. 直线x=﹣3B. 直线x=﹣2C. 直线x=﹣1D. 直线x=09.如图,∠ABC=80°,O 为射线BC 上一点,以点O 为圆心, OB 长为半径作⊙O,要使射线BA 与⊙O 相切,应将射线BA 绕点B 按顺时针方向旋转( )(4分)A. 40°或80°B. 50°或100°C. 50°或110°D. 60°或120°10.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x ,那么x 满足的方程为( )(4分)A. 10(1+x)2=36.4 B. 10+10(1+x)2=36.4C. 10+10(1+x)+10(1+2x)=36.4D. 10+10(1+x)+10(1+x)2=36.4二、填空题(共16分)评卷人…○……装…………○…………订…………○………_姓名:___________班级:___________考号:___________…○……装…………○…………订…………○………得分11.若点P(m ,﹣2)与点Q(3,n)关于原点对称,则(m+n)2015= .(4分) 12.抛物线y=2x 2﹣6x+10的顶点坐标是 .(4分)13.如图,半圆O 的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为 .(4分)14.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值为 .(4分)三、解答题(共72分)评卷人 得分15.解方程:x 2﹣6x ﹣3=0.(8分)16.二次函数y=x 2+bx+c 的图象经过点(4,3),(3,0),求函数y 的表达式,并求出当0≤x≤3时,y 的最大值.(8分) 17.如图,在⊙O 中,点C 是的中点,弦AB 与半径OC 相交于点D ,AB=12,CD=2.求⊙O 半径的长.。

2017宝山区九年级第一学期期中考试数学试卷(含答案)

2017宝山区九年级第一学期期中考试数学试卷(含答案)

2017学年第一学期期中考试九年级数学试卷(满分150分,考试时间100分钟)一、选择题(每题4分,共24分)1、以下列长度(同一单位)为长的四条线段中,不能成比例的是( ) (A )2,3,6,9 (B )1,2,3,4 (C )2,1,21,4 (D )2,3,32,23 2、已知点P 是线段MN 的黄金分割点(MP >PN ),MN=4,那么AP 的长是( ) A .5-1 B .3-5 C. 152- D.252-3.如图,已知点P 是△ABC 中边AC 上的一点,连结BP ,以下条件不能识别△ABP ∽△ACB 的是( ) A .∠ABP=∠C B .∠APB=∠ABC C .AB :AP=AC :AB D .AC :AB=BC :BP4.已知b a ,和c都是非零向量,在下列选项中,不能判定b a ∥的是( )A .c b b a ∥,∥B .b 2a=C .b a= D .c 2b c 21a ==,5. 已知:8.053sin ≈。

,8.037cos ≈。

8.039tan ≈。

,25.115tan ≈。

如果在Rt △中,∠ACB=90°,AB=5,AC=4,那么∠CAB 的度数为( ) A53° B37° C39° D51°6. 如果△ABC ∽△DEF ,△ABC 的三边长为2、3、4,△DEF 的一边长为8,那么△DEF 的周长不可能是( ) A .18 B .24C .30D .36二、填空题。

(每小题4分,共48分) 7. 已知2x=y ,则=yy-x _______.. 8. 如果在比例尺为1﹕10000000的地图上量的上海与北京之间的距离为12.98厘米,则上海与北京之间的实际距离为 千米.9. 如图:在△ABC 中,∠C=90°,如果线段CD 是边AB 上的高,那么线段AD和线段BD 的比例中项是_________________.CAB D 第9题图10. 如图:G 为△ABC 的重心,GE ∥BC ,则GE:BC=_______________.11. 两个相似三角形对应高的比为2:3,且已知这两个三角形的面积差为10,则较大的三角形的面积为________________. 12. 如图,△ABC 中,DE ∥BC ,已知43=EC AE ,那么=BCDE____________.13. 在△ABC 中,∠C=90°,如果sinA>cosA,那么∠A 的度数范围是__________________.14. 在△ABC 中,∠C=90°,如果tanA=cot66°,那么∠A 的度数是__________________.15. 化简:()=+⎪⎭⎫ ⎝⎛b a 221-b 21-a 3___________.16. 如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相较于O ,如果2:1=∆∆ABC ABC S S :,那么=∆∆BCD BOC S S :_________________.C B A G E 第10题 图D AE B C 第12题 图DAB第16题 图17. 如图,如果△ABC 绕点B 按逆时针方向旋转36°后得到△DBE ,且BC=2,那么CE 的长为_________________.18. 如图,如果已知△ABC 的顶点A 、C 在反比例函数x3y =(x>0)的图像上,∠ACB=90°,∠ABC=30°,AB ⊥x 轴,点B 在点A 的上方,且AB=6,则点C 的坐标为______________.三、解答题(第19-22题,每题10分;第23-24题,每题12分;第25题14分;共78分)19.计算:。

2017-2018学年人教版九年级(上册)期中数学试卷及答案

2017-2018学年人教版九年级(上册)期中数学试卷及答案

2017-2018学年人教版九年级(上册)期中数学试卷及答案2017-2018学年九年级(上册)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.一元二次方程x^2-2(3x-2)+(x+1)=0的一般形式是()A。

x^2-5x+5=0B。

x^2+5x-5=0C。

x^2+5x+5=0D。

x^2+5=02.目前我国建立了比较完善的经济困难学生资助体系。

某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A。

438(1+x)^2=389B。

389(1+x)^2=438C。

389(1+2x)^2=438D。

438(1+2x)^2=3893.观察下列图案,既是中心对称图形又是轴对称图形的是()A。

B。

C。

D。

4.把二次函数y=-x^2-x+3用配方法化成y=a(x-h)^2+k的形式时,应为()A。

y=-(x-2)^2+2B。

y=-(x-2)^2+4C。

y=-(x+2)^2+4D。

y=-(x+2)^2+35.二次函数y=ax^2+bx+c(a≠0)的图像如图所示,下列结论正确的是()A。

a<0___<0C。

当-12D。

-2<c<06.对抛物线:y=-x^2+2x-3而言,下列结论正确的是()A。

与x轴有两个交点B。

开口向上C。

与y轴的交点坐标是(0,-3)D。

顶点坐标是(1,-2)7.以3和-1为两根的一元二次方程是()A。

x^2+2x-3=0B。

x^2+2x+3=0C。

x^2-2x-3=0D。

x^2-2x+3=08.在同一坐标系内,一次函数y=ax+b与二次函数y=ax^2+8x+b的图像可能是()A。

B。

C。

D。

9.将抛物线y=3x^2向左平移2个单位,再向下平移1个单位,所得抛物线为()A。

y=3(x-2)^2-1B。

y=3(x-2)^2+1C。

y=3(x+2)^2-1D。

【精品】2017年江苏省徐州市九年级上学期期中数学试卷带解析答案

【精品】2017年江苏省徐州市九年级上学期期中数学试卷带解析答案

2016-2017学年江苏省徐州市九年级(上)期中数学试卷一、选择题(本题共8题,每题3分,共24分.在每题给出的四个选项中,有且只有一项是正确的,请将正确选项前的字母填写在答题卡上)1.(3分)一元二次方程x2﹣9=0的根为()A.x=3 B.x=﹣3 C.x1=3,x2=﹣3 D.x=92.(3分)如图,点A、B、C是⊙O上的三点,若∠BOC=80°,则∠A的度数是()A.40°B.60°C.80°D.100°3.(3分)用配方法解方程x2﹣4x﹣1=0时,配方后得到的方程为()A.(x+2)2=3 B.(x+2)2=5 C.(x﹣2)2=3 D.(x﹣2)2=54.(3分)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=05.(3分)在下列命题中,正确的是()A.长度相等的弧是等弧B.直径所对的圆周角是直角C.三点确定一个圆D.三角形的外心到三角形各边的距离相等6.(3分)对于二次函数y=﹣(x+1)2﹣3,下列结论正确的是()A.函数图象的顶点坐标是(﹣1,﹣3)B.当x>﹣1时,y随x的增大而增大C.当x=﹣1时,y有最小值为﹣3D.图象的对称轴是直线x=17.(3分)如图,圆弧形桥拱的跨度AB=16m,拱高CD=4m,则圆弧形桥拱所在圆的半径为()A.6 m B.8 m C.10 m D.12 m8.(3分)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2.5,y2)是抛物线上两点,则y1>y2,其中说法正确的是()A.①②③B.②③C.①②④D.①②③④二、填空题(每小题3分,共30分)9.(3分)方程x2=x的解是.10.(3分)已知扇形的圆心角为120°,半径为6cm,则该扇形的弧长为cm (结果保留π).11.(3分)一元二次方程2x2+4x﹣1=0的两根为x1、x2,则x1+x2的值是.12.(3分)底面半径为3cm,母线长为5cm的圆锥的侧面积为cm2.13.(3分)抛物线y=x2沿x轴向右平移1个单位长度,则平移后抛物线对应的表达式是.14.(3分)一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为.15.(3分)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.16.(3分)如图,PA、PB是⊙O的两条切线,A,B是切点,若∠APB=60°,PO=2,则PB=.17.(3分)如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y<7时,x的取值范围是.三、解答题(共66分)19.(10分)解方程(1)x2+4x﹣2=0;(2)(x﹣1)(x+2)=2(x+2)20.(6分)如图,已知AB是⊙O的直径,弦CD⊥AB于E,CD=16cm,AB=20cm,求BE的长.21.(8分)如图,已知二次函数y=ax2+bx+c的图象经过A (﹣1,2)、B (0,﹣1)、C (1,﹣2).(1)求二次函数的表达式;(2)画出二次函数的图象.22.(8分)如图,学校准备修建一个面积为48m2的矩形花园.它的一边靠墙,其余三边利用长20m的围栏.已知墙长9m,问围成矩形的长和宽各是多少?23.(10分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)24.(12分)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x (元/千度)的函数图象如图:(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=5m+600,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?25.(12分)在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.2016-2017学年江苏省徐州市九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共8题,每题3分,共24分.在每题给出的四个选项中,有且只有一项是正确的,请将正确选项前的字母填写在答题卡上)1.(3分)一元二次方程x2﹣9=0的根为()A.x=3 B.x=﹣3 C.x1=3,x2=﹣3 D.x=9【解答】解:∵x2﹣9=0,∴x2=9,∴x=±3,即x1=3,x2=﹣3,故选:C.2.(3分)如图,点A、B、C是⊙O上的三点,若∠BOC=80°,则∠A的度数是()A.40°B.60°C.80°D.100°【解答】解:∵∠BOC与∠A是同弧所对的圆心角与圆周角,∠BOC=80°,∴∠A=∠BOC=40°.故选:A.3.(3分)用配方法解方程x2﹣4x﹣1=0时,配方后得到的方程为()A.(x+2)2=3 B.(x+2)2=5 C.(x﹣2)2=3 D.(x﹣2)2=5【解答】解:x2﹣4x﹣1=0,x2﹣4x=1,x2﹣4x+4=1+4,(x﹣2)2=5,故选:D.4.(3分)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0【解答】解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选:D.5.(3分)在下列命题中,正确的是()A.长度相等的弧是等弧B.直径所对的圆周角是直角C.三点确定一个圆D.三角形的外心到三角形各边的距离相等【解答】解:A、在同圆或等圆中,能够互相重合的弧叫做等弧,长度相等的弧不一定能够重合,故本选项错误;B、直径所对的圆周角是直角,故本选项正确;C、不在同一直线上的三点确定一个圆,故本选项错误;D、三角形的外心到三角形三个顶点的距离相等,故本选项错误;故选:B.6.(3分)对于二次函数y=﹣(x+1)2﹣3,下列结论正确的是()A.函数图象的顶点坐标是(﹣1,﹣3)B.当x>﹣1时,y随x的增大而增大C.当x=﹣1时,y有最小值为﹣3D.图象的对称轴是直线x=1【解答】解:∵y=﹣(x+1)2﹣3,∴抛物线开口向下,对称轴为x=﹣1,顶点坐标为(﹣1,﹣3),∴当x=﹣1时,y有最大值为﹣3,当x>﹣1时,y随x的增大而增大,∴只有A正确.故选:A.7.(3分)如图,圆弧形桥拱的跨度AB=16m,拱高CD=4m,则圆弧形桥拱所在圆的半径为()A.6 m B.8 m C.10 m D.12 m【解答】解:如图,设OA=r,则OD=r﹣4,∵AB=16m,∴AD=8m.在Rt△AOD中,∵OD2+AD2=OA2,即(r﹣4)2+82=r2,解得r=10(m).故选:C.8.(3分)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2.5,y2)是抛物线上两点,则y1>y2,其中说法正确的是()A.①②③B.②③C.①②④D.①②③④【解答】解:∵二次函数的图象开口向上,∴a>0,∵二次函数的图象交y轴的负半轴于一点,∴c<0,∵对称轴是中线x=﹣1,∴﹣=﹣1,∴b=2a>0,∴abc<0,∴①正确;∵b=2a,∴2a﹣b=0,∴②正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,从图象可知,当x=2时y>0,即4a+2b+c<0,∴③错误;∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),又∵当x>﹣1时,y随x的增大而增大,3<5,∴y1>y2,∴④正确;即正确的有3个①②④.故选:C.二、填空题(每小题3分,共30分)9.(3分)方程x2=x的解是x1=0,x2=1.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=110.(3分)已知扇形的圆心角为120°,半径为6cm,则该扇形的弧长为4πcm (结果保留π).【解答】解:∵扇形的圆心角为120°,半径为6,∴扇形的弧长是:=4π.故答案为:4π.11.(3分)一元二次方程2x2+4x﹣1=0的两根为x1、x2,则x1+x2的值是﹣2.【解答】解:∵方程2x2+4x﹣1=0的两根为x1、x2,∴x1+x2=﹣=﹣2.故答案为:﹣2.12.(3分)底面半径为3cm,母线长为5cm的圆锥的侧面积为15πcm2.【解答】解:圆锥的侧面积=2π×5×3÷2=15πcm2.故答案为:15π.13.(3分)抛物线y=x2沿x轴向右平移1个单位长度,则平移后抛物线对应的表达式是y=(x﹣1)2.【解答】解:抛物线y=x2沿x轴向右平移1个单位长度,则平移后抛物线对应的表达式是y=(x﹣1)2,故答案为:y=(x﹣1)2.14.(3分)一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为60(1﹣x)2=48.6.【解答】解:第一次降价后的价格为60×(1﹣x),二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1﹣x)×(1﹣x),所以可列方程为60(1﹣x)2=48.6.15.(3分)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是1.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.16.(3分)如图,PA、PB是⊙O的两条切线,A,B是切点,若∠APB=60°,PO=2,则PB=.【解答】解:连结OB.∵PA、PB是⊙O的两条切线,∴∠OPB=∠APB=30°.∵PB是⊙O的切线,∴∠OBP=90°.∴OB=OP=1.在Rt△OPB中,依据勾股定理得:PB==.故答案为:.17.(3分)如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.【解答】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=•π•=×π×=.故答案为:.18.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y<7时,x的取值范围是﹣1<x<3.【解答】解:由表中数据得抛物线的对称轴为x=1,x=1时,函数有最小值,所以x=﹣1或x=3时,y=7,所以当﹣1<x<3时,y<7.故答案为﹣1<x<3.三、解答题(共66分)19.(10分)解方程(1)x2+4x﹣2=0;(2)(x﹣1)(x+2)=2(x+2)【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=16+4×1×2=24>0,∴x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)移项可得:(x﹣1)(x+2)﹣2(x+2)=0,∴(x+2)(x﹣3)=0,∴x+2=0或x﹣3=0,解得:x=﹣2或x=3.20.(6分)如图,已知AB是⊙O的直径,弦CD⊥AB于E,CD=16cm,AB=20cm,求BE的长.【解答】解:如图,连接OD;∵弦CD⊥AB,且直径AB=20,CD=16,∴OD=10,DE=CE=8,由勾股定理得:OE2=OD2﹣DE2,∴OE=6,BE=10﹣6=4(cm).21.(8分)如图,已知二次函数y=ax2+bx+c的图象经过A (﹣1,2)、B (0,﹣1)、C (1,﹣2).(1)求二次函数的表达式;(2)画出二次函数的图象.【解答】解:(1)∵函数经过A (﹣1,2)、B (0,﹣1)、C (1,﹣2),∴把A,B,C三点代入函数解析式中得:a﹣b+c=2,c=﹣1,a+b+c=﹣2,∴a=1,b=﹣2,c=﹣1,∴二次函数解析式为:y=x2﹣2x﹣1,(2)作图如右:22.(8分)如图,学校准备修建一个面积为48m2的矩形花园.它的一边靠墙,其余三边利用长20m的围栏.已知墙长9m,问围成矩形的长和宽各是多少?【解答】解:设宽为x m,则长为(20﹣2x)m.由题意,得x•(20﹣2x)=48,解得x1=4,x2=6.当x=4时,20﹣2×4=12>9(舍去),当x=6时,20﹣2×6=8.答:围成矩形的长为8m、宽为6m.23.(10分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)【解答】解:(1)直线BC与⊙O相切;连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵直线BC过半径OD的外端,∴直线BC与⊙O相切.(2)设OA=OD=r,在Rt△BDO中,∠B=30°,∴OB=2r,在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.(3)在Rt△ACB中,∠B=30°,∴∠BOD=60°.∴.∵∠B=30°,OD⊥BC,∴OB=2OD,∴AB=3OD,∵AB=2AC=6,∴OD=2,BD=2S△BOD=×OD•BD=2,∴所求图形面积为.24.(12分)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x (元/千度)的函数图象如图:(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=5m+600,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?【解答】解:(1)设工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数解析式为:y=kx+b,∵该函数图象过点(0,300),(500,200),∴,解得.所以y=﹣0.2x+300(x≥0),当电价x=600元/千度时,该工厂消耗每千度电产生利润y=﹣0.2×600+300=180(元/千度);(2)设工厂每天消耗电产生利润为w元,由题意得:w=my=m(﹣0.2x+300)=m[﹣0.2(5m+600)+300]=﹣m2+180m=﹣(m﹣90)2+8100,在m≤90时,w随m的增大而最大,由题意,m≤60,∴当m=60时,w=﹣(60﹣90)2+8100=7200,最大即当工厂每天消耗60千度电时,工厂每天消耗电产生利润为最大,最大利润为7200元.25.(12分)在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【解答】解:(1)当y=﹣x2﹣2x+3中y=0时,有﹣x2﹣2x+3=0,解得:x 1=﹣3,x2=1,∵A在B的左侧,∴A(﹣3,0),B(1,0).当y=﹣x2﹣2x+3中x=0时,则y=3,∴C(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D(﹣1,4).(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.∵C(0,3),∴C′(0,﹣3).设直线C′D的解析式为y=kx+b,则有,解得:,∴直线C′D的解析式为y=﹣7x﹣3,当y=﹣7x﹣3中y=0时,x=﹣,∴当△CDE的周长最小,点E的坐标为(﹣,0).(3)设直线AC的解析式为y=ax+c,则有,解得:,∴直线AC的解析式为y=x+3.假设存在,设点F(m,m+3),△AFP为等腰直角三角形分三种情况(如图2所示):①当∠PAF=90°时,P(m,﹣m﹣3),∵点P在抛物线y=﹣x2﹣2x+3上,∴﹣m﹣3=﹣m2﹣2m+3,解得:m1=﹣3(舍去),m2=2,此时点P的坐标为(2,﹣5);②当∠AFP=90°时,P(2m+3,0)∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣(2m+3)2﹣2×(2m+3)+3,解得:m3=﹣3(舍去),m4=﹣1,此时点P的坐标为(1,0);③当∠APF=90°时,P(m,0),∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣m2﹣2m+3,解得:m5=﹣3(舍去),m6=1,此时点P的坐标为(1,0).综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

2017年九年级上册数学期中试卷及答案

2017年九年级上册数学期中试卷及答案

2017年数学九年级上册期中试卷满分:150分 考试时间:120分钟一、 选择题(每小题4分,共40分.) 1、 若反比例函数y =x k (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2)2、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk 满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限 3、下列方程一定是一元二次方程的是( ) A ax 2+bx+c=0 B (x+1)(x-1)=x 2+2x C x 2=1 D x 2-xy+3=0 4、三角形的两边长分别为2和9,第三边长是一元二次方程x 2-14x+48=0的一个根, 则这个三角形的周长为( )A 17或19 B 19 C 17 D 11 5、关于y 的一元二次方程:ky 2-4y-3=3y+4有实数根,则k 的取值范围是( ) A 74k ≥- B k >704k ≠且 C k>704k -≠且 D k 70k ≥-≠且6、下列各组中的四条线段成比列的是()A、1cm 、2cm 、20cm 、30cm B 、5cm 、10cm 、10cm 、20cm C 、4cm 、2cm 、1cm 、3cm D 、1cm 、2cm 、3cm 、4cm 7、如图:点P 是△ABC 边AB 上一点(AB >AC ),下列条件不一定能使△ACP ∽△ABC的是( )A 、∠ACP =∠B B 、∠APC =∠ACB C 、AC AP AB AC = D 、ABAC BC PC =8、如图,在大小为4×4的正方形网格中,是相似三角形的是( ) A.①和② B.②和③ C.①和③ D.②和④ 9、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ=V m ,它的图象如图所示,则该 气体的质量m 为( ).A 、7kg B 、1.4kg C 、6.4kg D 、5kg 10、若k b a c a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在二、填空题(每小题4分,共32分。

2017届九年级数学上学期期中试题 及答案

2017届九年级数学上学期期中试题 及答案

212016—2017学年度上学期期中质量检测九年级数学试题(时间:120分钟 分值:120分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只 有一项是正确的,请将正确选项代号填入下表.第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.)1.下列命题错误的是( )A. 等弧对等弦; B .三角形一定有外接圆和内切圆;C. 平分弦的直径垂直于弦; D .经过切点且垂直于切线的直线必经过圆心. 2.关于概率,下列说法正确的是( )A .莒县“明天降雨的概率是75%”表明明天莒县会有75%的时间会下雨;B .随机抛掷一枚质地均匀的硬币,落地后一定反面向上;C .在一次抽奖活动中,中奖的概率是1%,则抽奖100次就一定会中奖;D .同时抛掷两枚质地均匀硬币,“一枚硬币正面向上,一枚硬币反面向上”的概率是 3.若A (3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ). A . y 1<y 2<y 3 B . y 1>y2>y 3 C .y 1=y 2=y 3 D .y 1<y 3<y 24.如图,在⊙O 中,AC ∥OB ,∠BAO=25°,则∠BOC 的度数为( ) . A .25° B .50° C . 60° D .80°5.在△ABC 中,∠C=90°, AC=BC=4cm, D 是AB 边的中点,以C 为圆心,4cm 长为半径作圆,则A 、 B 、 C 、 D 四点中在圆内的有( ).A . 1个B .2个C . 3个D . 4个学校: 九年级 班 姓名: 考号:………………………………………………………………………………………6. Rt △ABC 中,∠C=90°,AC=3cm ,BC= 4cm ,以C 为圆心,2.5cm 为半径的圆与AB的位置关系是( )A. 相离B.相切C. 相交D.无法确定7.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是( )A .40cmB ..50cmC .60cmD .80cm 8.正比例函数y 1=k 1x (k 1>0)与反比例函数y 2=部分图象如图所示,则不等式k 1x的解集在数轴上表示正确的是( )9.某科研小组,为了考查某河野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河中野生鱼有( ) A .8000条 B . 4000条 C .2000条 D .1000条10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A .B.C.D.11.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为A .133B .92 CD.12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .3二、填空题(本大题共4小题;每小题4分,共16分.把答案写在题中横线上)13.如图△ABC 是正三角形,曲线CDEF …叫做“正三角形的渐开线”其中弧CD 、弧DE 、弧EF 圆心依次按A 、B 、C …循环,它们依次相连接。

潍坊市诸城市2017届九年级上期中数学试卷含答案解析

潍坊市诸城市2017届九年级上期中数学试卷含答案解析

2016-2017学年山东省潍坊市诸城市九年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.如图,在△ABC中,DE∥BC,且AE=CE,则△ADE与四边形DBCE的面积之比等于()A.1 B.C.D.2.如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB 的长度是()A.100m B.100m C.150m D.50m3.若一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,则b,k的值分别为()A.0,4 B.0,5 C.﹣6,5 D.﹣6,44.如图,要使△ABC∽△CBD,则下列选项中不能作为条件添加的是()A.BC2=BD∙BA B.∠A=∠BCD C.AC2=AD∙AB D.∠BDC=∠ACB5.如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4 B.2C.D.6.关于x的一元二次方程x2﹣5x+p2﹣2p+5=0的一个根为1,则实数p的值是()A.4 B.0或2 C.1 D.﹣17.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.258.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠09.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB ⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组10.如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是()A.B.C.D.11.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣12.如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD ⊥AC于D,设BP=x,则PD+PE=()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.观察下列等式①sin30°=cos60°=②sin45°=cos45°=③sin60°=cos30°=…根据上述规律,计算sin2a+sin2(90°﹣a)= .14.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为.15.如图,△ABC中,DE∥FG∥BC,且S△ADE=S梯形DFGE=S梯形FBCG,DE:FG:BC= .16.已知线段AB的长为2,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以A E为边在AB的上方作正方形AENM.过E作EF⊥CD,垂足为F点,如图.若正方形AENM与四边形EFDB的面积相等,则AE的长为.17.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)18.已知a≠b,且a、b满足a2﹣3a﹣4=0,b2﹣3b﹣4=0,那么+的值等于.三、解答题(共6小题,满分66分)19.解关于x的方程:(1)(2x﹣5)2=(x﹣2)2(2)(1+x)2+(1+x)=12(3)x2+ax+b=0(配方法)20.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,=,CF=DF,连接AE、AF、EF,并延长FE交AB的延长线于点G.(1)若正方形的边长为4,则EG等于;(2)求证:△ECF∽△FDA;(3)比较∠EAB与∠EAF的大小.21.已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.22.今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡A B到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度.23.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元.(1)每件利润为14元时,此产品质量在第几档次?(2)由于生产工序不同,产品每提高1个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;若生产某档次产品一天的总利润为1080元,该工程生产的是第几档次的产品?24.如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、C D相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)2016-2017学年山东省潍坊市诸城市九年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.如图,在△ABC中,DE∥BC,且AE=CE,则△ADE与四边形DBCE的面积之比等于()A.1 B.C.D.【考点】相似三角形的判定与性质.【分析】因为DE∥BC,所以可得△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方解答即可.【解答】解:∵DE∥BC∴△ADE∽△ABC,∴AE:AC=DE:BC,∵AE=CE,∴DE:BC=1:2,∴△ADE与△ABC的面积之比是1:4,∴△ADE与四边形DBCE的面积之比是1:3.故选C.2.如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB 的长度是()A.100m B.100m C.150m D.50m【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意可得=,把BC=50m,代入即可算出AC的长,再利用勾股定理算出AB的长即可.【解答】解:∵堤坝横断面迎水坡AB的坡比是1,∴=,∵BC=50m,∴AC=50m,∴AB==100m,故选:A.3.若一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,则b,k的值分别为()A.0,4 B.0,5 C.﹣6,5 D.﹣6,4【考点】解一元二次方程-配方法.【分析】先把(x﹣3)2=k化成x2﹣6x+9﹣k=0,再根据一元二次方程x2+bx+5=0得出b=﹣6,9﹣k=5,然后求解即可.【解答】解:∵(x﹣3)2=k,∴x2﹣6x+9﹣k=0,∵一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,∴b=﹣6,9﹣k=5,∴k=4,∴b,k的值分别为﹣6、4;故选D.4.如图,要使△ABC∽△CBD,则下列选项中不能作为条件添加的是()A.BC2=BD∙BA B.∠A=∠BCD C.AC2=AD∙AB D.∠BDC=∠ACB【考点】相似三角形的判定.【分析】图中已知条件是∠ABC=∠CBD,所以根据“两角法”、“两边及其夹角法”进行添加条件即可.【解答】解:如图,∠ABC=∠CBD.A、若添加BC2=BD∙BA即=时,可以判定△ABC∽△CBD,故本选项错误;B、若添加∠A=∠BCD时,可以判定△ABC∽△CBD,故本选项错误;C、若添加AC2=AD∙AB即=时,可以判定△ABC∽△ACD,故本选项正确;D、若添加∠BDC=∠ACB时,可以判定△ABC∽△CBD,故本选项错误;故选:C.5.如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4 B.2C.D.【考点】锐角三角函数的定义.【分析】根据cosB=,可得=,再把AB的长代入可以计算出CB的长.【解答】解:∵cosB=,∴=,∵AB=6,∴CB=×6=4,故选:A.6.关于x的一元二次方程x2﹣5x+p2﹣2p+5=0的一个根为1,则实数p的值是()A.4 B.0或2 C.1 D.﹣1【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解.【解答】解:∵x=1是方程的根,由一元二次方程的根的定义,可得p2﹣2p+1=0,解此方程得到p=1.故本题选C.7.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.25【考点】等腰直角三角形;方向角.【分析】根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.【解答】解:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.8.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0【考点】根的判别式.【分析】根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.9.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB ⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组【考点】相似三角形的应用;解直角三角形的应用.【分析】根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据=即可解答.【解答】解:此题比较综合,要多方面考虑,①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③,因为△ABD∽△EFD可利用=,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选C.10.如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是()A.B.C.D.【考点】位似变换;坐标与图形性质.【分析】延长A′B′交BC于点E,根据大正方形的对角线长求得其边长,然后求得小正方形的边长后即可求两个正方形的相似比.【解答】解:∵在正方形ABCD中,AC=3∴BC=AB=3,延长A′B′交BC于点E,∵点A′的坐标为(1,2),∴OE=1,EC=A′E=3﹣1=2,∴OE:BC=1:3,∴AA′:AC=1:3,∵AA′=CC′,∴AA′=CC′=A′C′,∴A′C′:AC=1:3,∴正方形A′B′C′D′与正方形ABCD的相似比是.故选B.11.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.12.如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD ⊥AC于D,设BP=x,则PD+PE=()A.B.C.D.【考点】相似三角形的判定与性质;勾股定理.【分析】先根据勾股定理求得BC的长,再根据相似三角形的判定得到△CDP∽△CAB,△BPE∽△BCA,利用相似三角形的边对应成比例就不难求得PD+PE了.【解答】解:∵在Rt△ABC中,AB⊥AC,AB=3,AC=4,∴由勾股定理得BC=5,∵AB⊥AC,PE⊥AB,PD⊥AC,∴PE∥AC,PD∥AB∴△CDP∽△CAB,△BPE∽△BCA∴,∴PD=,PE=,∴PD+PE=+=+3.故选A.二、填空题(共6小题,每小题3分,满分18分)13.观察下列等式①sin30°=cos60°=②sin45°=cos45°=③sin60°=cos30°=…根据上述规律,计算sin2a+sin2(90°﹣a)= 1 .【考点】互余两角三角函数的关系.【分析】根据①②③可得出规律,即sin2a+sin2(90°﹣a)=1,继而可得出答案.【解答】解:由题意得,sin230°+sin2(90°﹣30°)=1;sin245°+sin2(90°﹣45°)=1;sin260°+sin2(90°﹣60°)=1;故可得sin2a+sin2(90°﹣a)=1.故答案为:1.14.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为(22﹣x)(17﹣x)=300 .【考点】由实际问题抽象出一元二次方程.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,故答案为:(22﹣x)(17﹣x)=300.=S梯形DFGE=S梯形FBCG,DE:FG:BC= 15.如图,△ABC中,DE∥FG∥BC,且S△ADE1::.【考点】相似三角形的判定与性质.【分析】由平行线可得△ADE∽△AFC∽△ABC,进而利用相似三角形面积比等于对应边的平方比,即可得出结论.=S梯形DFGE=S梯形FBCG,【解答】解:∵S△ADE∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∴=,=,由于相似三角形的面积比等于对应边长的平方比,∴DE:FG:BC=1::.故答案为:1::.16.已知线段AB的长为2,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以A E为边在AB的上方作正方形AENM.过E作EF⊥CD,垂足为F点,如图.若正方形AENM与四边形EFDB的面积相等,则AE的长为.【考点】一元二次方程的应用.【分析】设AE=x,则BE=2﹣x,就有EFDB的面积为2(2﹣x),正方形AENM的面积=x2,根据正方形AENM与四边形EFDB的面积相等建立方程求出其解即可.【解答】解:设AE=x,则BE=2﹣x,由图形得x2=2(2﹣x),解得:x1=﹣1,x2=﹣﹣1(舍去)故答案为:.17.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为 2.7cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【考点】解直角三角形的应用.【分析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.首先在等腰直角△BOD中,得到BD=OD=2cm,则CE=2cm,然后在直角△COE中,根据正切函数的定义即可求出OE的长度.【解答】解:过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7cm.故答案为2.7.18.已知a≠b,且a、b满足a2﹣3a﹣4=0,b2﹣3b﹣4=0,那么+的值等于﹣.【考点】根与系数的关系;分式的值.【分析】由a、b满足a2﹣3a﹣4=0、b2﹣3b﹣4=0,可得出a、b是方程x2﹣3x﹣4=0的两个根,利用根与系数的关系即可得出a+b=3、ab=﹣4,将+变形成,代入数据即可得出结论.【解答】解:∵a、b满足a2﹣3a﹣4=0,b2﹣3b﹣4=0,∴a、b是方程x2﹣3x﹣4=0的两个根,∴a+b=3,ab=﹣4,∴+====﹣.故答案为:﹣.三、解答题(共6小题,满分66分)19.解关于x的方程:(1)(2x﹣5)2=(x﹣2)2(2)(1+x)2+(1+x)=12(3)x2+ax+b=0(配方法)【考点】换元法解一元二次方程;解一元二次方程-配方法;解一元二次方程-因式分解法.【分析】(1)直接开方法解即可.(2)因式分解法解即可.(3)根据配方法的步骤解即可.【解答】解:(1)∵(2x﹣5)2=(x﹣2)2∴2x﹣5=±(x﹣2),∴x1=3,x2=.(2)∵(1+x)2+(1+x)=12∴(1+x)2+(1+x)﹣12=0∴(1+x+4)(1+x﹣3)=0,∴1+x+4=0或1+x﹣3=0,∴x1=2,x2=﹣5.(3)∵x2+ax+b=0,∴x2+ax=﹣b∴x2+ax+()2=()2﹣b,∴(x+)2=当a2﹣4b<0时,方程无解.当a2﹣4b≥0时,x=﹣±.20.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,=,CF=DF,连接AE、AF、EF,并延长FE交AB的延长线于点G.(1)若正方形的边长为4,则EG等于3;(2)求证:△ECF∽△FDA;(3)比较∠EAB与∠EAF的大小.【考点】相似形综合题.【分析】(1)先根据正方形边长得CF=2,由平行相似得:△FCE∽△GBE,则,代入求得BG=6,根据勾股定理得:EG=3;(2)根据已知边的长度分别求=,==,则,再由正方形性质得:∠C=∠D=90°,则△ECF∽△FDA;(3)先根据(2)中的△ECF∽△FDA,得∠CFE=∠DAF,,证明∠EFA=90°,分别计算∠EAB与∠EAF的正切值,根据两锐角正切大的角大,得出结论.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CD=BC=4,∠ABC=90°,DC∥AB,∵CF=DF,∴CF=CD=2,∵DC∥AG,∴△FCE∽△GBE,∴,∵=,∴=,BE=BC=×4=3,∴,∴BG=6,在Rt△BEG中,EG===3;故答案为:3;(2)∵四边形ABCD是正方形,∴BC=AD=DC=4,∠C=∠D=90°,∵DF=FC=2,CE=1,∴=,==,∴,∴△ECF∽△FDA;(3)∵△ECF∽△FDA,∴∠CFE=∠DAF,,∵∠DFA+∠DAF=90°,∴∠CFE+∠DFA=90°,∴∠EFA=90°,∴tan∠EAF==,∵,∴tan∠EAB=,∴,∴∠EAF<∠EAB.21.已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.【考点】根与系数的关系;一元二次方程的解;根的判别式.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围.(2)x1是方程的实数根,就适合原方程,可得到关于x1与m的等式.再根据根与系数的关系知,x1x2=m﹣1,故可求得x1和m的值.【解答】解:(1)根据题意得△=b2﹣4ac=4﹣4×(m﹣1)>0,解得m<2;(2)∵x1是方程的实数根,∴x12﹣2x1+m﹣1=0 ①∵x1,x2是方程的两个实数根∴x1•x2=m﹣1∵x12+x1x2=1,∴x12+m﹣1=1 ②由①②得x1=0.5,把x=0.5代入原方程得,m=.22.今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡A B到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度.【考点】解直角三角形的应用-坡度坡角问题;解直角三角形的应用-仰角俯角问题.【分析】(1)过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足,构造直角三角形ABE和直角三角形CBD,然后解直角三角形.(2)求出BE的长,根据坡度的概念解答.【解答】解:如图,过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足.在C点测得B点的俯角为30°,∴∠CBD=30°,又BC=400米,∴CD=400×sin30°=400×=200(米).∴B点的海拔为721﹣200=521(米).(2)∵BE=DF=521﹣121=400米,又∵AB=1040米,AE===960米,∴AB的坡度i AB===.故斜坡AB的坡度为1:2.4.23.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元.(1)每件利润为14元时,此产品质量在第几档次?(2)由于生产工序不同,产品每提高1个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;若生产某档次产品一天的总利润为1080元,该工程生产的是第几档次的产品?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)由每提高一个档次,每件利润增加2元,14﹣10=4,需要提高2个档次,由此即可解决问题.(2)根据一天的利润=生产的件数×每件的利润,即可求出y与x的关系,再列出方程即可解决问题.【解答】解:(1)每件利润为14元时,此产品质量在第3档次.(2)由题意y=[10+2(x﹣1)][76﹣4(x﹣1)]=﹣8x2+128x+640.(1≤x≤10).当y=1080时,﹣8x2+128x+640=1080,解得x=5或11(舍弃).答:工程生产的是第5档次的产品时,一天的总利润为1080元.24.如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、C D相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)【考点】相似三角形的应用;解直角三角形的应用.【分析】(1)根据等角对等边得出∠OAC=∠OCA=和∠OBD=∠ODB=,进而利用平行线的判定得出即可;(2)首先过点O作OM⊥EF于点M,则EM=16cm,利用cos∠OEF=0.471,即可得出∠OEF的度数;(3)首先证明Rt△OEM∽Rt△ABH,进而得出AH的长即可.【解答】(1)证明:证法一:∵AB、CD相交于点O,∴∠AOC=∠BOD∵OA=OC,∴∠OAC=∠OCA=,同理可证:∠OBD=∠ODB=,∴∠OAC=∠OBD,∴AC∥BD,…3分证法二:AB=CD=136cm,OA=OC=51cm,∴OB=OD=85cm,∴又∵∠AOC=∠BOD∴△AOC∽△BOD,∴∠OAC=∠OBD;∴AC∥BD;(2)解:在△OEF中,OE=OF=34cm,EF=32cm;过点O作OM⊥EF于点M,则EM=16cm;∴cos∠OEF=0.471,用科学计算器求得∠OEF=61.9°;(3)解法一:小红的连衣裙会拖落到地面;在Rt△OEM中,=30cm,过点A作AH⊥BD于点H,同(1)可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.解法二:小红的连衣裙会拖落到地面;同(1)可证:EF∥BD,∴∠ABD=∠OEF=61.9°;过点A作AH⊥BD于点H,在Rt△ABH中,AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm 所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精编初三数学期中考试试卷2007.11(100分钟完成,满分150分)一、填空题(每小题3分,满分36分) 1. 方程211=-x 的根是______________. 2. 方程1112+=+x x x 的根是________________. 3. 分解因式:=-+422x x _______________________. 4. 在公式21111R R R +=中,已知正数R 、R 1(1R R ≠),那么R 2= . 5. 用换元法解方程02711222=+---x x x x 时,可设y =12-x x,那么原方程可化为关于y 的整式方程是 .6. 某电子产品每件原价为800,首次降价的百分率为x ,第二次降价的百分率为2x ,那么经过两降价后每件的价格为_____________________元(用x 的代数式表示). 7. 如图1,已知舞台AB 长10米,如果报幕员从点A 出发站在舞台的黄金分割点P 处,且BP AP <,则报幕员应走 米 报幕(236.25≈,结果精确到0.1米).8. 如图2,在ABC ∆中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,5:2:=AC AE ,则=BC DE : .9. 已知ABC ∆与DEF ∆相似,且点A 与点E 是对应点,已知∠A =50º, ∠B =︒60,则∠F = .10. 在△ABC 中,点D 、E 分别在边AB 、AC 上,要使△ADE 与△ABC 相似,只须添加一个条件,这个条件可以是___________(只要填写一种情况) . 11. 在△ABC 中,中线AD 和CE 相交于G ,则=AD AG :_________. 12. 如图3, 在△ABC 中, 点D 、E 分别在AB 、AC 上,DE//BC ,4,3==∆∆CDE ADE S S ,那么AD :DB =____________.图1图2图3二、选择题(每小题4分,满分16分)13. 下多项式中,在实数范围内能分解因式的是………………………………………( )(A )12+-x x ; (B )222+-x x ; (C )332+-x x ; (D )552+-x x .14. 下列方程中, 有实数根的是………………………………………………………( )(A )x x -=11; (B )11-=-x x ; (C )111112--=+-x x x ; (D )11111+-=+-x x x .15. 如果点D 、E 分别在ΔABC 的两边AB 、AC 上,下列条件中可以推出DE ∥BC 的是( )(A ) AD BD = 23 ,CE AE = 23 ; (B) AD AB = 23 ,DE BC = 23; (C )AB AD = 32 ,EC AE = 12 ; (D) AB AD =34,AE EC = 34. 16. 如图4,小正方形的边长均为l ,△ABC 与△DEF 的顶点都在小正方形的顶点上,则△DEF 与△ABC 相似的是……………………………………………………………( )(A ) (B ) (C ) (D )三、(第17、18题每小题9分,第19、20、21题每小题10分,满分48分) 17.解方程:1113112=----x x x .18.方程组: ⎪⎪⎩⎪⎪⎨⎧-=---=-+-.1223,4122yx x y x x图4A BC ED F D F ED F F D E19. 函数542--=x x y 图象上一点P 的纵坐标比横坐标多1, 求这个点的坐标.20. 如图5,在△ABC 中,点D 、E 分别在边AB 、AC 上,C ADE ∠=∠,且3=AD 厘米,5=BD 厘米,6=AC 厘米,求线段EC 的长.21.已知:如图6,在四边形ABCD 中,AD //BC ,点E 在边CD 上,AE 的延长线与BC 的延长相交于点F ,FB CE CD FC ⋅=⋅. 求证:∠D =∠B .四、(第22、23、24题每小题12分,第25题14分,满分50分) 22.已知:如图7,△ABC 中,点E 在中线BD 上, ABD DAE ∠=∠.求证:(1)DB DE AD ⋅=2; (2)ACB DEC ∠=∠.23.现有甲、乙两辆货车将一批货物从A 地运往B 地,每车都装满,乙车比甲车每车多运2吨, 甲车运200吨比乙车运200吨要多运5次,求甲、乙两辆货车每次各运几吨.BA DE 图5 A C D E BF 图6图724.如图8,有一块长为40米,宽为30米的长方形绿地.其中有两条互相垂直的笔直的道路(图中的阴影部分),道路的一边GF 与长方形绿地一边的夹角为60º,且道路的出入口的边AB 、CD 、EF 、GH 的长度都相同,已知道路面积为137平方米,求道路出入口的边的长度.25. 在矩形ABCD 中,2=AB ,5=BC ,点P 在BC 上,且3:2:=PC BP ,动点E 在边AD 上,过点P 作PE PF ⊥分别交射线AD 、射线CD 于点F 、G .(1) 如图9,当点G 在线段CD 上时,设AE =x ,△EPF 与矩形ABCD 重叠部分的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2) 当点E 在移动过程中,△DGF 是否可能为等腰三角形?如可能,请求出AE 的长;如不可能,请说明理由.A B CD PFEGABCD(备用图)图9初三数学期中考试试卷参考与评分意见07.11一、1.23=x ; 2. 1=x ; 3. );51)(51(-+++x x 4. R R RR -11;5. ;02742=-+y y 6. )21)(1(800x x --; 7. 3.8 ; 8. 2:5 ; 9. 60º或70º;10. 可填DE //BC 或∠AED =∠B 或ABAEAC AD =等; 11. 2:3; 12. 3:4. 二、13.D ; 14. B; 15. C; 16. B.三、17.解:11312-=+-+x x x ,(3分) ,0322=-+x x (2分)1,321=-=x x ,(2分)经检验:3-=x 是原方程的根,1=x 是增根.(2分)所以原方程的根是3-=x .18. 解:设a x =-21,b y x =-1(1分) 则原方程组可化为⎩⎨⎧-=-=+.123,42b a b a (2分) 解此方程得⎩⎨⎧==.2,1b a (2分) ∴⎪⎪⎩⎪⎪⎨⎧=-=-.21,121yx x (1分) ∴⎪⎩⎪⎨⎧==.25,3y x (2分) 经检验:⎪⎩⎪⎨⎧==25,3y x 是原方程组的解,∴所以原方程组的解是⎪⎩⎪⎨⎧==.25,3y x (1分)19. 解:设点)1,(+x x P ,(2分) 5412--=+x x x ,(2分) 0652=--x x ,(2分)1,621-==x x ,(2分) ∴点P 的坐标为)7,6(或()0,1-.(2分)20.解:∵C ADE ∠=∠,A A ∠=∠,(1分) ∴ADE ∆∽ACB ∆.(2分)∴AB AE AC AD =.(2分) ∵3=AD 厘米,5=BD 厘米,6=AC 厘米, ∴5363+=AE,(2分) 解得4=AE .(2分) ∴2=-=AE AC EC 厘米.(1分)21. 证明:∵FB CE CD FC ⋅=⋅,∴CD CE FB FC =.(2分)∵AD //BC ,∴.FAFECD CE =(2分) ∴FAFEFB FC =.(2分) ∴DE //BC . (2分) ∴四边形ABCD 是平行四边形.(1分) ∴∠B =∠D .(1分)四、22.证明:(1)∵ABD DAE ∠=∠,BDA ADE ∠=∠,∴ADE ∆∽BDA ∆.(2分)∴ADDEBD AD =,(2分) 即DB DE AD ⋅=2.(1分) (2)∵D 是AC 边上的中点,∴DC AD =.∵AD DEBD AD =,∴DCDE BD DC =,(2分) 又∵BDC CDE ∠=∠.(1分)∴CDE ∆∽BDC ∆.(2分)∴ACB DEC ∠=∠.(2分) 23. 解:甲货车每次各运x 吨,(1分) 则乙货车每次各运(2+x )吨.(1分)由题意得52200200=+-x x .(3分) 化简整理得 08022=-+x x .(2分) 解得10,821-==x x . (2分) 经检验10,821-==x x 都是原方程的根,但10-=x 不合题意舍去,(1分) ∴8=x ,.102=+x (1分)答:甲、乙两辆货车每次各运8吨、10吨.(1分)24.解:道路出入口的边的长度为x 米.(1分)过点F 作FM ⊥EH ,可求得EH =x 23,可得小正方形的边长为x 23米.(2分) 1374340302=-+x x x ,(3分) 054828032=+-x x ,(1分) 0)2)(2743(=--x x , (1分) 2,327421==x x .(2分)3274=x 不符合题意,舍去.(1分) 答:道路出入口的边的长度为2米.(1分) 25. 解:(1)过点E 作BC EH ⊥,垂足为H .(1分)∵3:2:=PC BP ,5=BC ,∴2=BP ,3=PC ;∵x AE =,∴x HP -=2;∵EH =AB =2, ∴x S EHP -=∆2 ,(2分)∵︒=∠=∠=∠90GCP EPF EHP ,∴∠EPH =90º–∠GPC =∠PGC ,(1分) ∴EHP ∆∽PCG ∆.(1分)∴.236,232,xCG x CG EH CP PH CG -=∴=-∴=(1分)∴9924∆=-PCG S x .(1分) ∵PCG EPH EHCD S S S y ∆∆--=矩形,∴2745+=x y ,(2分) (232<≤x ).(1分) (2)当点G 在线段CD 上,DG DF =,DF -=23,1-=DF 不可能.(2分) 当点G 在线段CD 的延长线上时,DG DF =,DF +=23,1=DF . 此时可解得0=AE ,即当点E 与点A 重合时,DGF ∆是等腰三角形.(2分)。

相关文档
最新文档