物理化学电子教案第十章

合集下载

10-电解与极化作用

10-电解与极化作用

阳,析出 阳,可逆 阳
3、极化曲线的测定
超电势或电极电势与电流密度之间的关系曲线称
为极化曲线,极化曲线的形状和变化规律反映了电化
学过程的动力学特征。
+
测定超电势的装置
如右图所示:
A
电极1为待测电极,
测定分解电压时的电流-电压曲线
二、分解电压的测定
当外压增至2-3段,氢 气和氯气的压力等于大
气压力,呈气泡逸出,反电
动势达极大值 Eb,max。

E外 Eb,max IR
流 I
再增加电压,使I 迅速增 加。将直线外延至I = 0 处,
得E(分解)值,这是使电解 池不断工作所必需外加的
最小电压,称为分解电压。
(2)电化学极化
以铜电极为例: 电极反应进行缓慢
作为阴极:则由外电源输入阴 极的电子来不及消耗,即溶液 中Cu2+不能马上与电极上的电 子结合,变成Cu,结果使阴极 表面积累了多于平衡状态的电 子,导致电极电势比平衡电极 电势更小。
-
- 电源 +
e-
+
e-
Cu
Cu
CuSO4
电解池
作为阳极:类似的,作为阳极时,会使阳极表面的电 子数目小于平衡状态的电子,导致电极电势比平衡电 极电势更大。
Ag ,Ag
-
RT F
ln
1 c,e
c,e c0
阴,不可逆 阴,可逆
c'
扩散层
在浓度梯度作用下(ce’ < c0)Ag+向 电极表面的迁移
阴极浓差极化的结果是阴极电极电势比可逆时变小。
(1)浓差极化
阳极: Ag Ag++e , v扩<v反,c0 < ce`

第十章 电解与极化作用

第十章 电解与极化作用

H2
反应向左进行→破坏电极平衡(破坏平衡双电层)
→导致实际电极电势偏离平 →阳极电势变得更正
一、极化现象
例如:
Pt | H 2 ( p ) | H ( a )
H2(p)
2 H
阴极

其电极反应为: 2H+ + 2e
RT a ln 2 F aH 2

通电电解 无电流时,电极电势为平; 若有净电流通过溶液流入电极时 电极作为阴极发生还原反应
H

,O2


H ,O2
0.05915lg aH aO2
1 4
此电池的可逆电动势 ( 当 pH2 = pO2 = pθ 时 )
E

H ,O2
0.05915lg aH
0.05915lg aH 0.05915lg

H ,O2

不可逆 (阳),不可逆 (阴)
一、极化现象
例如:
Pt | H 2 ( p ) | H ( a )
H2(p)
2 H

其电极反应为: 2H+ + 2e
RT a ln 2 F aH 2

阳极
通电电解 无电流时,电极电势为平; 若有净电流通过电极流入溶液时 电极作为阳极发生氧化反应
pH2 P
1 2
pO2 p
1 4
1.229 V
二.分解电压的测定
反向加电压,使原电池变为电解池
水的电解
阴极
H e 1 2 H2
阳极 阴极 阳极
1 2
还原反应
H 2O e H 1 4 O2
氧化反应

第十章电解与极化作用

第十章电解与极化作用

(1)浓差极化——扩散过程的迟缓性而引起的极化。
浓差极化是在电流通过时,由于电极反应的反
应物或生成物迁向或迁离电极表面的缓慢而引起的
电极电势对其平衡值的偏离。
阴极:Ag++eAg,
v扩<v反,
m,<m=m
’ Ag


/ Ag


RT F
ln1 m' Nhomakorabea


即: 可 逆 > 不 可 逆 阴极极化的结果是阴 极电极电势变得更负。
η阳 j(电流密度)
E可逆 -ΔE不可逆
η阴
E可逆

电极电势

电解池中两电极的极化曲线
原电池与电解池极化的差别
当有电流通过电解池, 电解池的端电压大于平 衡电池电动势。
即:E = E平 +ηa +ηc
当有电流通过原电池, 原电池的端电压小于平 衡电池电动势。 即:E = E平 -ηa-ηc
影响超电势的因素
(1) 电流密度J 一般 , J越大 , 超电势越大。不同的物质,其 增大的规律不一样。 (2)电极材料及其表面状态 以氢电极为例:
J= 100 A/m2时,
若电极材料为Ag,η= 0.13V;
若电极材料为Pt(光滑),η= 0.16V;
若电极材料为Pt(镀有铂黑),η= 0.03V。
(3)温度 温度升高,超电势减小。 一般,每增高1度,超电势减小2mV。 除了以上因素外,电解质的性质、溶液中的杂 质对超电势均有影响。所以,超电势的重现性不好。 一般说来析出金属的超电势较小,而析出气体 (特别是氢、氧)的超电势较大。
§10.2 极化作用
§10.3 电解时电极上的竞争反应 §10.4 金属的电化学腐蚀、防腐与金属的钝化 §10.5 化学电源

《物理化学》电子教案上册

《物理化学》电子教案上册

《物理化学》电子教案上册第一章:引言1.1 课程介绍1.2 物理化学的基本概念1.3 物理化学的研究方法1.4 学习目标与要求第二章:气体2.1 气体的性质2.2 气体的压力与体积2.3 气体的温度与热量2.4 气体的化学反应第三章:溶液3.1 溶液的定义与组成3.2 溶液的浓度与稀释3.3 溶液的蒸馏与沸腾3.4 溶液的离子平衡第四章:固体4.1 固体的结构与性质4.2 固体的相变与相图4.3 固体的溶解与熔点4.4 固体的电导与磁性第五章:液体5.1 液体的性质与表面现象5.2 液体的蒸发与凝结5.3 液体的扩散与对流5.4 液体的相变与相图第六章:热力学第一定律6.1 能量守恒定律6.2 内能与热量6.3 功与热传递6.4 热力学第一定律的应用第七章:热力学第二定律7.1 熵与无序度7.2 可逆与不可逆过程7.3 热力学第二定律的表述7.4 热力学第二定律的应用第八章:化学平衡8.1 平衡常数与反应方向8.2 酸碱平衡与pH值8.3 沉淀平衡与溶解度积8.4 化学平衡的计算与应用第九章:动力学9.1 反应速率与速率常数9.2 零级、一级和二级反应9.3 反应机理与速率定律9.4 化学动力学的应用第十章:电化学10.1 电解质与离子传导10.2 电极与电极反应10.3 电池与电势10.4 电化学的应用重点和难点解析一、气体的化学反应补充和说明:气体之间的化学反应是物理化学中的重要内容,例如气体的合成、分解、置换等反应。

这些反应在工业生产、环境保护等领域具有重要的应用价值。

教案中应详细介绍气体化学反应的基本原理、反应类型及其应用实例,并通过实际案例分析,使学生能够深入理解和掌握这一部分内容。

二、溶液的离子平衡补充和说明:溶液中的离子平衡是物理化学中的关键概念,对于理解电解质溶液的性质和行为具有重要意义。

教案中应详细讲解离子平衡的基本原理、离子平衡常数的计算及其在实际应用中的作用,如酸碱平衡、溶解度积等。

界面现象

界面现象
γ:使液体增加单位表面时 所需作的可逆功,称比表面功。
单位:J·m-2。
3、表面自由能
dU TdS PdV dA BdnB B
dH TdS VdP dA BdnB
B
dA SdT PdV dA BdnB B
dG SdT VdP dA BdnB
10.3 固体表面
固体表面的性质 物理吸附与化学吸附 等温吸附 吸附经验式—弗罗因德希公式 朗缪尔单分子层吸附理论及吸附等温 式 多分子层吸附理论—BET公式
1.固体表面的吸附现象
在固体或液体表面,某物质的浓度与体相浓度不 同的现象称为吸附。
产生吸附的原因,也是由于表面分子受力不对称。
,nB

( GA
)T ,P,nB
表面自由能(表面吉布斯函数)定义:
G ( A )T , p,nB
γ:恒温恒压下,增加单位表面时系统所增加的Gibbs函数。 单位:J·m-2。
表面张力、表面功、表面吉布斯函数的异同点
1.相同点:它们的数值和量纲相同 2.不同点: (a)物理意义不同
(b)单位不同
4、界面张力的影响因素
物质的本性 分子间相互作用力越大, 越大 (金属) > (离子键) > (极性键) > (非极性键)
接触相 1 (水-汞) = 415 mN·m-1; (水-苯) = 35 mN·m-
温度 一般随温度升高而减小。极限情况:
T→Tc时, →0 。
主要原因:因为微小晶体的饱和蒸气压恒大于普通晶体的饱和蒸气压。
O´C:平面液体的饱和
蒸气压曲线
AO:普通晶体的饱和蒸 气压曲线
A´O´:微小晶体的饱和

《物理化学》电子教案上册

《物理化学》电子教案上册

《物理化学》电子教案上册第一章:引言1.1 课程介绍物理化学的定义和研究对象物理化学在科学和工程中的应用1.2 物理化学的发展简史物理化学的起源和发展过程重要的物理化学家和他们的贡献1.3 学习方法物理化学的学习要求和难点学习物理化学的方法和技巧第二章:物质的量及其计量2.1 物质的量的概念物质的量的定义和单位物质的量的性质和特点2.2 摩尔的概念摩尔的定义和符号摩尔质量的概念和计算方法2.3 物质的量的计算物质的量的基本计算公式物质的量的有关计算示例第三章:热力学第一定律3.1 热力学基本概念系统的定义和分类状态参量的概念和意义3.2 内能的概念和计算内能的定义和性质理想气体的内能计算公式3.3 热量和功的传递热量和功的定义和区别热量和功的传递方式及其计算第四章:热力学第二定律4.1 熵的概念熵的定义和性质熵增加的意义和实例4.2 热力学第二定律的表述克劳修斯表述和开尔文-普朗克表述熵增原理的应用和意义4.3 熵变和自由能的计算熵变的定义和计算公式自由能的定义和计算公式第五章:化学平衡5.1 平衡态的概念平衡态的定义和平衡态的特征平衡态的判断方法5.2 平衡常数的概念和计算平衡常数的定义和表示方法平衡常数的计算方法和应用5.3 化学平衡的移动勒夏特列原理的定义和内容化学平衡移动的实例和解释第六章:动力学基础6.1 反应速率的概念反应速率的定义和表示方法反应速率的影响因素6.2 反应速率定律零级、一级、二级反应速率定律的表达式反应速率定律的实验测定和应用6.3 化学动力学的计算反应速率常数的概念和计算方法反应速率与反应机理的关系第七章:电化学7.1 电化学基本概念电化学的定义和基本原理电解质和电极的定义及分类7.2 原电池和电解池原电池的构成和工作原理电解池的构成和工作原理7.3 电化学系列的计算电化学系列的概念和应用电极电势的计算和测定方法第八章:光学原理8.1 光的传播和折射光的传播方式和速度折射定律的表述和应用8.2 光的干涉和衍射干涉现象的产生和条件衍射现象的产生和条件8.3 光谱学的基本概念光谱的定义和分类光谱分析的方法和应用第九章:现代物理化学方法9.1 核磁共振(NMR)NMR的原理和应用NMR谱的解析和意义9.2 质谱法(MS)质谱法的原理和应用质谱图的解析和意义9.3 X射线衍射法X射线衍射法的原理和应用X射线晶体学的概念和基本原理第十章:物理化学实验10.1 实验基本操作实验安全常识和实验操作规范实验数据的记录和处理方法10.2 经典实验分析滴定法、比重法、熔点法等实验方法实验结果的分析和讨论实验报告的结构和内容要求重点解析1. 物质的量的概念及其性质和特点,摩尔的概念及其定义和符号,物质的量的计算方法和示例。

物理化学电子教案共31页

物理化学电子教案共31页

上一内容 下一内容 回主目录
返回
2020/4/14
物理化学电子教案——第二章
不可能把热从低温 物体传到高温物体, 而不引起其它变化
上一内容 下一内容 回主目录
返回
2020/4/14
第二章 热力学第二定律
2.1 自发变化的共同特征 2.2 热力学第二定律 2.3 卡诺循环与卡诺定理 2.4 熵的概念 2.5 克劳修斯不等式与熵增加原理 2.6 熵变的计算
上一内容 下一内容 回主目录
返回
2020/4/14
物理化学电子教案—第七章
电解
电能
电池
化学能
上一内容 下一内容 回主目录
返回
2020/4/14
第七章电解质溶液
主要内容
电化学的基本概念和法拉第定 律离子的电迁移和迁移数
电导 强电解质溶液理论简介
上一内容 下一内容 回主目录
返回
2020/4/14
物理化学电子教案—第八章
上一内容 下一内容 回主目录
返回
2020/4/14
物理化学电子教案—第四章
气态溶液 固态溶液 液态溶液
正规溶液
非电解质溶液
上一内容 下一内容 回主目录
返回
2020/4/14
第四章 溶液
4.1 4.2 4.3
4.4
4.5 4.6 4.7 4.8 4.9 4.10 4.11
引言 溶液组成的表示法 偏摩尔量与化学势
上一内容 下一内容 回主目录
返回
2020/4/14
物理化学电子教案—第六章
上一内容 下一内容 回主目录
返回
2020/4/14
第六章 化学平衡
6.1 化学平衡的条件和反应的亲和势 6.2 化学反应的平衡常数和等温方程式 6.3 平衡常数与化学方程式的关系 6.4 复相化学平衡 6.5 平衡常数的测定和平衡转化率的计算 6.6 标准生成吉布斯自由能 6.7 用配分函数计算 rG m 和平衡常数 6.8 温度、压力及惰性气体对化学平衡的影响 6.9 同时平衡 6.10 反应的耦合 6.11 近似计算

物理化学简明教程第四版课件07-10

物理化学简明教程第四版课件07-10


( k1 k2 ) t



y
k1a k1 k 2
1 e
( k1 k 2 ) t

§10.1 典型复合反应动力学
3)平行反应的特征
y k1 ①特征: 即产物之比等于速率常数之比 z k2
平行反应的特征
§10.1 典型复合反应动力学
②改变k1/k2的方法: 欲使k1>k2
dC I、 A k (a x) 1 dt
dc B II、 K1 ( a x ) K 2 ( x y ) dt
dCC III、 k 2 (x y) dt
§10.1 典型复合反应动力学
②A、B、C浓度随时间变化规律
I、C A a x ae
k1t
ak1 k1t k 2 t II、C B x y (e e ) k 2 k1 k2 k1 k1t k 2 t III、C C y a 1 e e k 2 k1 k 2 k1
活性质点,同时产生两个或两个以上的新活性质点,
使反应像树枝状支链的形式迅速传递下去。 因而反应速度急剧加快,引起支链爆炸。如果 产生的活性质点过多,也可能自己相碰而失去活性,
使反应终止。
氢与氧气生成水汽的反应 2H2(g)+O2(g)→2H2O(g) (总反应)
这个反应看似简单,但反应机理很复杂,至今 尚不十分清楚。但知道反应中有以下几个主要步骤 和存在H、O、OH和HO2等活性物质。
为防止催化剂中毒,反应物必须预先净化
催化作用分类 1)均相催化 催化剂与反应系统处在同一个相的称为均相催化。
如用硫酸作催化剂使乙醇和乙酸生成乙酸乙 酯的反应是液相均相反应。 2)复相催化 催化剂与反应系统处在不同相的称为多相催化。 如用固体超强酸作催化剂使乙醇和乙酸生成 乙酸乙酯的反应是多相催化反应。石油裂解、直 链烷烃芳构化等反应也是多相催化反应。 3)生物催化(酶催化) 如馒头的发酵、制酒过程中的发酵。

10章_电解与极化作用

10章_电解与极化作用

当电极上无电流通过时,电极处于平衡状态, 这时的电极电势分别称为阳极可逆(平衡)电势和阴极 可逆(平衡)电势
可逆 (阳),可逆 (阴)
在有电流通过时,随着电极上电流密度的增加, 电极实际分解电势值对平衡值的偏离也愈来愈大,这 种对可逆平衡电势的偏离称为电极的极化。
§10.2 极化作用
(1)浓差极化 在电解过程中,电极表面附近 某离子由于电极反应其浓度Cs与本体溶液中该离子浓
§10.2 极化作用
(2)电化学极化 电极反应总是分若干步进行,若其中一步反应
速率较慢,需要较高的活化能
为了使电极反应顺利进行所额外施加的电压称 为电化学超电势(亦称为活化超电势) 这种极化现象称为电化学极化。
二、超电势
在某一电流密度下,实际发生电解的电极电势 不可逆 与可逆电极电势
可逆 之间的差值称为超电势。
阴极反应
可逆 > 不可逆 阳极上有类似的情况,但 可逆 < 不可逆
ae,Ag < aAg
例如:若在CuSO4溶液中插入两个铜电极进行电解,不 加以搅拌,则会出现: (1) CuSO4在阳极区浓度大于阴极区的浓度 (2) CuSO4在阳极区浓度大于电解前溶液的浓度 (3) CuSO4在阳极区浓度小于阴极区的浓度 (4) CuSO4在阳极区浓度小于电解前溶液的浓度 其中正确的说法是: (A) (1)(2) (B) (1)(4) (C) (2)(3) (D) (3)(4) 答案:(A)
2、Tafel 公式(Tafel’s equation)
早在1905年,Tafel 发现,对于一些常见的电 极反应,超电势与电流密度之间在一定范围内存在 如下的定量关系:
a b ln j
式中 j 是电流密度,a 是单位电流密度时的超电势值, 与电极材料、表面状态、溶液组成和温度等因素有关, 是超电势值的决定因素。

物理化学教案(天大5版)

物理化学教案(天大5版)

物理化学教案说明1.本教案与计算机辅助教学的多媒体课件配合使用,具体内容详见多媒体课件。

2. 参考教材:天津大学,物理化学(第5版)3. 编者:向建敏武汉工程大学物理化学教研室2013.8. 修订第一章气体的PVT关系CHAPTER 1 THE PVT RELATION OF GASES 基本要求[掌握]理想气体状态方程、范德华方程及压缩因子图。

[理解]维里方程、实际气体的液化与临界性质及对应状态原理[了解]理想气体模型及分子间力。

基本内容§0 绪论§1.1 理想气体状态方程§1.2 理想气体混合物§1.3 气体的液化及临界参数§1.4 真实气体状态方程§1.5 对应状态原理及普遍化压缩因子图重点难点重点:理想气体状态方程、范德华方程、压缩因子。

难点:临界点。

教学方法运用自制多媒体电子幻灯片进行教学。

课时安排4学时(含绪论1学时)。

教学安排共二次课,每次课2学时第一次课[基本内容]§0 绪论§1.1 理想气体状态方程§1.2 理想气体混合物[基本要求]掌握:理想气体状态方程。

了解:物理化学学科的主要内容与发展状况。

[重点] 理想气体状态方程。

[作业] 1-3.4.5.7第二次课[基本内容]§1.3 气体的液化及临界参数§1.4 真实气体状态方程§1.5 对应状态原理及普遍化压缩因子图[基本要求]掌握:范德华方程及压缩因子图。

理解:维里方程、实际气体的液化与临界性质及对应状态原理了解:超临界状态。

[重点难点]重点:范德华方程、压缩因子。

难点:临界点。

[作业]1-9.11.13.17第二章热力学第一定律CHAPTER 2 THE FIRST LAW OF THERMODYNAMICS基本要求[掌握]pVT变化、可逆相变化及不可逆相变化、化学变化中热力学函数U、H的变化及热与功的计算。

界面张力 (1)详解

界面张力 (1)详解
上一内容 下一内容 回主目录
返回
2019/4/9
1.液体的表面张力、表面功及表面吉布斯函数
最简单的例子是液体及其蒸气组成的表面。
上一内容
下一内容
回主目录
返回
2019/4/9
液体内部分子所受的力可以彼此抵消,但表面分子受到体
相分子的拉力大,受到气相分子的拉力小(因为气相密度低),
所以表面分子受到被拉入体相的作用力。 这种作用力使表面有自动收缩
Wr'
γ:表面吉布斯函数。系统增加单位表面所增加的吉布斯函数。
单位:J· m-2
γ :表面张力,表面功,表面吉布斯函数
具有相同量值和量纲的不同的三个物理量 补充说明: 表面: 气 -液 气 -固
上一内容 下一内容 回主目录
界面: 液-液 液-固 固-固
返回
2019/4/9
如果在金属线框中间系一线圈,一起浸
物理化学电子教案—第十章
上一内容
下一内容
回主目录
返回
2019/4/9
水蚂蚱为什么能浮在水面?
界面张力
上一内容
下一内容
回主目录
返回
2019/4/9
第十章
界面现象
§10.1 界面张力
§10.2 弯曲表面下的附加压力及其后果
§10.3 固体表面 §10.4 液-固界面现象 §10.5 溶液表面
上一内容
下一内容
回主目录
返回
2019/4/9
表面和界面(surface and interface)
界面是指两相接触的约几个分子厚度的过渡区,
若其中一相为气体,这种界面通常称为表面。
严格讲表面应是液体和固体与其饱和蒸气之间 的界面,但习惯上把液体或固体与空气的界面称为 液体或固体的表面。 常见的界面有:气-液界面,气-固界面,液-液

物理化学实验电子教案

物理化学实验电子教案

一、教案基本信息物理化学实验电子教案课时安排:根据课程安排决定教学目标:1. 让学生掌握物理化学实验的基本原理和实验方法。

2. 培养学生的实验技能和观察能力,提高学生的实验操作水平。

3. 培养学生的科学思维和创新意识,提升学生的综合分析和解决问题的能力。

教学内容:1. 物理化学实验的基本原理和实验方法。

2. 常见物理化学实验的操作步骤和注意事项。

3. 物理化学实验数据的处理和实验结果的分析。

教学资源:1. 实验室设备:如显微镜、天平、滴定管等。

2. 实验试剂和材料。

3. 实验教材和相关参考资料。

教学方法:1. 讲解法:教师讲解实验原理、实验方法和实验操作步骤。

2. 演示法:教师演示实验操作,学生跟随操作。

3. 实践法:学生独立完成实验,教师进行指导和评价。

二、第一章:实验基本原理与方法教学目标:1. 让学生了解物理化学实验的基本原理。

2. 让学生熟悉物理化学实验的基本方法。

教学内容:1. 物理化学实验的基本原理:如测量原理、数据处理原理等。

2. 物理化学实验的基本方法:如实验设计方法、实验操作方法等。

教学活动:1. 讲解实验基本原理和方法。

2. 学生跟随教师进行实验操作演示。

教学评价:1. 学生能理解并掌握实验基本原理和方法。

2. 学生能正确进行实验操作。

三、第二章:常见物理化学实验操作教学目标:1. 让学生掌握常见物理化学实验的操作步骤。

2. 培养学生遵守实验操作规范的意识。

教学内容:1. 常见物理化学实验的操作步骤:如溶液配制、滴定操作等。

2. 实验操作注意事项:如实验安全、实验材料的选择等。

教学活动:1. 讲解实验操作步骤和注意事项。

2. 学生跟随教师进行实验操作演示。

教学评价:1. 学生能正确完成实验操作。

2. 学生能遵守实验操作规范,注意实验安全。

四、第三章:实验数据处理与分析教学目标:1. 让学生了解物理化学实验数据的处理方法。

2. 培养学生分析和解决问题的能力。

教学内容:1. 实验数据的处理方法:如误差分析、数据拟合等。

《物理化学教案》

《物理化学教案》

《物理化学教案》word版第一章:引言1.1 教案目标让学生了解物理化学的定义和研究范围。

使学生了解物理化学在实际生活和科学研究中的应用。

1.2 教学内容物理化学的定义和研究范围。

物理化学的实际应用举例。

1.3 教学方法采用讲授法,讲解物理化学的定义和研究范围。

采用案例分析法,分析物理化学在实际生活中的应用。

1.4 教学步骤引入新课,讲解物理化学的定义和研究范围。

分析物理化学在实际生活中的应用,如气象、材料、能源等领域的应用。

1.5 作业与评估让学生写一篇关于物理化学在实际生活中的应用的小论文。

对学生的论文进行评估,了解学生对物理化学应用的理解程度。

第二章:热力学第一定律2.1 教案目标让学生理解热力学第一定律的定义和表达式。

使学生能够运用热力学第一定律解决实际问题。

2.2 教学内容热力学第一定律的定义和表达式。

热力学第一定律的实际应用。

2.3 教学方法采用讲授法,讲解热力学第一定律的定义和表达式。

采用例题解析法,分析热力学第一定律的实际应用。

2.4 教学步骤引入新课,讲解热力学第一定律的定义和表达式。

通过例题解析,让学生掌握热力学第一定律的应用方法。

2.5 作业与评估让学生解决一些实际问题,运用热力学第一定律进行计算。

对学生的作业进行评估,了解学生对热力学第一定律的理解程度。

第三章:理想气体状态方程3.1 教案目标让学生理解理想气体状态方程的定义和表达式。

使学生能够运用理想气体状态方程解决实际问题。

3.2 教学内容理想气体状态方程的定义和表达式。

理想气体状态方程的实际应用。

3.3 教学方法采用讲授法,讲解理想气体状态方程的定义和表达式。

采用例题解析法,分析理想气体状态方程的实际应用。

3.4 教学步骤引入新课,讲解理想气体状态方程的定义和表达式。

通过例题解析,让学生掌握理想气体状态方程的应用方法。

3.5 作业与评估让学生解决一些实际问题,运用理想气体状态方程进行计算。

对学生的作业进行评估,了解学生对理想气体状态方程的理解程度。

物理化学》电子教案上册

物理化学》电子教案上册

《物理化学》电子教案上册第一章:引言1.1 课程介绍了解物理化学的课程背景、意义和目的。

理解物理化学的基本概念和研究方法。

1.2 物理化学的发展历程回顾物理化学的发展历程,了解其重要里程碑和成就。

介绍著名物理化学家和他们对物理化学的贡献。

1.3 学习目标和要求明确学习目标,包括知识、技能和态度。

提出学习要求,包括课堂参与、作业和考核。

第二章:物质的量与状态2.1 物质的量引入物质的量的概念,解释摩尔和阿伏伽德罗常数。

学习物质的量的计算和转换,包括摩尔质量、物质的量浓度等。

2.2 状态介绍理想气体状态方程,理解压力、体积和温度之间的关系。

学习物质的相变,包括固态、液态和气态的性质和变化。

2.3 物质的量与状态的计算练习计算物质的量与状态之间的关系,包括理想气体状态方程的运用。

分析实际问题,应用物质的量与状态的计算方法。

第三章:热力学第一定律3.1 能量守恒定律复习能量守恒定律的基本原理,理解能量的转化和守恒。

学习能量的单位和国际制,了解能量的量纲和换算关系。

3.2 内能和热量引入内能的概念,理解内能的定义和计算方法。

学习热量的传递方式,包括传导、对流和辐射。

3.3 热力学第一定律阐述热力学第一定律的内容,理解能量守恒与热力学第一定律的关系。

应用热力学第一定律解决实际问题,进行能量的计算和分析。

第四章:热力学第二定律4.1 熵的概念引入熵的概念,解释熵的定义和物理意义。

学习熵的计算方法和熵变的表达式。

4.2 热力学第二定律的表述阐述热力学第二定律的不同表述,包括熵增原理和克劳修斯定律。

理解热力学第二定律的本质和意义。

4.3 热力学第二定律的应用学习热力学第二定律在实际问题中的应用,包括热机和制冷机的效率计算。

分析热力学第二定律对自然界和工程实践的影响。

第五章:溶液的性质5.1 溶液的定义和组成引入溶液的概念,理解溶液的组成和特点。

学习溶质和溶剂的分类及它们之间的相互作用。

5.2 溶液的浓度和渗透压介绍溶液的浓度表示方法,包括摩尔浓度和质量浓度。

物理化学电子教案(2024)

物理化学电子教案(2024)

压力
对于有气体参与的 反应,压力越大, 反应速率越快。
碰撞理论与活化能概念
碰撞理论
01
分子间发生有效碰撞才能发生化学反应,有效碰撞需满足能量
和方向两个条件。
活化能概念
02
活化分子具有的最低能量与反应物分子的平均能量之差,是化
学反应发生的能量障碍。
活化能与反应速率的关系
03
活化能越低,反应速率越快。
热力学第一定律及应用
热力学第一定律的表述
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转 换过程中,能量的总值保持不变。
热力学第一定律的应用
用于计算系统在等温、等压、等容等过程中的热量交换和功的转换,以及热机、制冷机等 设备的效率。
热力学第一定律与能量守恒定律的关系
热力学第一定律是能量守恒定律在热力学系统中的具体应用。
物理化学电子教案
目 录
• 课程介绍与教学目标 • 热力学基础 • 化学动力学基础 • 电化学原理及应用 • 表面现象与胶体化学简介 • 物质结构与性质关系探讨 • 总结回顾与拓展延伸
01
课程介绍与教学目标
物理化学定义及研究内容
物理化学定义
物理化学是研究物质的物理现象和化 学变化之间关系的科学,探讨物质的 结构、性质、能量转化以及化学反应 的速率和机理等问题。
呈现无序状态。
非晶体的特点
非晶体具有各向同性、无固定熔点 、无规则外形等特点。
非晶体的应用
非晶体材料在电子、光学、磁学等 领域具有广泛的应用前景。
物质性质预测方法
基于物质结构的预测
基于量子化学的预测
通过分析物质的晶体结构或分子结构,可 以预测其物理和化学性质,如熔点、硬度 、导电性等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平均速率
rR
([ R ] 2 [ R] 1 ) t2 t1
rp
([ P ]2 [ P] 1 ) t2 t1
它不能确切反映速率的变
化情况,只提供了一个平
均值,用处不大。
上一内容 下一内容 回主目录
返回
2020/12/22
平均速率
上一内容 下一内容 回主目录
返回
2020/12/22
瞬时速率
研究化学变化的方向、能达到的最大限度以及
外界条件对平衡的影响。化学热力学只能预测反应
的可能性,但无法预料反应能否发生?反应的速率
如何?反应的机理如何?例如:
rG m / kJ m ol1
1
3
2 N2 2 H2 NH3 (g)
16.63
H2
1 2
O2
H2O(l)
237.19
热力学只能判断这两个反应都能发生,但如何使它发
R P
rR
d[R dt
]
rp
d[P ] dt
在浓度随时间变化的图上,在时间t 时,作交点的切线,
就得到 t 时刻的瞬时速率。显然,反应刚开始,速率大,然后 不断减小,体现了反应速率变化的实际情况。
上一内容 下一内容 回主目录
返回
2020/12/22
瞬时速率
上一内容 下一内容 回主目录
返回
2020/12/22
速率方程又称动力学方程。它表明了反应速 率与浓度等参数之间的关系或浓度等参数与时间 的关系。速率方程可表示为微分式或积分式。
rdx/dt
例如: r k[A]
ln
a
a
x
k1t
上一内容 下一内容 回主目录
返回
2020/12/22
基元反应(elementary reaction)
基元反应简称元反应,如果一个化学反应,反 应物分子在碰撞中相互作用直接转化为生成物分子, 这种反应称为元反应。
0 BB B
已知 d dnB B
转化速率的定义为:

d
1 dnB
dt B dt
上一内容 下一内容 回主目录
返回
2020/12/22
反应速率(rate of reaction)
通常的反应速率都是指定容反应速率,它的定义为:
r 1 d
V dt
( d 1 dnB ) dt B dt
1 dnB /V 1 d c B
上一内容 下一内容 回主目录
返回
2020/12/22
反应速度和速率
速度 Velocity 是矢量,有方向性。
速率 Rate 是标量 ,无方向性,都是正值。
例如:
R P
速 度 d[R ]0 dt
d[P ] 0 dt
速 率 d[R]d[P]0 dt dt
上一内容 下一内容 回主目录
返回
2020/12/22
B dt
B dt
对任何反应: eEfFgG hH
r1d [E ]1d [F ]1d [G ]1d [H ] ed t f d t gd t hd t
上一内容 下一内容 回主目录
返回
2020/12/22
绘制动力学曲线
动力学曲线就是反应中各物质浓度随时间的 变化曲线。有了动力学曲线才能在t时刻作切线, 求出瞬时速率。测定不同时刻各物质浓度的方法 有: (1)化学方法
上一内容 下一内容 回主目录
返回
2020/12/22
10.3 化学反应的速率方程
速率方程 基元反应 质量作用定律 总包反应 反应机理 反应分子数 反应级数 反应的速率系数 准级数反应
上一内容 下一内容 回主目录
返回
2020/12/22
速率方程(rate equation of chemical reaction)
10.9 拟定反应历程的一般方法
上一内容 下一内容 回主目录
返回
2020/12/22
10.1 化学动力学的任务和目的
化学热力学的研究对象和局限性 化学动力学的研究对象 化学动力学发展简史
上一内容 下一内容
10.1 化学动力学的任务和目的
化学热力学的研究对象和局限性
生,热力学无法回答。
上一内容 下一内容 回主目录
返回
2020/12/22
10.1 化学动力学的任务和目的
化学动力学的研究对象
化学动力学研究化学反应的速率和反应的机理以及 温度、压力、催化剂、溶剂和光照等外界因素对反应 速率的影响,把热力学的反应可能性变为现实性。
例如:
动力学认为:
1 2
N2
3 2
H2
不同时刻取出一定量反应物,设法用骤冷、 冲稀、加阻化剂、除去催化剂等方法使反应立即 停止,然后进行化学分析。
上一内容 下一内容 回主目录
返回
2020/12/22
绘制动力学曲线
(2)物理方法
用各种物理性质测定方法(旋光、折射率、 电导率、电动势、粘度等)或现代谱仪(IR、UVVIS、ESR、NMR、ESCA等)监测与浓度有定 量关系的物理量的变化,从而求得浓度变化。 物理方法有可能做原位反应。
k Aexp( Ea ) RT
设E a 为与T无关的常数
•1935年 Eyring等提出过渡态理论
•1960年 交叉分子束反应,李远哲等人1986年 获诺贝尔化学奖
上一内容 下一内容 回主目录
返回
2020/12/22
10.2 化学反应速率表示法
反应速度与速率 平均速率 瞬时速率 反应进度 转化速率 反应速率 绘制动力学曲线
NH3(g)
需一定的T,p和催化剂
H
2
1 2
O2
H 2O(l)
点火,加温或催化剂
上一内容 下一内容 回主目录
返回
2020/12/22
10.1 化学动力学的任务和目的
化学动力学发展简史
•1848年
van’t Hoff 提出:
dldnTKc RU T2
ddln TkR E Ta2
Kc
kf kb
•1891年 Arrhenius
物理化学电子教案—第十章
积分法
微分法
半衰期法
孤立法
一级反应 对峙反应 平行反应 连续反应 链反应
上一内容 下一内容 回主目录
返回
2020/12/22
第十章 化学动力学基础(一)
10.1 化学动力学的任务和目的 10.2 化学反应速率表示法 10.3 化学反应的速率方程 10.4 具有简单级数的反应 10.5 几种典型的复杂反应 10.6 温度对反应速率的影响 10.7 活化能对反应速率的影响 10.8 链反应
反应进度(extent of reaction)
设反应为: R P
t 0n R (0 ) n P (0 )
tt nR(t) np(t)
nR(t) nR(0)np(t) nP(0)
d dnB B
上一内容 下一内容 回主目录
返回
2020/12/22
转化速率(rate of conversion)
对某化学反应的计量方程为:
相关文档
最新文档