激光原理 周炳琨版课后习题答案
激光原理第四章习题解答

《激光原理》习题解答作者:周炳琨等 国防工业出版社 第五版解答人:广东海洋大学理学院光电科学系 石友彬(2008年修正版)习题解答说明:习题解答参考蓝信鉅的激光技术、陈家璧版激光原理及应用等,在此对上述作者表示敬意! 本章习题是在我系前外聘教授郭振华习题解答基础上汇总而成,在此表示衷心感谢。
1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答:根据公式(激光原理P136)ccυυνν-+=110υλν=由以上两个式子联立可得:0λυυλ⨯+-=C C代入不同速度,分别得到表观中心波长为:nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ解答完毕(验证过)2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化L 2次。
证明:对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。
在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。
以上是分析内容,具体解答如下:无多普勒效应的光场:()t E E ⋅=πνν2cos 0 产生多普勒效应光场:()t E E ⋅=''02cos ''πνν在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:⎪⎭⎫⎝⎛+=c υνν1'第二次多普勒效应:⎪⎭⎫ ⎝⎛+≈⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=c c c υνυνυνν21112'''在观察者处:()⎪⎭⎫⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅+⋅==⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛++⋅=+=t c t c t E t c t E E E E πνυπνυπνυπνπν2cos 22cos 2212cos 2cos 0021观察者感受到的光强:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅+=t c I I υνπ22cos 120 显然,光强是以频率cυν⋅2为频率周期变化的。
激光原理 周炳琨版课后习题答案

6.某一分子的能级 到三个较低能级 、 和 的自发跃迁几率分别是 , 和 ,试求该分子 能级的自发辐射寿命 。若 , , ,在对 连续激发并达到稳态时,试求相应能级上的粒子数比值 、 和 ,并回答这时在哪两个能级间实现了集居数反转。
解:该分子 能级的自发辐射寿命 为:
在连续激发时,对能级 、 和 分别有:
即该物质的增益系数约为 。
第二章
习题
1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:
其往返矩阵为:
由于是共焦腔,有
往返矩阵变为
若光线在腔内往返两次,有
可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
当 时, 小
当 时, 小
3. 在 波长时 ,试求在内径为 的 波导管中 模和 模的损耗 和 ,分别以 , 以及 来表示损耗的大小。当通过 长的这种波导时, 模的振幅和强度各衰减了多少(以百分数表示)?
解:由
,
, 。
当 时, ,
4.试计算用于 波长的矩形波导的 值,以 及 表示,波导由 制成, , ,计算由 制成的同样的波导的 值,计算中取 。
得
10m
1m
10cm
0
2.00cm
2.08cm
2.01cm
2.00cm
2.40
22.5
55.3
56.2
从上面的结果可以看出,由于f远大于F,所以此时透镜一定具有一定的聚焦作用,并且不论入射光束的束腰在何处,出射光束的束腰都在透镜的焦平面上。
17. 激光器输出光 , =3mm,用一F=2cm的凸透镜距角,求欲得到 及 时透镜应放在什么位置。
周炳坤版激光原理习题答案第七章

利用关系式
可以得到
时域里脉冲的宽度是 函数的半功率点所对应的时间间隔,当 时
另 时为半功率点,则
又有关系
另上两式左端相等,可以得到
求得
脉冲的宽度为
下面来求a的值,在频域中进行求解,
因为
当 的时候,
令 时为半功率点,
又因为
所以有
半功率点的带宽为
将a的值代入 的表达式中去,可以得到锁模脉宽为:
12.一锁模氩离子激光器,腔长1m,多普勒线宽为6 000MHz,未锁模时的平均输出功率为3W。试粗略估算该锁模激光器输出脉冲的峰值功率、脉冲宽度及脉冲间隔时间。
解:相邻纵模的频率间隔为
该锁模激光器输出脉冲的脉冲宽度为:
将 代入得:
脉冲时间间隔为:
输出脉冲的峰值功率为:
解:列出三能级系统速率方程如下:
式中, , 及 分别为工作物质及腔中其余部分的折射率,N为工作物质中的平均光子数密度, 。
由式(1)求得阈值反转粒子数密度为:
式(1)和(2)可以改写为:
(3)式除以(4)式可得:
将(5)式积分可得:
当 时, ,忽略初始光子数密度 ,可由上式求出:
设工作物质的截面积为S,输出反射镜透射率为T,则峰值功率为:
(1)使E2能级保持 所需的泵浦功率Pp;
(2)Q开关接通前自发辐射功率P;
(3)脉冲输出峰值功率Pm;
周炳琨激光原理第二章习题解答(完整版)

周炳琨激光原理第二章习题解答(完整版)1.试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证明:设从镜M 1→M 2→M 1,初始坐标为⎪⎪⎭⎫ ⎝⎛θ00r ,往返一次后坐标变为⎪⎪⎭⎫ ⎝⎛θ11r =T ⎪⎪⎭⎫⎝⎛θ00r ,往返两次后坐标变为⎪⎪⎭⎫⎝⎛θ22r =T •T ⎪⎪⎭⎫ ⎝⎛θ00r 而对称共焦腔,R 1=R 2=L 则A=1-2R L 2=-1 B=2L ⎪⎪⎭⎫⎝⎛-2R L 1=0 C=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+121R L 21R 2R 2=0 D=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--211R L 21R L 21R L 2=-1 所以,T=⎪⎪⎭⎫ ⎝⎛--1001故,⎪⎪⎭⎫⎝⎛θ22r =⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛θ00r =⎪⎪⎭⎫⎝⎛θ00r 即,两次往返后自行闭合。
2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔的稳定性条件为0<g 1•g 2<1,其中g 1=1-1R L ,g 2=1-2R L(a 对平凹腔:R 2=∞,则g 2=1,0<1-1R L<1,即0<L<R 1 (b)对双凹腔:0<g 1•g 2<1, 0<⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1 LR >1,L R >2或L R <1L R <2且LR R >+21(c)对凹凸腔:R 1=1R ,R 2=-2R ,0<⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1,L R >1且LR R <-||213.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
周炳坤激光原理课后习题答案

《激光原理》习题解答第一章习题解答1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即 c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为 0γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=0ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm解答完毕。
2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。
解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。
由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数 根据题中给出的数据可知:z H mms c13618111031010103⨯=⨯⨯==--λν z H mms c1591822105.110500103⨯=⨯⨯==--λνz H 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求(a)当ν=3000兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm ,T=300K 的时候,n2/n1=? (c)当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即: TK E E T k h f f n n b b )(expexp 121212--=-=ν(统计权重21f f =) 其中1231038062.1--⨯=JK k b 为波尔兹曼常数,T 为热力学温度。
激光原理周炳坤-第2章习题答案

第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
周炳琨激光原理第三章习题解答(完整版)

周炳琨激光原理第三章习题解答(完整版)1. 试由式(3.3.5)导出式(3.3.7),说明波导模的传输损耗与哪些因素有关。
在其他条件不变时,若波导半径增大一倍,损耗将如何变化?若λ减小到原来的21,损耗又将如何变化?在什么条件下才能获得低的传输损耗? 解:由)]21()(211[2ka i ka u k n nm nm ηγ--≈及nm nm nm i αβγ+=可得: })]Im{21()(211[}Re{2n nm nm nmka ka u k ηγβ+-== }Re{)2(}Re{2)(21}Im {32022n nm n nm nm nm au ka ka u k ηλπηγα=--== 波导模的传输损耗nm α与波导横向尺寸a ,波长0λ,波导材料的折射率实部以及不同波导模对应得不同nm u 值有关。
(a )波导半径增大一倍,损耗减为原来的81。
(b )波长减小到原来的一半,损耗减为原来的41。
获得低的传输损耗应增大波导横向尺寸,选择折射率实部小的介质材料和nm u 小的波导模。
2.试证明,当η为实数时,若02.2>η,最低损耗模为01TE 模,而当02.2<η时,为11EH 模,并证明01TE 模的损耗永远比01TM 模低。
证明: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+--=模对模对模对nm m m nm nm EH TM TE a u ,1121,1,11)2(22022023202ηηηηηλπα (3.3.8) 对于以上三种不同模,参看书中表3.1,对于同一种模式,m 越小,损耗越小,因此以下考虑01TE ,01TM ,11EH 模之间谁最小(11EH 中1=n 最小)题中设η为实数,显然1>η,所以01010101TE TM αα>,只需考虑01TE 与11EH : 当112221120111011101>+=ηααu u EH TE 时,11EH 小02.2<⇒η当111011101<EH TE αα时,01TE 小02.2>⇒η 3.BeO 在m μ6.10波长时033.0}Re{=n η,试求在内径为mm a 4.12=的BeO 波导管中11EH 模和12EH 模的损耗11a 和12a ,分别以1-cm ,1-m 以及m dB 来表示损耗的大小。
激光原理周炳坤-第2章习题答案讲解

第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时:故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1232112211010*******0d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
激光原理周炳坤-第4章习题答案

第四章 电磁场和物质的共振相互作用习题(缺7)1.解:根据多普勒效应,有ccz z /1/10υυυυ-+=则ccc c cc z z z z /1/1/1/1/0υυλυυυυλ+-=+-== 当c z 1.0=υ时,nm 4.5721≈λ 当c z 4.0=υ时,nm 3.4142≈λ 当c z 8.0=υ时,nm 9.2103≈λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。
试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。
证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。
由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。
将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为:这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。
在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)v cνν'=+2(1)(1)(12)vv v c c cνννν'''=+=+≈+因而光屏P 上的总光场为:光强正比于电场振幅的平方,所以P 上面的光强为:它是t 的周期函数,单位时间内的变化次数为:由上式可得在dt 时间内屏上光强亮暗变化的次数为:(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。
对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S :式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。
激光原理周炳坤-第2章习题答案概要

第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
激光原理答案 周炳琨

R12(R 2 − L) L(R1− L)(R1+ R 2−
L)
4
=
λ π
1
[L(R2−L)] 4
(R → ∞) 1
=4 3 λ ≈1.7*10−3m
4π
1
ω s2 =
λL π
R 22(R1− L) L(R 2− L)(R1+ R 2−
L)
4
=
λ
(
L
R
2 2
1 4
R=∞
R
R
R=∞
该三镜环形腔的往返矩阵为:
T = 10
10 10
L1
1 -1
f
10
1 0
L 1
1 -1
f
10
1 0
L 1
=
A C
B D
A = D = 1− 3 L + L 2 f f
能级之间实现了集居数反转。
τ (1) 4 =
A43
+
1 A42
+
A41
=
1.1*10−8
s
(2) 在稳定状态时,不考虑无辐射跃迁和热驰豫过程,
E 对 : 3
A43 n4 =
n3 τ3
,
n3 n4
=
A43τ
3
=5*10−1
E E 实现 和 能级集居数反转
4
3
对
E2 : A42 n4 =
n2 τ2
,
n2 n4
(2) n=
1W *500nm 6.626*10−34 Js*3*108
ms−1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在连续激发时,对能级 、 和 分别有:
所以可得:
很显然,这时在能级 和 之间实现了粒子数反转。
7.证明当每个模式内的平均光子数(光子简并度)大于1时,辐射光中受激辐射占优势。
证:受激辐射跃迁几率为
受激辐射跃迁几率与自发辐射跃迁机率之比为
式中, 表示每个模式内的平均能量,因此 即表示每个模式内的平均光子数,因此当每个模式内的平均光子数大于1时,受激辐射跃迁机率大于自发辐射跃迁机率,即辐射光中受激辐射占优势。
激光原理
周炳琨
(长按ctrl键点击鼠标即可到相应章节)
注:考华科者如需激光原理历年真题与答案可联系
E-mail:745147608@
第一章
习题
2.如果激光器和微波激射器分别在 、 和 输出1W连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少?
解:若输出功率为P,单位时间内从上能级向下能级跃迁的粒子数为n,则:
14.某高斯光束腰斑大小为 =1.14mm, 。求与束腰相距30cm、10m、1000m远处的光斑半径 及波前曲率半径R。
解:入射高斯光束的共焦参数
根据
z
30cm
10m
1000m
1.45mm
2.97cm
2.96m
0.79m
10.0m
1000m
求得:
15.若已知某高斯光束之 =0.3mm, 。求束腰处的 参数值,与束腰相距30cm处的 参数值,以及在与束腰相距无限远处的 值。
图2.1解:ຫໍສະໝຸດ 稳定条件左边有所以有
对子午线:
对弧失线:
有:
或
所以
同时还要满足子午线与弧失线
5.有一方形孔径的共焦腔氦氖激光器,L=30cm, , ,镜的反射率为 ,其他的损耗以每程0.003估计。此激光器能否作单模运转?如果想在共焦镜面附近加一个方形小孔阑来选择 模,小孔的边长应为多大?试根据图2.5.5作一个大略的估计。氦氖增益由公式计算。
由此可得:
其中 为普朗克常数, 为真空中光速。
所以,将已知数据代入可得:
时:
时:
时:
3.设一对激光能级为 和 ( ),相应的频率为 (波长为 ),能级上的粒子数密度分别为 和 ,求
(a)当 ,T=300K时,
(b)当 ,T=300K时,
(c)当 , 时,温度T=?
解:当物质处于热平衡状态时,各能级上的粒子数服从波尔兹曼统计分布:
8.今有一球面腔, , , 。试证明该腔为稳定腔;求出它的等价共焦腔的参数;在图上画出等价共焦腔的具体位置。
解:该球面腔的g参数为
由此, ,满足谐振腔的稳定性条件 ,因此,该腔为稳定腔。
两反射镜距离等效共焦腔中心O点的距离和等价共焦腔的焦距分别为
根据计算得到的数据,在下图中画出了等价共焦腔的具体位置。
解:入射高斯光束的共焦参数
根据 ,可得
束腰处的q参数为:
与束腰相距30cm处的q参数为:
与束腰相距无穷远处的q参数为:
16.某高斯光束 =1.2mm, 。今用F=2cm的锗透镜来聚焦,当束腰与透镜的距离为10m、1m、10cm、0时,求焦斑的大小和位置,并分析所得的结果。
解:入射高斯光束的共焦参数
又已知 ,根据
解:在厄米高斯近似下,共焦腔面上的 模的场分布可以写成
令 ,则I式可以写成
式中 为厄米多项式,其值为
由于厄米多项式的零点就是场的节点位置,于是令 ,得
考虑到 ,于是可以得到镜面上的节点位置
所以, 模在腔面上有三条节线,其x坐标位置分别在0和 处,节线之间位置是等间距分布的,其间距为 ;而沿y方向没有节线分布。
即该物质的增益系数约为 。
第二章
习题
1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:
其往返矩阵为:
由于是共焦腔,有
往返矩阵变为
若光线在腔内往返两次,有
可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
为了获得基模振荡,在共焦镜面附近加一个方形小孔阑来增加衍射损耗。若满足II式的条件,则要求
根据图2.5.5可以查出对应于 的腔菲涅耳数
由菲涅耳数的定义可以算出相应的小孔阑的边长
因此,只要选择小孔阑的边长略小于0.83mm即可实现 模单模振荡。
6.试求出方形镜共焦腔面上 模的节线位置,这些节线是等距分布的吗?
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
3.激光器的谐振腔由一面曲率半径为1m的凸面镜和曲率半径为2m的凹面镜组成,工作物质长0.5m,其折射率为1.52,求腔长L在什么范围内是稳定腔。
解:设两腔镜 和 的曲率半径分别为 和 ,
工作物质长 ,折射率
根据稳定条件判据:
其中
由(1)解出
解:设 模为第一高阶模,并且假定 和 模的小信号增益系数相同,用 表示。要实现单模运转,必须同时满足下面两个关系式
根据已知条件求出腔的菲涅耳数
由图2.5.5可查得 和 模的单程衍射损耗为
氦氖增益由公式
计算。代入已知条件有 。将 、 、 、 和 的值代入I、II式,两式的左端均近似等于1.05,由此可见式II的条件不能满足,因此该激光器不能作单模运转。
得
10m
1m
10cm
0
2.00cm
2.08cm
2.01cm
(a)当 ,T=300K时:
(b)当 ,T=300K时:
(c)当 , 时:
6.某一分子的能级 到三个较低能级 、 和 的自发跃迁几率分别是 , 和 ,试求该分子 能级的自发辐射寿命 。若 , , ,在对 连续激发并达到稳态时,试求相应能级上的粒子数比值 、 和 ,并回答这时在哪两个能级间实现了集居数反转。
8.(1)一质地均匀的材料对光的吸收系数为 ,光通过10cm长的该材料后,出射光强为入射光强的百分之几?(2)一束光通过长度为1m的均匀激励的工作物质。如果出射光强是入射光强的两倍,试求该物质的增益系数。
解:(1)出射光强与入射光强之比为
所以出射光强只占入射光强的百分之三十七。
(2)设该物质的增益为g,则
由(2)得
所以得到:
4.图2.1所示三镜环形腔,已知 ,试画出其等效透镜序列图,并求球面镜的曲率半径R在什么范围内该腔是稳定腔。图示环形腔为非共轴球面镜腔。在这种情况下,对于在由光轴组成的平面内传输的子午光线,式(2.2.7)中的 ,对于在与此垂直的平面内传输的弧矢光线, , 为光轴与球面镜法线的夹角。