数字推理解题技巧
数字推理答题技巧(公开版)
数字推理答题技巧施久亮解题突破五大要诀――抓住数列的阿喀琉斯之踵一、先加减,后乘除,根据数字大小变化的规律判断属于何种数列类型1、数字快速增减的2、数字平稳增减的3、数字高低起伏的4、数字非常接近的二、分析项数,确定关键项,注意项与项之间关系,注意数列的级数(确定是几项关联、几级数列或组合还是间隔)1、项数低于或等于5项的2、项数为6项的3、项数大于6项的4、项数超多的三、抓住关键项,分析敏感数字1、平方数、立方数及其相邻数2、0、1及其相邻数以及常见变化3、基本数列4、分数题注意通分后的变化,关注小分子分母项四、找准起步点1、特别注意1、2项之间的关系五、寻找薄弱环节,确定关键数字,一举突破1、数列的不和谐部分、与众不同部分2、敏感数字,如0或1及其附近数3、从选项中找突破口基本功练习一、心算练习二、数字基础三、熟练基本数列四、中央及浙江真题练习数字推理基础一、基本数列(加减乘除)1、加减法数列差的几种形式:等差(常数):3例1:2 5 8 11 14自然顺序数:1、2、3、4、5例1:2 3 5 8 12 17平方数或立方数例1:5 6 10 19 45 70加减法单项数列1、2、3、4、5加减法双项数列2 3 5 8 13 21 例1:56,79,129,202,325 ()例2:3,-1,5,1,()A.3B.7.C.25D.64加减法三项数列例1:1 2 4 7 13 24 ()例2:1 4 3 5 2 6 4 7 ()2、乘除法数列乘除法单项数列乘除法双项数列例1:3,4,12,48,()A 96B 36C 192D 5763、加减法和乘除法混合数列例1:16 17 36 111 448 ( )例2:5,( ),39,60,105.A.10B.14C.25D.30例3:-2 ,-1, 1, 5 () 29A.17B.15C.13D.11例4:172,84,40,18,()例5:-1,0,1,2,9,()A.11B.82C.729D.730例6:3, 7, 16, 107,()A.1707B.1704C.1086D.1072二、数列的组合和延伸一级数列二级数列三级数列间隔组合数列分段组合数列对称组合数列三、题目类型1、单项数列例1:27 16 5 ()1/7例2:1\7 1\26 1\63 1\124 ( )例3:-1,0,27,()。
数字推理题四种思路
一、从题干数列里看规律通过分析数列中所给数字的多少,根据数字大小变化的趋势,分析数列是不是常用的数列,如加法数列、减法数列、乘法数列、除法数列、分数数列、小数数列、等差数列、等比数列、平方数列、立方数列、开方数列、偶数数列、奇数数列、质数数列、合数数列,或者是复合数列、混合数列、隔项数列、分组数列等。
为了解题方便,可以借助于题后答案所提供的信息,或是数列本身的变化趋势,初步确定是哪一种数列,然后调整思路进行解题。
具体方法如下:(1)先考察前面相邻的两三个数字之间的关系,在大脑中假设出一种符合这个数字关系的规律,如将相邻的两个数相加或相减,相乘或相除之后,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。
另外,有时从后往前推,或者从中间向两边推导也是较为有效的。
例:150,75,50,37.5,30,( )A. 20B. 22.5C. 25D. 27.5——『2009年北京市公务员录用考试真题』【答案:C】前项除以后项后得到:2;3\2;4\3;5\4;( ),分子是2,3,4,5,( 6 ),分母是1,2,3,4,( 5 ),所以( )与前一项30的倍数是6/5;则( )×6/5=30,( )=25。
(2)观察数列特点,如果数列所给数字比较多,数列比较长,超过5个或6个,就要考虑数列是不是隔项数列、分组数列、多级数列或常规数列的变式。
如果奇数项和偶数项有规律地交替排列,则该数列是隔项数列;如果不具备这个规律,就可以在分析数列本身特点的基础上,三个数或四个数一组地分开,就能发现该数列是不是分组数列了。
如果是,那么按照隔项数列或分组数列的各自规律来解答。
如果不是隔项数列或分组数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后寻求答案。
行测数字推理题技巧
行测数字推理题技巧
1.规律分析:首先看给出的数字序列是否存在其中一种规律,例如递增、递减、交替等。
通过观察规律,可以将下一个数字或者数字序列进行
推理。
2.数字运算:在数字推理题中,经常出现的是数字的运算关系。
可以
通过加减乘除等简单的运算符号,对给出的数字进行运算,从而得出新的
数字或者数字序列。
3.数字特征:观察给出的数字是否有一些特殊的特征,例如是否为质数、完全平方数、斐波那契数列等,可以通过这些特征进行逻辑推理。
4.数字拆分:有些数字推理题给出的数字较大,可以将其拆分成小的
数字,然后再进行运算或者找规律。
5.条件限制:有些数字推理题在给出的数字序列中存在一些限制条件,例如数字的位数、数字之间差距等。
可以通过这些限制条件进行推理。
6.平均数:在有些数字推理题中,给出的数字序列的平均数可能有特
殊的含义,通过计算平均数,可以得到下一个数字或者数字序列。
7.数字替换:有些数字推理题中,给出的数字序列中存在一些数字可
以进行替换,通过替换数字,可以发现其中一种规律。
4分钟搞定数字推理绝招
绝招,4.5分钟搞定数字推理1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一愕模型,各数之间的差有规律,如1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
3)看各数的大小组合规律,作出合理的分组。
如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。
4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。
如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
这组数比较巧的是都是6的倍数,容易导入歧途。
6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上fjjngs解答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269 269+17=286286+16=302 ∴下一个数为302+5=307。
数字推理技巧总结
数字推理技巧总结
数字推理是指通过对数字、数据的分析、比较、推断等方法,得出结论的过程。
在解决问题、做决策、研究数据等方面,数字推理技巧都能起到重要作用。
以下是数字推理技巧的总结:
1. 善于利用比较。
比较是数字推理中最基本的方法之一,通过比较不同数据之间的差异,可以得出结论。
例如,比较两个数据的大小、趋势、变化等。
2. 注意数字间的关系。
在数字推理中,数字间的关系往往比单个数字更重要。
例如,两个数字的差值、倍数、比率等,都能提供更多的信息。
3. 善于使用图表。
图表是数字推理中最常用的工具之一,通过图表能够更直观地展示数据之间的关系,从而更方便地分析和推理。
4. 注意数据的来源和质量。
数据的来源和质量对数字推理的结果有很大的影响,因此,在进行数字推理时,需要注意数据的来源是否可靠,数据是否完整、准确等。
5. 尽可能多地收集数据。
在数字推理中,数据的数量往往比质量更重要,因此,在分析数据时,应尽可能多地收集数据,从而得出更准确的结论。
6. 利用数字模型。
数字模型是数字推理中的一种重要工具,通过建立数字模型,可以更好地理解数据之间的关系,从而得出更准确的结论。
7. 综合分析。
数字推理往往涉及到多个数字、多个数据,因此,
在分析时,需要将这些数据综合起来分析,从而得出更全面、准确的结论。
以上是数字推理技巧的总结,希望对大家有所帮助。
数字推理之解题技巧(精华版)
数字推理之解题技巧(精华版)(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)(2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
(注:前一就是高中数学常说的差后等差数列或等比数列)(3)看各数的大小组合规律,作出合理的分组。
如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=74 ,40*40-74=1526 ,74*74-40=5436,这就是规律。
(4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。
如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。
)6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。
数字推理技巧总结
数字推理技巧总结
数字推理是一种基于数字和数学知识的推理方法,通过对数字的组合、转换和计算,得出一些结论或规律。
数字推理技巧是指在数字推理过程中可以使用的一些方法和策略,以下是一些数字推理技巧的总结:
1.观察数字的规律:在数字推理题目中,往往会出现一些数字的规律,例如数列的增长规律、数字的排列顺序等等,要仔细观察这些规律,并将其应用到题目中。
2.利用数据的对称性:在数字推理题目中,往往会出现一些对称的数字或图形,这时可以利用对称性来推导出一些结论。
3.进行逆向推理:有时候可以从题目给出的答案中逆推出一些关键的数字或规律,然后再根据这些数字或规律来推导出正确的答案。
4.应用数学公式:有些数字推理题目中会涉及到一些数学公式,例如平均数、标准差等等,要熟练掌握这些公式,并能够灵活应用。
5.运用逻辑思维:数字推理也涉及到逻辑思维,要善于运用逻辑思维来推导出正确的答案。
6.学会多种解题方法:在数字推理题目中,有时候会有多种解题方法,要学会多种解题方法,并根据实际情况选择合适的方法来解题。
以上是一些数字推理技巧的总结,希望对大家有所帮助。
- 1 -。
行测解答数字推理的四种思维方式
行测解答数字推理的四种思维方式数字推理是行测中常见的题型之一,它要求考生根据一组数字或数列的规律进行推理,以确定下一个数或者找出规律。
在解答数字推理题目时,可以运用四种不同的思维方式来帮助我们更有效地解题。
本文将介绍这四种思维方式,并提供相应的解题技巧。
1. 逻辑思维方式逻辑思维方式在解答数字推理题目中非常重要。
这种思维方式要求我们注意观察数字之间的逻辑关系和规律。
通过分析数列中的数字之间的关系,我们可以发现一些规律或者模式。
例如,我们可以观察数字之间的差异,看是否有等差或等比的关系。
此外,我们还可以观察数字中的重复、倒序、对称等特征,从而推测出下一个数字。
2. 数学思维方式在解答数字推理题目时,数学思维方式也是很重要的。
数学思维方式要求我们运用数学知识来解决问题。
例如,在一组数字中,我们可以进行加减乘除等运算,从而找出规律,进而预测下一个数字。
此外,我们还可以运用数学公式来辅助解题,例如,斐波那契数列、等差数列、等比数列等。
3. 模式识别思维方式模式识别思维方式是指通过发现和识别数字之间的模式来解答数字推理题目。
我们可以观察一组数字中的特征、形态或者规律,从而找出其中的模式。
例如,我们可以观察数字的位置、大小、形状等特征,推测下一个数字。
此外,我们还可以观察数字的排列顺序、颜色等属性来发现规律。
4. 综合思维方式综合思维方式是指将多种思维方式结合起来来解答数字推理题目。
综合思维方式要求我们同时运用逻辑思维、数学思维和模式识别思维来解决问题。
通过将不同的思维方式综合应用,我们可以更全面地分析数字之间的关系和规律,从而得出正确答案。
在解答数字推理题目时,我们需要根据题目的要求和条件来选择合适的思维方式。
有时候,一种思维方式可能无法解答问题,而另一种思维方式可能能够给出正确答案。
因此,灵活运用不同的思维方式是非常重要的。
此外,为了提高解答数字推理题目的能力,我们还可以多做练习题,加强对数字规律的观察和分析能力。
数字推理题的答题技巧与一般规律
数字推理题的答题技巧与一般规律1.数字推理数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。
在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。
一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。
另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。
两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。
只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。
由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。
只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。
需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。
因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。
这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。
有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。
此时,与其“卡”死在这里,不如抛开这道题先做别的题。
在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。
在做这些难题时,有一个基本思路:“尝试错误”。
很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。
数字推理技巧总结
数字推理技巧总结
数字推理是一种常见的思考方法,同时也是非常实用的技巧。
以下是一些数字推理的技巧总结:
1. 观察数字之间的关系。
数字可以按照大小、倍数、时间、空间等不同的关系进行比较。
了解数字之间的关系对于进行数字推理很有帮助。
2. 进行变量替换。
将数字转化成不同的变量,有助于更好地理解数字之间的关系。
同时,也可以更直接地运用数字进行推理。
3. 使用辅助工具。
数字推理可以用图表、表格、图像等方式进行辅助。
这些辅助工具可以帮助我们更直观地观察数字之间的关系。
4. 利用数学公式和运算符。
数字推理往往需要进行加减乘除等运算,数学公式和运算符是进行数字推理的常见工具。
5. 细心观察条件。
数字推理往往需要根据条件进行推理解题,因此细心观察条件是十分重要的。
同时,也需要注意条件中的排除性关系等细节问题。
总之,数字推理是一种灵活运用数字的思考方法,需要我们不断练习。
通过观察数字之间的关系,进行变量替换,使用辅助工具,利用数学公式和运算符,以及细心观察条件,我们可以更快、更准确地进行数字推理解题。
行测指导:数字推理30种解题技巧
行测指导:数字推理30 种解题技巧一、当一列数中出现几个整数,而只有一两个分数并且是几分之一的时候,这列数常常是负幂次数列。
【例】 1、4、3、1、1/5 、1/36 、()二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意察看分式数列的分子、分母是向来递加、递减或许不变,并以此为依照找到打破口,经过“约分”、“反约分”实现分子、分母的各自成规律。
【例】 1/162/132/58/74()三、当一列数比较长、数字大小比较靠近、有时有两个括号时,常常是间隔数列或分组数列。
【例】 33、32、34、31、35、30、36、29、()四、在数字推理中,当题干和选项都是个位数,且大小改动不稳准时,常常是取尾数列。
取尾数列一般拥有相加取尾、相乘取尾两种形式。
【例】 6、7、3、0、3、3、6、9、5、()五、当一列数都是几十、几百或许几千的“清一色”整数,且大小改动不稳准时,常常是与数位有关的数列。
【例】 448、516、639、347、178、()六、幂次数列的实质特点是:底数和指数各自成规律,而后再加减修正系数。
关于幂次数列,考生要成立起足够的幂数敏感性,当数列中出现 6?、 12?、 14?、 21?、 25?、 34?、 51?、312?,就优先考虑 43、112(53)、 122、63、44、73、83、55。
【例】 0、9、26、65、124、()七、在递推数列中,当数列选项没有显然特点时,考生要注意察看题干数字间的倍数关系,常常是一项推一项的倍数递推。
【例】 118、60、32、20、()八、假如数列的题干和选项都是整数且数字颠簸不大时,不存在其余显然特点时,优先考虑做差多级数列,其次是倍数递推数列,常常是两项推一项的倍数递推。
【例】 0、6、24、60、120、()九、当题干和选项都是整数,且数字大小颠簸很大时,常常是两项推一项的乘法或许乘方的递推数列。
【例】 3、7、16、107、()十、当数列选项中有两个整数、两个小数时,答案常常是小数,且一般是经过乘除来实现的。
数字推理技巧总结
数字推理技巧总结数字推理技巧是一种通过观察数字之间的关系和规律来推断答案的方法。
在解决问题和推理推断过程中,数字推理技巧可以帮助我们更加准确地得出结论。
本文将从数字序列、数学运算、逻辑推理和概率统计等方面总结数字推理技巧。
一、数字序列推理数字序列是数字按一定顺序排列而形成的序列,通过观察数字序列中的规律可以推断出下一个数字或者找出隐藏的规律。
常见的数字序列包括等差数列、等比数列和斐波那契数列等。
1. 等差数列:等差数列是指相邻两个数之间差值相等的数列。
观察数字序列中相邻数字的差值,如果差值相等,则可以判断为等差数列。
根据已知数字序列的首项和公差,可以推算出下一个数字。
2. 等比数列:等比数列是指相邻两个数之间比值相等的数列。
观察数字序列中相邻数字的比值,如果比值相等,则可以判断为等比数列。
根据已知数字序列的首项和公比,可以推算出下一个数字。
3. 斐波那契数列:斐波那契数列是指每个数都是前两个数之和的数列。
观察数字序列中的数字之间的相加关系,如果每个数字都是前两个数字之和,则可以判断为斐波那契数列。
根据已知数字序列的前两个数字,可以推算出下一个数字。
二、数学运算推理数学运算是通过对数字进行加减乘除等运算,推导出结果的过程。
在数学运算推理中,常见的技巧包括逆运算、代入法和重复运算法等。
1. 逆运算:逆运算是指对已知的数学运算进行反向操作,从结果推算出原始的数字。
例如,已知两个数的和,可以通过减去其中一个数,得到另一个数。
2. 代入法:代入法是指将已知的数字代入到数学公式或方程中,通过计算得到结果。
例如,已知一个等式中的一部分数字,可以将这些数字代入到等式中,求解未知的数字。
3. 重复运算法:重复运算法是指通过多次进行相同的数学运算,逐步逼近目标结果。
例如,已知一个数字进行重复的加法运算,每次加上相同的数,直到达到目标结果。
三、逻辑推理逻辑推理是通过观察数字之间的逻辑关系,推断出隐藏的规律或者答案。
在逻辑推理中,常见的技巧包括排除法、归纳法和演绎法等。
数字推理规律及六大解题方法
数字推理规律及六大解题方法数字推理真题,结合常见的数字推理规律,总结出几条解决数字推理问题的优先法则:1.数列项数很多,优先考虑组合数列。
2.数列出现特征数字,优先从特征数字入手。
3.数字增幅越来越大,优先从乘积、多次方角度考虑。
4.数列递增或递减,但幅度缓和,优先考虑相邻两项之差。
5.数列各项之间倍数关系明显,考虑作商或积数列及其变式。
6.分析题干数字的同时要结合选项中的数字,进一步判断数列规律。
要真正掌握数字推理难度很大,在下面的内容中,我们给出了数字推理的六大解题方法,并结合典型真题进行了解题分析,希望能给考生以最大的帮助。
一、从相邻项之差入手考虑数列相邻项之差是解决数字推理问题的第一思维,在各类公务员考试数字推理题中等差数列及其变式出现的频率很大,也是必考题型,通过对数列相邻两项依次求差,得到新的数列,然后分析这个新数列的规律,可以直接或间接地得到原数列的规律。
等差数列及其变式所涉及的题型主要有二级等差数列及其变式和三级等差数列及其变式,很多情况下(三级等差数列及其变式)需要连续做差才能发现其中的规律。
特别注意的是,当所缺项位于数列中间时,由于从题干入手不能持续求差,这些题往往表现出一定的难度,此时需要假设其中的规律,然后通过做差加以验证。
例题:1.5,5,5,12,5, ( )A.3B.1C.24D.26解题分析:此题的题干数字对解题的提示作用不大,思路不明的时候还是从相邻两项之差入手,相邻两项之差依次是3.5,0,7,-7,这几个数的特征和规律也是很不明显,再次做差得到-3.5,7,-14,可以看出是公比为-2的等比数列,此题便得到了解决。
等差数列的变式情况很多,上题即是一个三级等差数列变式,由于第三级数列是一个正负交替的等比数列,所以题干数字并没有表现出明显的递增和递减趋势,这一类题难度较大。
在思路不明的情况下,分析相邻两项之差是很重要的方法。
二、分析相邻项之间的商、和、积当题干数列某两项(或三项)的和、积、商关系明显时,可以优先考虑这种方法,此时从局部分析数列的能力显得尤为重要。
行测解答数字推理的四种思维方式
行测解答数字推理的四种思维方式数字推理是行政职业能力测验(简称行测)中常见的题型之一,它主要考察考生对于数字关系的分析和推理能力。
在数字推理题中,做题者需要根据给定的数字关系、规律或模式,找出其中的规律并应用于后续的题目。
为了帮助考生更好地解答数字推理题,本文将介绍四种常见的思维方式。
1. 递增递减法递增递减法是最常见也是最基础的数字推理思维方式。
通过观察数字序列的增减规律,可以推断出后续数字的变化规律。
常见的递增递减法包括等差数列、等比数列等。
例如,给定一个数字序列1,3,5,7,问下一个数字是多少?通过观察可知,该数字序列是一个等差数列,公差为2,因此下一个数字是9。
2. 交替排列法交替排列法是指数字序列中数字的交替排列规律。
交替排列可以按照顺序进行,也可以按照特定的排列顺序进行。
例如,给定一个数字序列2,4,1,3,6,问下一个数字是多少?观察可知,该数字序列是按照奇偶递增排列的,因此下一个数字应是5。
3. 分组对比法分组对比法主要通过将数字序列进行分组,观察每组数字之间的关系,从而找出规律。
例如,给定一个数字序列1,2,4;3,6,12;4,8,16;问下一个数字是多少?通过观察可知,数字序列每组数字第一个数字是后续数字的一半,第二个数字是后续数字的相同倍数,因此下一个数字应该是8,16。
4. 乘积和差法乘积和差法是通过数字序列中数字间的乘积和差的规律来推断后续数字的变化规律。
例如,给定一个数字序列2,6,18,54,问下一个数字是多少?通过观察可知,该数字序列的每个数字都是前一个数字乘以3得到的,因此下一个数字应该是162。
以上是数字推理题常见的四种思维方式,通过掌握这些思维方式,考生可以更好地解答数字推理题。
在实际解题过程中,考生还应注意对题目进行综合分析,灵活运用多种思维方式,并进行逻辑。
数字推理十大题型秒杀技巧
数字推理十大题型秒杀技巧
1. 数字推理里的等差数列题型,那简直就是送分题呀!比如说1,3,5,7,这不是很明显的等差数列嘛,公差为2,下一个数不就是9 嘛!
2. 等比数列题型,哇塞,一旦发现规律就超简单的!像2,4,8,16,这倍数关系多明显呀,下一个肯定是 32 啦!
3. 平方数列题型,这可得瞪大眼睛找呀!像 1,4,9,16,不就是平方数嘛,下一个就是 25 咯!
4. 立方数列题型,这个有点难度哦,但找到了就很有成就感呀!比如1,8,27,64,那下一个就是 125 呀!
5. 组合数列题型,就像玩拼图一样有趣呢!比如奇数项和偶数项各有规律,找到就轻松解题啦!
6. 数字拆分题型,把数字拆开来分析,哎呀,真的很有意思!像34 可以拆成 3 和 4 嘛,然后再找规律。
7. 分数数列题型,这可不能被分数吓到呀!比如1/2,2/3,3/4,那下一个不就是 4/5 嘛!
8. 根式数列题型,虽然看着有点复杂,但找到了根号里的规律就迎刃而解啦!
9. 周期数列题型,就像循环播放的音乐一样有规律呀!比如1,2,
3,1,2,3,那下一个当然还是 1 啦!
10. 递推数列题型,一环扣一环的,多有意思呀!像前面两个数相加等于后面一个数,找到这个关系就好办啦!
我觉得呀,掌握了这些数字推理的秒杀技巧,就像是拥有了一把打开数字世界大门的钥匙,能让我们在数字的海洋里畅游无阻!。
数字推理题的解题技巧大全
第一部分:数字推理题的解题技巧一、解题前的准备1.熟记各种数字的运算关系。
如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。
这是迅速准确解好数字推理题材的前提。
常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。
所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。
当看到这些数字时,立刻就能想到平方立方的可能性。
熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。
如 216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样 215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。
2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。
根号运算掌握简单规律则可,也不难。
3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。
二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。
又分为等差、移动求和或差两种。
(1)等差关系。
这种题属于比较简单的,不经练习也能在短时间内做出。
建议解这种题时,用口算。
12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。
数字推理题技巧
数字推理题技巧数字推理题在各种考试和智力竞赛中常见。
它们要求通过对一系列数字或符号的分析来推断规律,并根据这些规律来确定缺失的数字或者下一个数字。
虽然数字推理题看似简单,但其中蕴含着一定的技巧和思维方式。
本文将介绍一些常见的数字推理题技巧,帮助读者更好地解决这类问题。
数列规律分析在数字推理题中,常见的情况是给出一个数字序列,要求推断出规律并继续这个规律。
首先要分析数列中数字之间的关系,可能是加减乘除、平方平方根、递增递减等等。
观察数字之间的差值或者倍数关系,能够帮助快速找到规律。
奇偶性分析奇偶性在数字推理题中经常发挥重要作用。
注意观察数字序列中奇数和偶数的分布情况,有时候规律会与数字的奇偶性有关。
此外,还要注意特殊数字(如0、1)在奇偶性上的特点,它们常常会被用来构成规律。
数字组合分析有时数字推理题中会涉及到数字组合的情况,要求找出数字之间的组合规律。
这时可以尝试将数字分解成各个位的数字或者将多个数字合并成一个数字,通过观察这些组合是否有特定的规律来解题。
常见数学公式运用在数字推理题中,有时候会用到一些基本的数学公式或者性质。
比如等差数列、等比数列、平方数列等等。
熟练掌握这些数学知识,能够帮助快速解决数字推理问题。
注意数字序列的整体性有时候数字推理题中的数字序列可能会和其他数字序列或者图形有关联。
要留意整体的规律,不只是局限于当前的数字序列。
通过观察多个数字序列之间的共同点,能够更好地推断规律。
总结数字推理题虽然看似简单,但其实隐藏着许多技巧和思维方式。
通过掌握常见的规律分析方法、奇偶性分析、数字组合分析等技巧,能够帮助更好地解决数字推理问题。
在平时的学习和练习中多多总结经验,相信在应对各类数字推理题时会游刃有余。
数字推理题的解题方法
数字推理题的解题方法数字推理题是一类需要根据一定的规律或模式来推断或填充数字的问题。
这类题目常见于智力测试、数学竞赛等场合。
解决数字推理题通常需要观察数字序列中的规律,并据此找到正确的解法。
以下是一些常见的数字推理题的解题方法:1. 找规律:仔细观察数字序列,寻找其中的规律或模式。
这可能涉及到数字之间的运算、递增规律、几何形状等。
2. 算术运算:检查数字序列中相邻数字之间是否存在某种算术运算关系,如加法、减法、乘法、除法等。
这些运算关系可以用于推测下一个数字或填充缺失的数字。
3. 几何形状:数字序列有时可能构成一些几何形状,如等差数列、等比数列、斐波那契数列等。
找到这些几何形状有助于推断下一个数字。
4. 奇偶性:观察数字的奇偶性,有时可以发现一些规律。
例如,每两个数字之和是偶数,或者奇数和偶数交替出现等。
5. 位数和数字之和:考虑数字的位数和各位数字之和。
有时规律可能与这些因素有关,例如数字之和是某个特定值,或者数字的位数遵循某种规律。
6. 填空法:如果有多个数字序列,可以尝试在其中的一个序列中找到规律,然后应用相同的规律到其他序列中。
7. 找出特殊模式:有时数字序列中可能存在一些特殊的模式,例如重复、对称、交替等,这些模式可以帮助你找到规律。
8. 试错法:如果找不到明显的规律,可以尝试一些常见的数学运算和规律,并检查是否满足给定的条件。
例子:给定数字序列:2, 4, 8, 16, __观察到每个数字是前一个数字的两倍,因此下一个数字应为16 的两倍,即 32。
这只是数字推理题的一种解法,具体的方法可能因题目而异。
在解决这类问题时,耐心观察、灵活思维和多角度思考都是很有帮助的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字推理是我国目前所有公务员考试行政能力测试的必考题形之一,主要考察考生对数字和基本数列的敏感程度,也是反映考生基本思维能力的重要手段。
增加这方面的练习也能有效的锻炼考生正确的思维方式,对图形推理和类比推理等一些题型的深度把握也有重要的意义。
今天,我们就来讲一讲,数字推理中应用到的三种思维模式。
首先我们要说的是三种思维模式中的第一种,也是最基本的思维模式,那就是横向递推的思维模式。
横向递推的思维模式是指在一组数列中,由数字的前几项,经过一定的线性组合,得到下一项的思维模式。
举个简单的例子。
5 11 23 47 ( )
根据横向递推的思维模式,思考方向是如何从5得到11,会想到乘2再加1,按照这样的思路继续向下推,发现,每一项都是前一项的2倍再加1,于是找出规律,这里应该填95。
再举一例。
2 3 5 8 13 ( )
这个数列是大家都比较熟悉的一个基本数列,和数列。
这一类数列是前几项加和会得到下一项。
这里应该填8于13的和,21。
我们总结一下横向递推思维模式的解题思路特点,在这种思维模式的指导下,我们总是习惯于在给出数列的本身上去找连续几项之间的线性组合规律,这也是这一思维模式的根本所在。
相较于横向递推思维模式,稍为复杂的就是纵向延伸的思维模式。
他不再是简单的考虑数列本身,而是把数列当中的每一个数,都表示为另外一种形式,从中找到新的规律。
我们一起来看一个例子。
1/9 1 7 36 ( )
注意这样一个数列,如果我们把36换成35的话,我们会发现,前后项之间会出现微妙的
倍数变化关系,即后向除前项得到数列9 7 5 3,这里可以填上105。
但这里时36的话就没有这样的倍数变化关系了。
那么我们可以用纵向延伸的思维模式,把数列中每一个数字都用另外一种形式来表述,即9-1 80 71 62 53,这里可以填125。
通过以上两种思维模式的简单介绍,我们可以总结出,实际上,数字推理这种题型的本质就在于考察数字与数字之间的位置关系,以及数字与数字之间的四则运算关系,考生只要能把握住这样两点,很多题目就都可以迎刃而解了。
当然,对于一个古典型数字推理来讲,横向与纵向只是其中最简单的最基本的位置关系,相对较为复杂的,是网状的位置关系,也就是我们接下来要谈到的,构造网络的思维模式。
请大家看这样第一个例题。
2 12 6 30 25 100 ( )
我们先来观察一下这个题目,通过观察,可以很容易的看出,这里面每两项之间都有一个明显的倍数关系,我们可以根据这样的规律把原来的数列变成
2 12 6 30 25 100 ( )
6 5 4
实际上,如果后面有两个数需要我们填的话我们可以确定,它们之间应该是3倍的关系,但现在只需要我们写出下一个数字是多少。
这个时候3倍就用不上了。
不过当我们把6 5 4写出来之后,无形之中就构建了一种网状结构,我们构造网状结构的目的也是为了丰富位置关系,位置关系丰富了,相应的可运用的四则运算关系也就丰富了。
我们可以从上面的网状结构中看出,6和6、5和25、4和()的位置关系是相同的,考虑它们的四则运算关系,我们可以找到,他们可能分别是1次、2次、3次的变化,所以这里填上一个64可以说,是有道理的。
我们再看看有没有其他的规律。
我们在上面的网状结构中还可以看到,6 12 6、5 30 25、4
100 ()都构成了位置相同的三角形,他们又有什么关系呢两边相加等于中间,即这里还可以填96。
实际上,无论数字推理的题型如何变化,我们只要抓住位置和运算这两大关系,运用上面提到的三种思维模式,这一题型我们是可以把握得住的。