微机电系统
微机电系统结构
微机电系统结构
微机电系统(MEMS)是一种将微电子技术与机械工程结合的微型系统。
它的结构主要包括以下几个部分:
1.微传感器:这是MEMS的最基本组成部分,用于感知外部信号,如温度、
压力、声音等,并将其转换为可处理的电信号。
2.微执行器:这是MEMS的另一重要组成部分,负责将电能转换为机械能,
以实现驱动、控制等功能。
3.信号处理电路:为了对微传感器采集的信号进行处理,MEMS还包括相应
的信号处理电路,以便对信号进行放大、滤波、模数转换等处理。
4.通信接口:MEMS系统通常还需要一个通信接口,以便将MEMS传感器采
集的数据传输到外部设备或系统中。
5.电源:为使MEMS系统正常工作,通常需要为其提供电源。
这可以是内部
电池,也可以是外部电源。
6.封装:MEMS系统需要进行封装,以保护其内部的微机械结构和电路等免
受外界环境的影响。
封装可以采用各种材料和技术,以满足不同的应用需求。
MEMS系统的结构可以根据需要进行定制,以满足特定的应用需求。
其微型化的特点使得MEMS在许多领域都具有广泛的应用前景,如汽车、医疗、航空航天等。
微机电系统制程
目录页
Contents Page
1. 微机电系统制程简介 2. 材料选择与准备 3. 图案设计与光刻 4. 刻蚀与去胶 5. 表面处理与改性 6. 结构组装与封装 7. 测试与调试 8. 制程优化与扩展
微机电系统制程
微机电系统制程简介
微机电系统制程简介
▪ 微机电系统制程概述
1.微机电系统制程是一种用于制造微型机械和电子设备的先进技术。 2.微机电系统制程采用了精密加工和微电子技术,能够将微小的机械结构、传感器 、执行器、电路等集成在一个微小的芯片上。 3.微机电系统制程在各个领域都有广泛应用,如航空、医疗、通信、消费电子等。
结构组装与封装
▪ 结构组装与封装的集成与优化
1.集成设计:将结构组装和封装技术进行集成设计,实现微机 电系统的整体优化,提高系统的性能和可靠性。 2.集成工艺开发:开发适合集成设计的工艺流程和工艺设备, 实现高效、高精度的结构组装和封装。 3.集成测试与评估:对集成后的微机电系统进行全面的测试和 评估,确保其性能和可靠性达到预期水平。 以上是关于微机电系统制程中结构组装与封装的部分主题内容 和,希望能够对您有所帮助。
▪ 去胶技术选择
1.去胶技术的选择取决于掩模材料的性质、基底材料的性质和 去胶过程的要求。 2.需要考虑去胶速率、均匀性、选择性以及对环境的影响等因 素。 3.一些新型的去胶技术如超临界流体去胶和激光去胶等也逐渐 得到应用。
微机电系统制程
表面处理与改性
表面处理与改性
▪ 表面清洗与预处理
1.采用超声波清洗技术,有效去除表面污渍和氧化物。 2.使用等离子处理技术,提高表面能级,增强附着力。 3.严格控制清洗液成分和浓度,避免对表面造成损伤。
▪ 前沿趋势与发展展望
机械工程中的微机电系统与纳米技术
机械工程中的微机电系统与纳米技术随着科技的飞速发展,机械工程领域也在不断创新与进步。
其中,微机电系统(MEMS)与纳米技术成为了研究热点。
本文将介绍微机电系统与纳米技术在机械工程中的应用,并探讨其在未来的发展前景。
一、微机电系统微机电系统,简称MEMS,是一种综合利用微加工技术、传感器技术和微电子技术相结合的微型装置。
它的特点是尺寸小、功耗低、成本较低,并且能够实现与机械设备的高度集成。
由于其独特的优势,微机电系统在机械工程中应用广泛。
首先,MEMS技术可以用于开发各种传感器。
例如,加速度传感器可以测量物体的加速度,应用于汽车安全气囊、智能手机的屏幕旋转等方面。
压力传感器可以测量流体的压力,应用于气压传感器、血压计等设备。
温度传感器可以测量环境温度,广泛应用于温度控制系统中。
这些传感器的微小大小使得它们可以嵌入到各种设备中,带来更加精确的数据采集和控制。
其次,MEMS技术还可以应用于纳米级的机械结构。
例如,微型梁、薄膜和弯曲式电机等结构,能够实现微型和纳米级的机械操作。
这些结构可以应用于光学设备、生物医学器械等领域。
通过MEMS技术的应用,可以制造出尺寸更小、精度更高、功耗更低的机械装置,推动了机械工程的发展。
二、纳米技术纳米技术是利用纳米级尺寸材料的性质进行制造和应用的技术。
纳米级的尺寸使得物质具有了独特的性能和行为,这些性能在机械工程中有着广泛的应用前景。
首先,纳米技术可以用于制造高强度和轻量化的材料。
例如,纳米纤维材料具有超强抗拉强度和柔韧性,被广泛应用于制造高性能的复合材料。
此外,纳米材料还可以用于制造超硬的切削工具,提高机械加工的效率和质量。
其次,纳米技术在精确加工和纳米装配方面也有广泛应用。
纳米级的加工技术可以实现超高精度的部件制造,提高机械设备的精度和性能。
同时,纳米级的装配技术可以实现微型器件的装配和组合,推动微机电系统的发展。
三、未来发展前景微机电系统与纳米技术的结合在机械工程领域有着巨大的潜力。
微机电系统及其相关技术教材课程
微型飞行器是一种小型化的无人机,具有体积小、重量轻、飞行灵活等特点。微 型飞行器广泛应用于侦查、通信中继、环境监测等领域,如微型无人机等。
05
教材课程安排
05
教材课程安排
课程目标与内容
01 掌握微机电系统的基本概念、原理和应用 领域。
02
熟悉微机电系统的设计、制造、测试和可 靠性等方面的知识。
制造精度与误差控制
分析制造过程中的误差来源,如工艺波动、设备误差等, 采取相应的控制措施,以提高制造精度和减小误差。
制造工艺与实现
制造工艺选择
根据设计需求和材料特性,选择合适的制造工艺,如体微 加工、表面微加工、LIGA等。
制造流程规划
制定详细的制造流程,包括前处理、光刻、刻蚀、镀膜、 去胶等步骤,确保制造过程中的质量控制和成本控制。
根据设计需求和材料特性,选择合适的制造工艺,如体微 加工、表面微加工、LIGA等。
制造流程规划
制定详细的制造流程,包括前处理、光刻、刻蚀、镀膜、 去胶等步骤,确保制造过程中的质量控制和成本控制。
制造设备与环境
了解所需的制造设备和制造环境,如光刻机、等离子刻蚀 机、镀膜设备等,以及制造过程中的环境控制要求。
前景
随着物联网、人工智能等技术的不断发展,微机电系统的应用前景将更加广阔, 有望在智能制造、智能家居、智能交通等领域发挥重要作用。
应用领域与前景
应用领域
微机电系统广泛应用于汽车安全气囊、喷墨打印机、压力传感器、加速度计、 陀螺仪等领域。
前景
随着物联网、人工智能等技术的不断发展,微机电系统的应用前景将更加广阔, 有望在智能制造、智能家居、智能交通等领域发挥重要作用。
实验三
微流体实验,让学生了解微流 体的特性和应用。
微机电系统在工业工程中的应用
微机电系统在工业工程中的应用微机电系统(Microelectromechanical Systems,简称MEMS)是一种集微电子技术、微机械技术和传感器技术于一体的微型器件系统。
微机电系统的应用领域非常广泛,尤其在工业工程领域发挥了重要的作用。
本文将重点讨论微机电系统在工业工程中的应用。
一、自动化控制系统微机电系统在工业自动化控制领域有着广泛的应用。
通过集成微型传感器和执行器,微机电系统可以实现对工业过程各项参数的精确测量和控制。
例如,在制造业中,微机电系统可以用来监测温度、压力、湿度等参数,并及时反馈给控制系统,实现过程的自动化控制。
此外,微机电系统还可以应用于机械臂、机器人等自动化设备中,实现精确的位置控制和运动控制。
二、智能传感器微机电系统能够将传感器制造成微型化、集成化的智能传感器,具备更高的灵敏度和更快的响应速度。
这些传感器可以广泛应用于工业工程中的各个领域。
例如,微机电系统加速度传感器可以用于震动监测和结构健康监测,实时检测工业设备的运行状态,避免故障和事故的发生。
另外,微机电系统气体传感器可以用于检测工业生产过程中的有害气体浓度,保障生产环境的安全和健康。
三、能源管理微机电系统在工业工程中还可以应用于能源管理。
例如,在风力发电领域,微机电系统可以用于监测和控制风力涡轮机的转速、转向等参数,提高发电效率和降低故障率。
此外,微机电系统还可以用于光伏发电领域,通过集成光传感器,实现对光照强度的监测和控制,提高光伏发电的效率。
四、环境监测与控制微机电系统在工业工程中还可以应用于环境监测与控制。
例如,在大气污染监测领域,微机电系统可以用来检测空气中的颗粒物、有害气体等污染物质,为环保部门提供实时的监测数据,帮助制定污染治理的措施。
此外,微机电系统还可以用于水质监测、噪声监测、土壤污染监测等领域,为环境保护工作提供关键的数据支持。
五、智能制造在工业工程中,微机电系统的应用还有助于推动智能制造的发展。
微机电系统MEMS简介
陀螺仪
总结词
用于测量或维持方向的传感器
详细描述
陀螺仪是一种基于角动量守恒原理的传感器,用于测量或维持方向。它通过测量物体旋转轴的方向变 化来工作,通常由高速旋转的陀螺仪转子组成。陀螺仪广泛应用于导航、姿态控制、游戏控制等领域 ,如智能手机、无人机和导弹制导系统等。
压力传感器
总结词
用于测量流体或气体压力的传感器
MEMS市场应用领域
消费电子
汽车电子
医疗健康
工业自动化
MEMS传感器在消费电子产品 中的应用广泛,如智能手机、 平板电脑、可穿戴设备等。这 些设备中的传感器用于运动检 测、加速度计、陀螺仪、气压 计等。
随着汽车智能化的发展, MEMS传感器在汽车领域的应 用也越来越广泛,如车辆稳定 性控制、安全气囊、发动机控 制等。
MEMS材料
单晶硅
单晶硅是MEMS制造中最常用的材料 之一,具有高强度、高刚度和良好的 化学稳定性。
多晶硅
多晶硅在MEMS制造中常用于制造柔 性结构,具有较好的塑性和韧性。
玻璃
玻璃在MEMS制造中常用于制造光学 器件,具有较高的透光性和稳定性。
聚合物
聚合物在MEMS制造中常用于制造生 物传感器和柔性器件,具有较好的生 物相容性和可塑性。
集成化
未来的MEMS系统将更加集 成化,能够将多个MEMS器 件集成在一个芯片上,实现 更高效、更低成本的应用。
03
CATALOGUE
MEMS传感器与器件
加速度传感器
总结词
用于测量 物体运动状态的传感器
详细描述
加速度传感器是一种常用的MEMS传感器,主要用于测量物体运动状态的加速度。它通常由质量块和弹性支撑结 构组成,通过测量质量块因加速度产生的惯性力来计算加速度值。加速度传感器广泛应用于汽车安全气囊系统、 手机和平板电脑的姿态控制、运动检测等领域。
mems微机电系统名词解释
mems微机电系统名词解释MEMS(Micro-Electro-Mechanical Systems,微机电系统)是一种集成微型机械、电子与传感器功能于一身的微型设备。
它结合了传统的机械制造技术、半导体工艺和微纳米技术,将微型机械部件、传感器、电子电路以及微纳加工技术集成在一个晶圆上,以实现微型化、多功能化和集成化的目标。
以下是一些与MEMS相关的名词解释:1. 传感器(Sensor):一种能够感知并转换外部物理量、化学量或生物量的设备,可以将感应到的物理量转化为电信号。
2. 执行器(Actuator):一种能够接收电信号并将其转化为相应的机械运动的设备,用来实现对外界的控制或作用。
3. 微型机械(Micro-Mechanical):指尺寸在微米或纳米级别的机械部件,由微细加工技术制造而成,具有微小、精确和高效的特点。
4. 纳米技术(Nanotechnology):一种研究和应用物质在纳米尺度下的特性、制备和操作的技术,常用于MEMS器件的加工制造。
5. 惯性传感器(Inertial Sensor):一种基于测量物体运动状态和变化的MEMS传感器,如加速度计和陀螺仪。
6. 压力传感器(Pressure Sensor):一种可以测量气体或液体压力的MEMS传感器,常用于汽车、医疗、工业等领域。
7. 加速度计(Accelerometer):一种测量物体在空间中加速度的MEMS传感器,常用于移动设备、运动检测等应用。
8. 微镜(Micro-Mirror):一种利用MEMS技术制造的微型反射镜,通常用于显示、成像和光学通信等应用。
9. 微流体器件(Microfluidic Device):一种用于实现微小流体控制的MEMS器件,常用于生化分析、药物传递和微生物学研究等领域。
10. 无线传感器网络(Wireless Sensor Network):一种由多个分布式的MEMS传感器节点组成的网络系统,可以实现对环境信息的实时采集、处理和通信。
微机电系统及微细加工技术
微机电系统及微细加工技术微机电系统(Micro-Electro-Mechanical Systems,MEMS)是一种将微米尺度的机械结构、电子元器件和微处理器集成在一起的技术。
它利用微细加工技术来制造微小的机械设备和传感器,以实现对物理量、化学量和生物量的检测、测量和控制。
微机电系统的核心是微细加工技术,它是一种将传统的集成电路制造技术与微机械加工技术相结合的新技术。
通过微细加工技术,可以在硅基材料上制造出微小的机械结构和电子元器件,从而实现微机电系统的功能。
微机电系统的制造过程包括多个步骤,其中最关键的是光刻、薄膜沉积和蚀刻。
光刻是将光敏树脂涂覆在硅基材料上,并利用光刻机将图形投射到光敏树脂上,然后利用化学蚀刻将暴露在光下的部分去除,形成所需的结构。
薄膜沉积是将金属或者绝缘材料沉积在硅基材料上,用于制作电极、传感器等部件。
蚀刻是通过化学反应将硅基材料腐蚀,从而形成微小的结构。
微机电系统具有多种应用领域。
在生物医学领域,微机电系统可以用于制造微型传感器,实现对生物体内生理参数的监测。
在环境监测领域,微机电系统可以用于制造微型气体传感器,实现对空气中有害气体的检测。
在信息技术领域,微机电系统可以用于制造微型显示器和微摄像头,实现信息显示和图像采集。
此外,微机电系统还可以应用于汽车行业、航空航天领域和工业控制领域等。
微机电系统在实际应用中面临着一些挑战。
首先,微机电系统的制造过程非常复杂,需要高度精确的设备和工艺控制,制造成本较高。
其次,微机电系统的性能和可靠性受到环境和温度的影响,需要进行合理的封装和温度补偿。
最后,微机电系统的集成度和功耗也是一个挑战,需要在保证性能的同时尽量减小尺寸和功耗。
微机电系统是一种基于微细加工技术的新型集成技术,具有广泛的应用前景。
随着微细加工技术的不断发展和改进,微机电系统将在多个领域发挥重要作用,为人们的生活和工作带来更多便利和创新。
微机电系统
各个国家不同的定义
• 美国:微型机电系统 – MEMS: Micro electro mechanical system • 日本:微机械 – Micro machine • 欧洲:微系统 – Micro system
微机电系统
微机电系统的发展历史
• MEMS第一轮商业化浪潮始于20世纪70年代末80年代初, 当时用大型蚀刻硅片结构和背蚀刻膜片制作压力传感器。 由于薄硅片振动膜在压力下变形,会影响其表面的压敏电 阻曲线,这种变化可以把压力转换成电信号。后来的电路 则包括电容感应移动质量加速计,用于触发汽车安全气囊 和定位陀螺仪。 • 第二轮商业化出现于20世纪90年代,主要围绕着PC和信 息技术的兴起。TI公司根据静电驱动斜微镜阵列推出了投 影仪,而热式喷墨打印头现在仍然大行其道。 • 第三轮商业化可以说出现于世纪之交,微光学器件通过全 光开关及相关器件而成为光纤通讯的补充。尽管该市场现 在萧条,但微光学器件从长期看来将是MEMS一个增长强 劲的领域。
微机电系统的研究内容——技术基础
• • • • • • MEMS的技术基础可以分为以下几个方面: (1)设计与仿真技术; (2)材料与加工技术; (3)封装与装配技术; (4)测量与测试技术; (5)集成与系统技术
微机电系统的研究内容——应用研究
• 人们不仅要开发各种制造MEMS的技术,更重要的是如何 将MEMS技术与航空航天、信息通信、生物化学、医疗、 自动控制、消费电子以及兵器等应用领域相结合,制作出 符合各领域要求的微传感器、微执行器、微结构等MEMS 器件与系统。 • MEMS还用于大量声波双工器 (BulkAcousticWaveduplexer)与滤波器、麦克风、 MEMS自动聚焦致动器、压力感测器、MEMS微微型投影 仪,甚至MEMS陀螺仪。
机械工程中的微机电系统技术
机械工程中的微机电系统技术随着科技的不断发展,机械工程领域也在不断创新和进步。
其中,微机电系统技术(Microelectromechanical Systems,MEMS)被广泛应用于机械工程领域,为各行各业带来了巨大的变革和发展。
一、什么是微机电系统技术?微机电系统技术是一种将微观尺度的机械元件、电子元件和微电子加工技术相结合的技术。
它通过利用微型加工技术,将传感器、执行器、控制电路等集成在一起,实现了微型化、高性能和低功耗的特点。
微机电系统技术的应用范围非常广泛,涵盖了医疗、汽车、航空航天、电子设备等多个领域。
二、微机电系统技术在医疗领域的应用在医疗领域,微机电系统技术的应用给医疗设备带来了重大的改进。
例如,微型传感器可以用于监测患者的生命体征,如心率、血压等,实现了对患者的实时监测。
此外,微型执行器可以用于精确控制药物的输送,提高治疗效果和减少副作用。
微机电系统技术还可以应用于微创手术器械的研发,使手术更加精确和安全。
三、微机电系统技术在汽车工程中的应用在汽车工程领域,微机电系统技术的应用也非常广泛。
例如,利用微型传感器可以实时监测汽车的各项参数,如车速、转向角度、油耗等,提供给驾驶员准确的信息。
微型执行器可以用于汽车的稳定控制系统,通过调整悬挂系统的硬度和阻尼,提高汽车的操控性和安全性。
此外,微机电系统技术还可以应用于汽车的智能驾驶系统,实现自动驾驶和智能交通。
四、微机电系统技术在航空航天领域的应用在航空航天领域,微机电系统技术的应用也十分重要。
例如,利用微型传感器可以实时监测飞机的姿态、气压、温度等参数,为飞行员提供准确的信息。
微型执行器可以用于飞机的控制系统,通过调整飞机的舵面和引擎推力,实现飞机的稳定飞行。
此外,微机电系统技术还可以应用于航天器的导航和控制系统,实现精确的航天任务。
五、微机电系统技术的发展趋势随着科技的不断进步,微机电系统技术也在不断发展和创新。
未来,微机电系统技术将更加追求微型化、高性能和低功耗。
微机电系统
微机电系统是指可批量制作的, 集微型结构、微型传感器、微型执 行器以及信号处理和控制电路、直 至接口、通信和电源等于一体的微 型器件或系统。 微系统可以广泛应用于国防、工业、 航空航天、生物、医药学等领域。
微机电系统的优势
• MEMS(微机电系统)因其体积小,便于多功能集 成,适合采用大批量制造工艺而极大地降低成本等 特点,向人们展示了广阔应用前景,在流体中的应 用潜力也非常诱人。我国微机电系统研究也有很多 先进的成果,成都电子科技大学机械电子工程学院 教授丁杰雄的“MEMS中基于多模谐振的超声波悬 浮颗粒分离方法研究”便是其中之一。 • 微型化 • 批量生产 • 集成化 • 方便扩展 • 多学科交叉
微机电系统的发展前景
• 应用领域广,需求市场大。MEMS技术涉及的领 域主要包括惯性器件如微加速度计与微陀螺、微镜、 三维微型结构的制作、微型阀门、泵和微型喷口、 流量器件、微型光学器件、各种执行器等十几个技 术领域,研究内容在航空航天、汽车、生物技术、 消费产品、军事、环境保护、保健制药以及远程通 信等方面都有应用。1999年微电子市场已经接 近1 500亿美金,2005年大概是1 800亿 美金,需求增长率超过30%,市场发展得非常迅 速。 • MEMS器件芯片制造与封装的加工工艺多样化。 随着物理、化学等基础技术和材料、机械等工程技 术的发展,MEMS制造技术和封装技术将是微机 电系统未来发展的一个重要研究领域。
• 简历制作:大方,得体,内容真实,突出自 己的特点与个性。 • 专业技能 • 提前了解要面试公司的一些特点以及公司 的主要产品 • 面试中变现得体,提前想好自己的自我介 绍,介绍中尽量体现出几点重要的,与所 找工作相关的东西。回答问题尽量抓住重 点简要回答,但回答的也不能太简单。
微机电系统的研究和应用
微机电系统的研究和应用一、微机电系统简介微机电系统(MEMS)是指结合微处理技术、微机电技术和纳米技术的多学科交叉领域。
它是一种新型的微型化智能系统,能够实现传感、处理和控制功能。
微机电系统是将传感器、执行器、处理器、电子器件与微观结构集成在一起的微型化智能化系统。
二、微机电系统研究微机电系统的研究包括了微观加工技术、传感器技术、器件制造技术、封装和集成技术、信号处理和智能算法、系统控制和应用开发等方面的内容。
1、微观加工技术微观加工技术是微机电系统的关键技术之一,它是制造微型器件和元件的核心技术。
常用的微观加工方法包括光刻技术、电子束曝光技术、激光加工技术、离子束加工技术和微影技术等。
2、传感器技术传感器是微机电系统中最核心的部分之一。
微机电系统的传感器包括光学传感器、压力传感器、温度传感器、加速度传感器、惯性传感器、磁传感器等。
传感器的设计、制造和测试技术对微机电系统的性能和可靠性有着至关重要的影响。
3、器件制造技术微机电系统的器件包括微型加速度计、微型陀螺仪、微型电机、微型振动器、微型热电池等。
这些器件的制造技术对于微机电系统的实现具有重要影响。
4、封装和集成技术微机电系统的封装和集成技术是其实现的重要组成部分。
微型器件在封装过程中需要考虑到封装的材料、封装的结构形式以及封装的工艺,同时还需要考虑如何把微型器件和其他器件进行集成。
5、信号处理和智能算法微机电系统的信号处理和智能算法是其实现的关键技术。
传感器产生的信号需要进行处理和分析,从而得到需要的信息。
同时,微机电系统的智能算法也是其具有智能化特征的关键技术。
6、系统控制和应用开发微机电系统的系统控制和应用开发是其重要应用方向之一。
在微机电系统的应用过程中,需要考虑到微型器件与其他器件的集成,同时还需要设计和开发控制系统。
三、微机电系统应用微机电系统是一种集成微型化的智能技术,它在多个领域都有广泛的应用,如汽车、生物医学、化工、环境监测等。
微机电系统在机械工程中的应用与研究
微机电系统在机械工程中的应用与研究微机电系统(Microelectromechanical Systems, MEMS)是一种结合微电子技术、微机械制造技术和微观传感器技术的新兴学科,其应用领域广泛且日益增多。
本文将探讨微机电系统在机械工程中的应用与研究,并重点介绍其在传感器、驱动器、加速计和生物医学等领域的应用。
一、传感器的应用传感器是微机电系统最常见的应用之一。
它利用微机电技术制造出微米级的传感器件,实现对环境参数的高精度测量。
目前,微机电系统传感器已广泛应用于汽车、航空航天、环境监测等领域。
在汽车行业中,微机电系统传感器被用于测量汽车的加速度、转向角度等参数。
通过将这些传感器与汽车的控制系统连接,可以实现对车辆的实时监测和控制,提高行车安全性和驾驶舒适度。
在环境监测方面,微机电系统传感器被广泛应用于大气污染监测、水质检测等领域。
这些传感器能够实现对空气中污染物浓度、水质参数的监测,为环境保护和生态系统保护提供了有力的技术手段。
二、驱动器的应用微机电系统驱动器是指利用微机电技术制造的微型驱动器,广泛用于精密仪器、光学设备等领域。
与传统的电机相比,微机电系统驱动器具有体积小、功耗低、输出精度高等优势。
在精密仪器方面,微机电系统驱动器被广泛应用于光纤陀螺仪、惯性导航系统等设备中。
这些设备对驱动器的输出精度要求极高,而微机电系统驱动器能够满足这些要求,提高了设备的性能和可靠性。
在光学设备方面,微机电系统驱动器被用于调节光学元件的位置和角度,实现对光路的精确控制。
其具有快速响应、高精度的特点,被广泛应用于激光加工、光学成像等领域。
三、加速计的应用加速计是一种常见的微机电系统传感器,用于测量物体的加速度。
其利用微机电技术制造出微型的弹簧质量或压电材料构成的加速度传感器,广泛应用于汽车、无人机等领域。
在汽车行业中,加速计被用于测量车辆的加速度、制动力等参数。
通过对这些参数的监测,可以实时掌握车辆的行驶状态,为车辆的安全性和性能优化提供参考。
微机电系统
(2)光刻电铸 LIGA 技术是将深度X 射线光刻、微电铸成 技术是将深度X 型和塑料铸模等技术相结合的一种综合性加 工技术,它是进行非硅材料三维立体微细加 工的首选工艺。LIGA 工的首选工艺。LIGA 技术制作各种微图形的 过程主要由两步关键工艺组成,即首先利用 同步辐射X 同步辐射X 射线光刻技术光刻出所要求的图 形,然后利用电铸方法制作出与光刻胶图形 相反的金属模具,再利用微塑铸制备微结 构。
பைடு நூலகம் 2.微细加工工艺
(1)半导体加工技术 半导体加工技术即半 导体的表面和立体的微细加工是在硅为主要 材料的基片上,进行沉积与腐蚀的工艺过程。 半导体加工技术使MEMS的制作具有低成本、 半导体加工技术使MEMS的制作具有低成本、 大批量生产的潜力。
1)光刻加工技术。光刻加工是用照片复印的 方法将光刻掩模上的图形印制在涂有光致抗 蚀剂(光刻胶)的薄膜或基材表面,然后进 行选择性腐蚀,刻蚀出规律图形。 2)体微型机械加工技术。体微型机械加工就 是一种对硅衬底的某些部位用腐蚀技术有选 择地除去一部分形成微型机械结构的工艺, 常用的主要有湿法腐蚀和干法腐蚀。 3)表面微型机械加工技术。表面微型机械加 工技术是在硅表面根据需要生长多层薄膜, 采用选择腐蚀技术,去除部分不需要的膜层, 在硅表面上形成是需要的形状,甚至是可动 部件
MEMS发展的目标在于,通过微型化、集成 MEMS发展的目标在于,通过微型化、集成 化来探索新原理、新功能的元件和系统,开 辟一个新技术领域和产业。MEMS可以完成 辟一个新技术领域和产业。MEMS可以完成 大尺寸机电系统所不能完成的任务,也可嵌 入大尺寸系统中,把自动化、智能化和可靠 性水平提高到一个新的水平。21世纪MEMS 性水平提高到一个新的水平。21世纪MEMS 将逐步从实验室走向实用化,对工农业、信 息、环境、生物工程、医疗、空间技术、国 防和科学发展产生重大影响。
微机电系统工程专业认识
微机电系统工程专业认识介绍微机电系统工程(Microelectromechanical Systems Engineering,简称MEMS)是一门涉及微纳技术、机械工程和电子工程的交叉学科。
通过微纳加工技术,它将微型传感器、微型执行机构和微型电子电路集成在一起,实现微米级或纳米级尺寸的器件和系统。
本文将介绍微机电系统工程的发展背景、应用领域、专业课程和前景。
发展背景微机电系统工程源于20世纪70年代的芯片工艺技术。
随着半导体技术的发展,研究人员开始尝试将机械结构集成到芯片上,从而实现微小化、低成本和高性能的传感器和执行机构。
随着纳米技术的兴起,微机电系统工程发展迅速,并在多个领域得到广泛应用。
应用领域微机电系统工程在许多领域都有广泛的应用。
其中包括: - 生物医学领域:用于生物标记、药物传递、体内监测等。
- 无线通信领域:用于振荡器、滤波器、天线等。
- 汽车工业:用于汽车传感器、气囊系统、刹车系统等。
- 空间探索:用于微型卫星、航天器等。
- 环境监测:用于气象仪器、空气质量监测等。
专业课程微机电系统工程作为一门交叉学科,其专业课程包括: - 微电子学基础:介绍半导体材料与器件的基本原理和制造工艺。
- 机械工程基础:包括力学、热力学、流体力学等基础知识。
- 微机电系统设计:介绍微机电系统的设计原理和方法。
- 微纳加工技术:介绍微纳加工工艺和设备。
- 传感器与执行机构:介绍各种传感器和执行机构的原理和应用。
- 信号处理与控制:介绍信号处理和控制技术在微机电系统中的应用。
前景随着智能化设备的普及和技术的不断进步,微机电系统工程的应用前景非常广阔。
微机电系统的小尺寸、低功耗和高性能使其在物联网、智能家居、医疗健康等领域有着广泛应用的潜力。
此外,随着纳米技术的发展,微机电系统的尺寸将进一步缩小,功能将进一步增强,所能应用的领域也将进一步扩展。
结论微机电系统工程是一门融合了微纳技术、机械工程和电子工程的交叉学科。
《微机电系统》课件
02
《微机电系统设计与制造》
03
《微机电系统应用》
THANKS
详细描述
新型的微型陀螺仪采用先进的微 制造工艺和新型材料,具有更高 的灵敏度和稳定性。未来,随着 技术的进步和应用需求的增长, 微型陀螺仪的发展前景将更加广 阔。
微型加速度计
总结词
详细描述
总结词
详细描述
微型加速度计是一种用于测 量物体运动状态的传感器, 也是微机电系统的重要应用 之一。
微型加速度计被广泛应用于 汽车安全气囊系统、手机游 戏控制、医疗器械等领域。 由于其具有体积小、重量轻 、响应速度快等优点,微型 加速度计在许多领域都得到 了广泛应用。
详细描述
微机械结构采用微型化的加工技术制作而成,具有体积小、重量轻、精度高等特点。常见的微机械结构有连杆、 齿轮、轴承等,它们在微执行器、微传感器等元件中发挥着重要作用。
微控制器
总结词
微控制器是微机电系统中的控制中心,用于实现系统的智能化和自动化。
详细描述
微控制器是一种集成度较高的集成电路芯片,具有数据处理、控制输出等功能。在微机电系统中,微 控制器负责接收传感器信号、处理数据和控制执行器动作,从而实现系统的自动化和智能化。
测试方法
对封装好的微机电系统进行性能测试,以确保其满足 设计要求。
可靠性评估
对微机电系统的寿命和可靠性进行评估,以确定其在 实际应用中的表现。
04
微机电系统的应用实例
微流体控制系统
总结词
微流体控制系统是微机电系统的一个重要应用, 它利用微小的流体控制元件和控制电路对流体进 行精确控制。
总结词
微流体控制系统的优点在于其高精度、低能耗、 低成本和易于集成等特性,使得它在许多领域具 有巨大的应用潜力。
微机电系统工程专业就业方向
微机电系统工程专业就业方向
嘿!同学们,你们知道微机电系统工程这个听起来超级酷的专业吗?反正我之前是不太了解,后来好好研究了一番,发现它的就业方向可多啦!
你想想,现在科技发展得多快呀!微机电系统工程就像是科技世界里的小精灵,到处都能施展魔法。
比如说在医疗领域,那些小小的传感器和器械,能帮医生更准确地诊断病情。
就好像我们做数学题,有了一把超级厉害的尺子,解题就变得容易多啦!这不就是微机电系统工程的功劳吗?
再看看汽车行业,现在的汽车越来越智能,里面的各种精密零件,很多都和微机电系统工程有关系。
这难道不像给汽车装上了聪明的大脑,让它跑得更稳、更厉害?
还有通信领域,咱们用的手机、电脑,里面的好多关键部件都离不开微机电系统工程呢!难道不是像给通信设备安上了翅膀,让信息飞得更快更远?
那从事这个专业的人具体能做啥工作呢?比如说可以成为研发工程师,天天琢磨怎么设计出更牛的微机电产品。
这就好比是建筑师,要建造出漂亮又实用的大楼。
“我能不能设计出改变世界的东西呢?”他们常常这样问自己。
也能当质量检测员,对生产出来的产品严格把关,不放过任何一个小瑕疵。
“这可不能有一点问题,不然会出大麻烦的!”他们总是这样紧张又认真。
还能做市场营销,把这些厉害的微机电产品推向市场,让更多人知道它们的好。
“这么棒的东西,大家怎么能不知道呢?”他们充满激情地去推广。
哎呀,我都有点羡慕学这个专业的人啦,未来的路那么宽,选择那么多!你说,要是能在这么前沿的领域里做出一番成就,那得多有成就感啊!
所以我觉得,微机电系统工程专业简直就是通往科技未来的黄金钥匙,只要你努力握住它,就能打开一扇充满无限可能的大门!。
微机电系统(MEMS)
何谓微机电系统(MEMS)为了说明什么是微机电系统MEMS (Micro Electro Mechanical Systems),首先来解释一下什么是机电系统。
20多年以前,汽车还是一个单纯的机械系统,后来随着电子技术的发展,汽车的很多零部件(例如电子点火器、燃油电子喷射装置、电控自动变速箱等)都依靠电子系统进行控制,因此现在的汽车实际上就是一个大的机械电子系统。
而微机电系统则是指微小的机械电子系统,例如比一粒花生米还要小的飞机或汽车,是由很多只有几百微米大小的零件组成的,而这些零件是用微电子等微细加工技术制备出来的,既包含机械部件又包含电子部件,因此我们称这类微小的机械电子系统为微机电系统。
微机械电子系统是微电子技术的拓宽和延伸,它是将微电子技术和精密机械加工技术相互融合,并将微电子与机械融为一体的系统。
MEMS将电子系统和外部世界有机地联系起来,它不仅能感受运动、光、声、热、磁等自然界的外部信号,使之转换成电子系统可以识别的电信号,而且还能通过电子系统控制这些信号,进而发出指令,控制执行部件完成所需的操作。
MEMS主要包含微型传感器、执行器和相应的处理电路三部分。
作为输入信号的自然界各种信息首先通过传感器转换成电信号,经过信号处理以后(模拟/数字)再通过微执行器对外部世界发生作用。
传感器可以把能量从一种形式转化为另一种形式,从而将现实世界的信号(如热、运动等信号)转化为系统可以处理的信号(如电信号)。
执行器根据信号处理电路发出的指令完成人们所需要的操作。
信号处理器则可以对信号进行转换、放大和计算等处理。
美国AnalogDevice公司已经研制出很多种将集成电路与MEMS集成在一起的集成微加速度计、微陀螺等产品。
MEMS技术是一种典型的多学科交叉的前沿性研究领域,它几乎涉及到自然及工程科学的所有领域,如电子技术、机械技术、光学、物理学、化学、生物医学、材料科学、能源科学等。
MEMS技术的目标是通过系统的微型化、集成化来探索具有新原理、新功能的元件和系统。
微机电系统(MEMS)的学习
.
?光传感方式?成像系统(Imager)➢CCD➢CMOS?发光系统➢LED➢半导体激光器➢等离子➢生物发光?光调节器
传统的光传感器
•
•
. 32
电容式微加速度计
•
•
. 30
光学MEMS器件?定义➢Optical Transducers , MOEMS, Optical MEMS?分类➢传统的光传感器 、转换器√光传感 、成像 、发光器件(光电子) ➢利用光进行传感的器件√位置传感器 、光谱仪 、DNA芯片➢利用微机械加工方法形成的器 、环境 监控 、汽车都有广泛应用。2000年有120- 140亿美元市场相关市场达1000亿美元
2年后市场将迅速成长分子和原子级加工
MEMS 从顶层向下
大机器加工 小机器 , 小 机器加工微 机器
• 从底层向上
.
用微电子加 工技术MEMS系统
•
. 9
MEMS技术的应用?在生物医学方面 , 将光 、机 、 电 、液、生化等部件集成在一起 , 构成一个微型 芯片实验室 , 用于临床医学检测 , 为医 生甚至家庭提供简单 、廉价 、准确和快 捷的检测手段?光显示 、 高密度存储 、汽车 、 国防等微 系统
惯性器件?加速度计➢压阻式加速度计➢电容式加速度计 ➢压电式加速度计
•. 8
惯性器件
•. 9
研究领域?技术基础: 设计 、工艺加工(高深宽比多层微结构) 、微装配工艺 、微系统的测量等。?应用研究: 如何应用这些MEMS系统也是一 门非常重要的学问 。人们不仅要开发各种制造MEMS的技术 , 更重要的是如何将MEMS器件用于实际系统 , 并从中受益。
•. 5
体硅工艺
•. 4
?表面牺牲层与CMOS工艺集成➢ 结构单独制造 , 灵活性较大➢灵敏度高 、寄生小 、体积小➢简化封装和组装 , 可靠性高➢加工工艺复杂 , 成品率较低 ➢工艺兼容的材料种类较少
微机电系统
微机电系统微机电系统是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。
系统概述微机电系统,英文名称是MEMS(Micro Electro Mechanical systems的缩写),其是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的。
MEMS的特点是:1)微型化:MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。
微机电系统2)以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导率接近钼和钨。
3)批量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的MEMS。
批量生产可大大降低生产成本。
4)集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系统。
微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的MEMS。
5)多学科交叉:MEMS涉及电子、机械、材料、制造、信息与自动控制、物理、化学和生物等多种学科,并集约了当今科学技术发展的许多尖端成果。
MEMS发展的目标在于,通过微型化、集成化来探索新原理、新功能的元件和系统,开辟一个新技术领域和产业。
MEMS可以完成大尺寸机电系统所不能完成的任务,也可嵌入大尺寸系统中,把自动化、智能化和可靠性水平提高到一个新的水平。
21世纪MEMS将逐步从实验室走向实用化,对工农业、信息、环境、生物工程、医疗、空间技术、国防和科学发展产生重大影响。
系统概念(micro-electromechanicalsystem—MEMS)微机电系统基本上是指尺寸在几厘米以下乃至更小的小型装置,是一个独立的智能系统,主要由传感顺、作动器(执行器)和微能源三大部分组成。
微机电系统涉及物理学、化学、光学、医学、电子工程、材料工程、机械工程、信息工程及生物工程等多种学科和工程技术,目前在系统生物技术的合成生物学与微流控技术等领域开拓了广阔的用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、微传感器:
机械类:力学、力矩、加速度、速度、 角速度(陀螺)、位置、流量传感器 磁学类:磁通计、磁场计 热学类:温度计 化学类:气体成分、湿度、PH值和离 子浓度传感器 生物学类:DNA芯片
电容式微加速度计
ADI公司 生产的微 加速度机 MEMS芯 片
微惯性传感器及微型惯性测量组合能应用于制导、卫星 控制、汽车自动驾驶、汽车防撞气囊、汽车防抱死系统 (ABS)、稳定控制和玩具
微推进器
美国喷气推进实验室(JPL)展示的采用MEMS技术的电阻电热 式微推进器样机(固体升华方式)。微推进器由推进剂出贮箱、 微阀、微过滤器、微型喷口等组成,微型喷口利用MEMS技 术中的体硅工艺制作。其性能目标为:比冲50~75s,推力 0.5mN,功率 <2W/mN,质量为几克,大小为1cm2。
(1) 可转动的硅微镜
数字镜面显示(DMD)
可转动的硅微镜
微镜的驱动方式
(a)微马达驱动
Torsion Hinges
Support Structure Substrate Hinges
Mirror
2nd DOF
Force-redirecting Linkage
1st DOF
(b)静电驱动
硅微齿轮
静电
弧形梳齿
原理 应用
硅微转子
硅微槽
硅微漏斗
硅微梁
硅微梁
硅微转动器
硅微拖动器
硅微桥
硅微桥
硅微琴
硅微型镊子
已经制造出尖端直径 为5m的可以夹起一 个红细胞的微型镊子
可以用于医疗手术
四、MEMS制造工艺
硅MEMS工艺
化学腐蚀 反映离子刻蚀:高深宽比深槽刻蚀
LIGA工艺
模具
(3)牺牲层工艺
美国为代表
腐蚀
牺牲层
五、MEMS的分类
微执行器:微马达、微齿轮、微泵、微阀门、 微开关、微喷射器、微扬声器、微谐振器等 微型构件:微膜、微梁、微探针、微齿轮、 微弹簧、微腔、微沟道、微锥体、微轴、微 连杆等 微机械光学器件:微镜阵列、微光扫描器、 微光阀、微斩光器、微干涉仪、微光开关、 微可变焦透镜、微外腔激光器、光编码器等
从根本上解决信息系统的微型化问题 实现许多以前无法实现的功能
今天的MEMS与40年前的集成电路类似, MEMS对未来的社会发展将会产生什么影 响目前还难以预料,但它是21世纪初一个 新的产业增长点,则是无可质疑的
研究领域
理论基础:随着MEMS尺寸的缩小,有些宏观 的物理特性发生了改变,很多原来的理论基础 都会发生变化,如力的尺寸效应、微结构的表 面效应、微观摩擦机理等等,
入射光纤
三维光交换开关
硅片上的微光学平台
(2) 光纤固定结构
V形槽 各种卡紧结构
4、微推进器
美国喷气推进实验室 (JPL) 展 示 的 采 用 MEMS 技 术 的 电 阻 电 热式微推进器样机( 液体气化方式)。微 推进器由薄膜加热器 、微型喷口等组成。 其性能目标为:比冲 75~125s,推力0.5mN , 功 率 <5W , 效 率 ≥50%,质量为几克, 大小为1cm2。
微机械
国防、航空航天、生物医学、环境 监控、汽车都有广泛应用。 2000年有120-140亿美元市场 相关市场达1000亿美元
2年后市场将迅速成长
MEMS技 术及其产 品的增长 速度非常 之高,并 且目前正 处在加速 发展时期
七、微机电系统的设计技术
MEMS用批量化的微电子技术制造出尺寸 与集成电路大小相当的非电子系统,实现 电子系统和非电子系统的一体化集成
MEMS=广义上的SOC
电、光、 声、热、 磁力等外 界信号的 采集—各 种传感器
信息输入 与模/数 传输
信 息 处 理
信息输出 与数/模 转换
执 行 器 、 显 示 器 等
信息存储
一般意义上的系统集成芯片
广义上的系统集成芯片
硅微尖锥
F a b r i c a t i o n o f S i l i c o n T i p s f o r S c a n n i n g P r o b e M i c r o s c o p y
微动力学 微流体力学 微热力学 微摩擦学 微光学 微结构学
研究领域
技术基础:设计、工艺加工(高深宽比多层 微结构)、微装配工艺、微系统的测量等。 应用研究:如何应用这些MEMS系统也是一 门非常重要的学问。人们不仅要开发各种 制造MEMS的技术,更重要的是如何将MEMS 器件用于实际系统,并从中受益。
2、微马达
静电
旋转马达
原理
线性马达
美国提出的硅固态卫星的概念图,这个卫星除了蓄电池外, 全由硅片构成,直径仅15cm
3、光通信MEMS器件
定义
Optical Transducers,MOEMS, Optical MEMS
分类
传统的光传感器、转换器
光传感、成像、发光器件(光电子) 微机械光学器件:微镜阵列、微光扫描器、微光阀、 微斩光器、微干涉仪、微光开关、微可变焦透镜、微外 腔激光器、光编码器等
改变反射方向
+ + + +
+ + +
+
- - + +
(c)磁力驱动
(d)热驱动
MEMS微镜的应用
平板显示器 全光通信中的光交换开关
DMD——应用
光交换开关
可转动的硅微镜
微机械1X2光开关
微机械1X8光开关
微机械22光开关
微机械2 2光开关
二维光交 换开关
可转动的 硅微镜
出射光纤
六、MEMS技术的应用
MEMS在航空、航天、汽车、生物医学、 环境监控、军事以及几乎人们接触到的所有 领域中都有着十分广阔的应用前景
空间应用
用作运行参数测量的微加速度计已进行了地面 辐照实验,正在进行飞行搭载实验 微陀螺、微推进和微喷管等微系统基础研究
通信方面
光通信正在向有光交换功能的全光通信网络方 向发展 无线通信则要求增强功能(如联网等)和减小 功耗。包括美国朗讯公司在内的一些公司和大 学正在研究全光通信网用的微系统及无线通信 用射频微系统
信息系统的目标:微型化和集成化
微电子解决电子系统的微型化 非电子系统成为整个系统进一步缩小的关键
控制部分 电子学
微电子学
机械 部分 传感 执行 MEMS
三、MEMS概念
从广义上讲,MEMS是指集微型传感器、微型执行器、 信号处理和控制电路、接口电路、通信系统以及电源于 一体的微型机电系统 非纯电路装置
微电子压力传感器
F
利用了硅的三微结构与机械特性
微电子湿度传感器
聚合物薄膜 压敏电阻器
硅
吸湿膨胀
真空微电子平板显示器
发光 玻璃 荧光粉 电 场 电子 硅尖锥 硅Si基体
利用了硅的三微结构 与机械加工特性
二、引
信息系统微型化
系统体积大大减小 性能、可靠性大幅度上升 功耗和价格大幅度降低
言
LIGA工艺 牺牲层工艺
(1)化学腐蚀
(2)反映离子刻蚀
STS Deep RIE system at FID
High aspect ratio 60um trench
(3)LIGA工艺
Lithograpie(光刻)、Galvanoformung(电铸)、Abformung(塑 铸) 德国为代表 主要用于金属微结构器件的形成
第九章 微机电系统(MEMS)
Micro-Electro-Mechanical Systems
Байду номын сангаас
一、MEMS技术的历史
微系统是从微传感器发展而来的,已有 几次突破性的进展
70年代微机械压力传感器产品问世 80年代末研制出硅静电微马达 90年代喷墨打印头,硬盘读写头、硅加速度 计和数字微镜器件等相继规模化生产 充分展示了微系统技术及其微系统的巨大应 用前景