统计学习题1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章统计数据的描述
练习:
2.1为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果
如下:
700 716 728 719 685 709 691 684 705 718
706 715 712 722 691 708 690 692 707 701
708 729 694 681 695 685 706 661 735 665
668 710 693 697 674 658 698 666 696 698
706 692 691 747 699 682 698 700 710 722
694 690 736 689 696 651 673 749 708 727
688 689 683 685 702 741 698 713 676 702
701 671 718 707 683 717 733 712 683 692
693 697 664 681 721 720 677 679 695 691
713 699 725 726 704 729 703 696 717 688
(1)利用计算机对上面的数据进行排序;
(2)以组距为10进行等距分组,整理成频数分布表,并绘制直方图;
(3)绘制茎叶图,并与直方图作比较。
2.2某百货公司6月份各天的销售额数据如下(单位:万元):
257 276 297 252 238 310 240 236 265 278
271 292 261 281 301 274 267 280 291 258
272 284 268 303 273 263 322 249 269 295
(1)计算该百货公司日销售额的均值、中位数和四分位数;
(2)计算日销售额的标准差。
2.3在某地区抽取的120家企业按利润额进行分组,结果如下:
按利润额分组(万元)企业数(个)
200~300 19
300~400 30
400~500 42
500~600 18
600以上11
合计120
计算120家企业利润额的均值和标准差。
答案
2.1 (1)排序略。
(2)频数分布表如下:
100只灯泡使用寿命非频数分布
按使用寿命分组(小时)灯泡个数(只)频率(%)
650~660 2 2
660~670 5 5
670~680 6 6
680~690 14 14
690~700 26 26 700~710 18 18 710~720 13 13 720~730 10 10 730~740 3 3 740~750 3 3 合计
100
100
直方图(略)。
2.2L U (2) 17.21=s (万元)。
2.3 x =426.67(万元);48.116=s (万元)。
第3章 概率与概率分布
练习:
3.6某企业决策人考虑是否采用一种新的生产管理流程。据对同行的调查得知,采用新生产管理流程后产品优质率达95%的占四成,优质率维持在原来水平(即80%)的占六成。该企业利用新的生产管理流程进行一次试验,所生产5件产品全部达到优质。问该企业决策者会倾向于如何决策? 答案
3.6这是一个计算后验概率的问题。
设A =优质率达95%,A =优质率为80%,B =试验所生产的5件全部优质。 P(A)=0.4,P (A )=0.6,P (B|A )=0.955, P(B |A )=0.85,所求概率为:
6115
.050612.030951
.0)|()()|()()|()()|(===
A B P A P A B P A P A B P A P B A P +
决策者会倾向于采用新的生产管理流程。
第4章 抽样与抽样分布
练习:
4.1 一个具有64=n 个观察值的随机样本抽自于均值等于20、标准差等于16的总体。
⑴ 给出x 的抽样分布(重复抽样)的均值和标准差
⑵ 描述x 的抽样分布的形状。你的回答依赖于样本容量吗? ⑶ 计算标准正态z 统计量对应于5.15=x 的值。 ⑷ 计算标准正态z 统计量对应于23=x 的值。
4.4 一个具有900=n 个观察值的随机样本选自于100=μ和10=σ的总体。
⑴ 你预计x 的最大值和最小值是什么? ⑵ 你认为x 至多偏离μ多么远?
⑶ 为了回答b 你必须要知道μ吗?请解释。 4.6 美国汽车联合会(AAA )是一个拥有90个俱乐部的非营利联盟,它对其成员提供旅行、
金融、保险以及与汽车相关的各项服务。1999年5月,AAA 通过对会员调查得知一个4口之家出游中平均每日餐饮和住宿费用大约是213美元(《旅行新闻》Travel News ,1999年5月11日)。假设这个花费的标准差是15美元,并且AAA 所报道的平均每日消费是总体均值。又假设选取49个4口之家,并对其在1999年6月期间的旅行费用进行记录。 ⑴ 描述x (样本家庭平均每日餐饮和住宿的消费)的抽样分布。特别说明x 服从怎样
的分布以及x 的均值和方差是什么?证明你的回答; ⑵ 对于样本家庭来说平均每日消费大于213美元的概率是什么?大于217美元的概率
呢?在209美元和217美元之间的概率呢?
4.7 技术人员对奶粉装袋过程进行了质量检验。每袋的平均重量标准为406=μ克、标准
差为1.10=σ克。监控这一过程的技术人者每天随机地抽取36袋,并对每袋重量进行测量。现考虑这36袋奶粉所组成样本的平均重量x 。
(1)描述x 的抽样分布,并给出x μ和x σ的值,以及概率分布的形状;
(3) 假设某一天技术人员观察到8.400=x ,这是否意味着装袋过程出
现问题了呢,为什么? 答案
4.1 ⑴ 20, 2; ⑵ 近似正态; ⑶ -2.25; ⑷ 1.50。 4.4 ⑴ 101, 99 ⑵ 1 ; ⑶ 不必。
4.6 ⑴ 正态分布, 213, 4.5918; ⑵ 0.5, 0.031, 0.938。
4.7 ⑴ 406, 1.68, 正态分布; ⑵ 0.001; ⑶是,因为小概率出现了。
第5章 参数估计
练习:
2.1 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1) 样本均值的抽样标准差x σ等于多少? (2) 在95%的置信水平下,允许误差是多少?
2.2 某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客