全国中考数学应用题集锦

合集下载

中考数学试卷真题应用题

中考数学试卷真题应用题

1. 下列各数中,有理数是()A. √2B. πC. -3D. 2/32. 已知数列 {an} 的前n项和为 Sn,且 S1=2,S2=5,S3=12,则数列 {an} 的通项公式是()A. an=3n-1B. an=3nC. an=3n+1D. an=3n-23. 已知 a,b,c 成等差数列,且 a+b+c=0,则 b 的值是()A. 0B. -1C. 1D. 24. 在△ABC中,∠A=45°,∠B=30°,则△ABC是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形5. 已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),则该函数的解析式是()A. y=x^2-2x-2B. y=x^2+2x-2C. y=x^2-2x+2D. y=x^2+2x+2二、填空题6. 若 a,b,c 成等差数列,且 a+b+c=0,则 b 的值是______。

7. 已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),则该函数的解析式是______。

8. 在△ABC中,∠A=45°,∠B=30°,则△ABC是______。

9. 已知数列 {an} 的前n项和为 Sn,且 S1=2,S2=5,S3=12,则数列 {an} 的通项公式是______。

三、解答题10. (15分)已知 a,b,c 成等差数列,且 a+b+c=0,求证:b=0。

证明:由题意得:a+b+c=0。

又因为 a,b,c 成等差数列,所以有 2b=a+c。

将 a+b+c=0 代入上式得:2b+2b=0,即 4b=0。

因此,b=0。

证毕。

11. (15分)已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),求该函数的解析式。

解:设该二次函数的解析式为 y=ax^2+bx+c。

中考应用题精选(含答案)

中考应用题精选(含答案)

中考应用题精选(含答案)中考应用题精选(含答案)一、小明购买水果小明去水果店购买了一些苹果和橙子,苹果的单价为5元/斤,橙子的单价为4元/斤。

小明共购买了9斤水果,支付了43元。

1. 请问小明购买了多少斤苹果,多少斤橙子?解答:设小明购买的苹果为x斤,橙子为y斤,则由题意可得以下方程组:x + y = 9 (1)5x + 4y = 43 (2)(1)式乘以4,再与(2)式相减可得:4x + 4y - 5x - 4y = 36 - 43 => -x = -7 => x = 7所以小明购买了7斤苹果,9 - 7 = 2斤橙子。

2. 小明购买水果总共需要支付多少金额?解答:设小明购买的苹果总价为a元,橙子总价为b元,由题意可得以下方程组:a +b = 43 (3)5a + 4b = 9 * 5 (4)将(3)式乘以4,再与(4)式相减可得:4a + 4b - 5a - 4b = 172 - 45 => -a = 127 => a = -127(舍去)所以小明购买水果总共需要支付43元。

二、小明的年龄问题小明的爷爷今年87岁,小明今年10岁。

已知小明的爸爸在小明出生时是小明年龄的2倍,现在的爸爸年龄是小明年龄的3倍。

1. 请问小明的爸爸今年多少岁?解答:设小明的爸爸今年为x岁,则可得以下方程:10 - x = 2(x - 10) (5)将(5)式化简,得:10 - x = 2x - 203x = 30x = 10所以小明的爸爸今年10岁。

2. 请问小明的爷爷今年多少岁?解答:根据题意,小明的爷爷今年是小明爸爸的3倍,而小明爸爸今年是10岁,所以小明的爷爷今年87岁。

三、小明和小红的比例题小明和小红一起种植蔬菜,小明每天需要花费2小时来照料蔬菜园,小红每天需要花费3小时来照料蔬菜园。

已知小明比小红每天多照料蔬菜园1小时,两人一共照料蔬菜园13天。

1. 请问小明独自照料蔬菜园需要多少天才能完成任务?解答:设小明独自照料蔬菜园需要x天才能完成任务。

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(试题部分)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1B .2C .3D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+B .22a b −>−C .a b −<−D .22a b <4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x <B .2x >C .<2x −D .2x >−5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m <B .1m <C .12m <<D .513m <<8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+B .55x y −<−C .55x y >D .55x y −>−9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥−B .2x ≤−C .2x >−D .2x <−10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .20.(2024·广西·中考真题)不等式7551x x +<+的解集为 .21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .22.(2024·吉林·中考真题)不等式组2030x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.24.(2024·福建·21x −<的解集是 .25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ; 27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可). 三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解. 29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解.30.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来. 31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①② 请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本; (2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.38.(2024·江苏扬州·中考真题)解不等式组260412xxx−≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离()AB a b a b=−≥.特别的,当0a≥时,表示数a的点与原点的距离等于0a−.当a<0时,表示数a的点与原点的距离等于0a−.应用如图,在数轴上,动点A从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(答案详解)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1 B .2 C .3 D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .【答案】A【分析】本题考查了一元一次不等式的解法及在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案. 【详解】解:12x +≥,1x ∴≥.∴在数轴上表示如图所示:故选:A .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+ B .22a b −>− C .a b −<− D .22a b <【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x < B .2x > C .<2x − D .2x >−【答案】A【分析】本题考查了解一元一次不等式.熟练掌握解一元一次不等式是解题的关键. 移项可得一元一次不等式的解集. 【详解】解:20x −<, 解得,2x <, 故选:A .5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可. 【详解】解:()322211x x x x −<⎧⎪⎨+≥−⎪⎩①② 解不等式①得,2x <, 解不等式②得,3x ≥−,所以,不等式组的解集为:32x −≤<,在数轴上表示为:故选:C .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m −<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <, ∴13m +≥, ∴2m ≥; 故选B .7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m < B .1m < C .12m <<D .513m <<【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:214m m m −<<−, 解得:1m <; 故选B .8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+ B .55x y −<− C .55x y > D .55x y −>−【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意; B .两边都加上5−,不等号的方向不改变,故错误,不符合题意; C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意; D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意; 故选:C .9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥− B .2x ≤− C .2x >− D .2x <−【答案】A【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键. 【详解】解:移项得,34x x −≥−, 合并同类项得,24x ≥−, 系数化为1得,2x ≥−, 故选:A .10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变. 直接利用不等式的性质逐一判断即可. 【详解】解:1a b >−,A 、1a b +>,故错误,该选项不合题意;B 、12a b −>−,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意; 故选:D .12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤【答案】D【分析】本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:212321x x x x +>+⎧⎨+≥−⎩①②,解不等式①,得1x >, 解不等式②,得4x ≤, 故不等式组的解集为14x <≤. 故选:D .13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .【答案】C【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键. 【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−【答案】A【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可. 【详解】根据题意1x −>,可得1x <−, A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意; 故选:A15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .【答案】A【分析】本题考查解一元一次不等式组和在数轴上表示不等式的解集,先分别求出每一个不等式的解集,再根据不等式的解集在数轴上表示方法画出图示是解题的关键.【详解】解:()211326x x −≥⎧⎪⎨−>−⎪⎩①②,解不等式①,得:1x ≥, 解不等式②,得:4x <, ∴不等式组的解集为14x ≤<. 在数轴上表示如下: .故选:A .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③【答案】C【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b , 根据1班班长的对话,得180x ≤,350x a +=, ∴350x a =− ∴350180a −≤, 解得170a ≥, 故①错误,③正确;根据2班班长的对话,得140b >,290y b +=,∴290b y =−, ∴290140y −>, ∴150y <, 故②正确, 故选:C .18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .【答案】1−(答案不唯一)【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x −≤<,然后即可得出整数解.【详解】解:21215x x +≥⎧⎨−<⎩①②,由①得:1x ≥−, 由②得:3x <,∴不等式组的解集为:13x −≤<, ∴不等式组的一个整数解为:1−; 故答案为:1−(答案不唯一).20.(2024·广西·中考真题)不等式7551x x +<+的解集为 . 【答案】<2x −【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x −<−, 合并同类项得,24x <−, 系数化为1得,<2x −, 故答案为:<2x −.21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .不等式组22.(2024·吉林·中考真题)不等式组230x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.∴0x >,且x 为正整数, ∴x 的最小值为1,∴绿球的个数的最小值为3, ∴袋子中至少有3个绿球, 故答案为:3.24.(2024·福建·中考真题)不等式321x −<的解集是 . 【答案】1x <【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解. 【详解】解:321x −<,33x <, 1x <,故答案为:1x <.25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .【答案】3x ≥/3x ≤【分析】本题主要考查了求不等式组的解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >, ∴不等式组的解集为3x ≥, 故答案为:3x ≥.26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ;27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可).三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键. 【详解】解:去分母得,()131x x +≥−, 去括号得,133x x +≥−, 移项得,331x x −≥−−, 合并同类项得,24x −≥−, 系数化为1得,2x ≤, ∴不等式的正整数解为1,2.29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解. 【答案】2,3,4【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将3479x −<−≤变形为347479x x −<−⎧⎨−≤⎩,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.【详解】解:由题意得347479x x −<−⎧⎨−≤⎩①②,解①得:1x >, 解②得:4x ≤,∴该不等式组的解集为:14x <≤, ∴整数解为:2,3,430.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来.这个不等式的解集在数轴上表示如下:31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______. 【答案】(1)1x ≤ (2)3x ≥− (3)见解析 (4)31x −≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (3)根据前两问的结果,在数轴上表示不等式的解集; (4)根据数轴上的解集取公共部分即可. 【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥−, 故答案为:3x ≥−;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x −≤≤, 故答案为:31x −≤≤.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩ 【答案】17x −<<【分析】先求出每一个不等式的解集,再根据不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解”确定不等式组的解集.本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键.35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 【答案】整数解为:1,0,1−【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >−解不等式②得:1x ≤∴不等式组的解集为:21x −<≤,∴整数解为:1,0,1−36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x −本,根据题意可得等量关系:x 本数学书的厚度(90)x +−本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +−=,解得:60x =,9030x −=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a (a 为正整数)折售出,最终获利1577元,请直接写出商店的进货方案. 【答案】(1)特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元(2)有3种方案,详见解析(3)特级干品猴头菇40箱,特级鲜品猴头菇40箱【分析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)正确计算求解.(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x 元和y 元,根据“购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元”,列出方程组求解即可; (2)设商店计划购进特级鲜品猴头菇m 箱,则购进特级干品猴头菇()80m −箱,根据“获利不少于1560元,其中干品猴头菇不多于40箱,”列出不等式组求解即可;(3)根据(2)中三种方案分别求解即可;元和38.(2024·江苏扬州·中考真题)解不等式组260412x x x −≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =−≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a −.当a<0时,表示数a 的点与原点的距离等于0a −.应用如图,在数轴上,动点A 从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x 秒,则A 表示的数为3x −+,B 表示的数为122x −,根据“点A ,B 之间的距离等于3个单位长度”列方程求解即可;≤40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?【答案】(1)50元、30元(2)400棵【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;(2)购买脐橙树苗a棵,根据“总费用不超过38000元”列不等式求解即可.【详解】(1)解:设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据题意,得211023190x y x y +=⎧⎨+=⎩, 解得5030x y =⎧⎨=⎩, 答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;(2)解:设购买脐橙树苗a 棵,则购买黄金贡柚树苗()1000a −棵,根据题意,得()5030100038000a a +−≤,解得400a ≤,答:最多可以购买脐橙树苗400棵.41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩? 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【详解】(1)解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩, 解得56x y =⎧⎨=⎩, 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;(2)解:设种植甲作物a 亩,则种植乙作物()10a −亩,。

2023年中考数学第一轮复习应用题专项训练

2023年中考数学第一轮复习应用题专项训练

2023年中考第一轮复习应用题专项训练一、解答题1.为开展好校园足球活动,某些学校计划联合购买一批足球运动装备,经市场调查,甲、乙两商场分别以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球贵20元,4套队服与5个足球的费用相等,经洽谈,甲商场优惠方案是:每购买10套队服,送一个足球;乙商场优惠方案是;若购买队服超过90套,则购买足球打八折.(1)求每套队服和每个足球的价格分别是多少?(2)若计划一共购买100套队服和m(m大于10)个足球,请用含m的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若需要购买40个足球,你认为到甲、乙哪家商场购买比较合算?请说明理由.2.北京冬奥会吉祥物“冰墩墩”深受大家的喜爱,人们争相购买.现有甲、乙两种型号的“冰墩墩”,已知一个甲种型号比一个乙种型号多20元,购买甲、乙两种型号各10个共需1760元.(1)求甲、乙两种型号的“冰墩墩”单价各是多少元?(2)某团队计划用不超过4500元购买甲、乙两种型号的“冰墩墩”共50个,求最多可购买多少个甲种型号的“冰墩墩”?3.为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?4.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x个,鸟有y只,可列方程组为;(2)求兽、鸟各有多少.5.某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?6.端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B品牌粽子120袋,总费用为8100元.(1)求A、B两种品牌粽子每袋的进价各是多少元;(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B 品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?7.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?8.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?9.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?10.某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?11.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?12.阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?13.为了传承雷锋精神,某中学向全校师生发起“献爱心”募捐活动,准备向西部山区学校捐赠篮球、足球两种体育用品.已知篮球的单价为每个100元,足球的单价为每个80元.(1)原计划募捐5600元,全部用于购买篮球和足球,如果恰好能够购买篮球和足球共60个,那么篮球和足球各买多少个?(2)在捐款活动中,由于师生的捐款积极性高涨,实际收到捐款共6890元,若购买篮球和足球共80个,且支出不超过6890元,那么篮球最多能买多少个?14.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?。

中考数学专题汇总试卷 应用题大题

中考数学专题汇总试卷 应用题大题

中考应用题大题题型汇总1.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量 x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?2.湿地风景区特色旅游项目:水上游艇.旅游人员消费后风景区可盈利10元/人,每天消费人员为500人.为增加盈利,准备提高票价,调查发现,在其他条件不变的情况下,票价每涨1元,消费人员就减少 20人.(1)现该项目要保证每天盈利6000元,同时又要旅游者得到实惠,那么票价应涨价多少元?(2)若单纯从经济角度看,票价涨价多少元,能使该项目获利最多?3.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中某月获得的利润y(万元)和月份n之间满足函数关系式:21424=-+-.y n n(1)若一年中某月的利润为21万元,求n的值;(2)哪一个月能够获得最大利润,最大利润是多少?(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?4.临近端午节,某食品店每天卖出300只粽子,卖出一只粽子的利润为1元.调查发现,零售单价每降元,每天可多卖出100只粽子.为了使每天获得的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价降价后,该店每天可售出只粽子,利润为元。

(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元,且卖出的粽子更多?5.某校九年级准备购买一批笔奖励优秀学生,在购买时发现,每只笔可以打九折,用360元钱购买的笔,打折后购买的数量比打折前多10本.(1)求打折前每支笔的售价是多少元?(2)由于学生的需求不同,学校决定购买笔和笔袋共80件,笔袋每个原售价为10元,两种物品都打八折,若购买总金额不低于400元,且不高于405元,问有哪几种购买方案?(3)在(2)的条件下,求购买总金额的最小值.6.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.问:(1)甲、乙两组单独工作一天,商店各应付多少元?(2)单独请哪组,商店所付费用较少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工有利于商店经营?说说你的理由.7.“利民平价超市”以每件20元的价格进购一批商品,试销一阶段后发现,该商品每天的销售量y(件)与售价x(元/件)之间的函数关系如右图:(20≤x≤60):(1)求每天销售量y(件)与售价x(元/件)之间的函数表达式;(2)若该商品每天的利润为w(元),试确定w(元)与售价x(元/件)的函数表达式,并求售价x为多少时,每天的利润w最大?最大利润是多少?8.一个汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如表格所示:(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.9.某公司生产并销售A,B两种品牌新型节能设备,第一季度共生产两种品牌设备20台,每台的成本和售价如右表:设销售A种品牌设备x台,20台A,B两种品牌设备全部售完后获得利润y万元.(利润=销售价-成本)(1)求y关于x的函数关系式;(2)若生产两种品牌设备的总成本不超过80万元,那么公司如何安排生产A,B两种品牌设备,售完后获利最多?并求出最大利润;(3)公司为营销人员制定奖励促销政策:第一季度奖金=公司总利润 销售A种品牌设备台数×1%,那么营销人员销售多少台A种品牌设备,获得奖励最多?最大奖金数是多少?10.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元:(1) 求出y与x的函数关系式;(2) 问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3) 该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.11.我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40元.经过市场调查发现:该产品的销售单价,需定在200元到300元之间较为合理,销售单价x元与年销售量y万件之间的变化可近似的看作是如下表所反映的一次函数:(1)请求出y与x间的函数关系式;并直接写出自变量x的取值范围;(2)请说明投资的第一年,该公司是盈利还是亏损?若赢利,最大利润是多少?若亏损,最少亏损多少?(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1790万元,若能,求出第二年的产品售价;若不能,请说明理由.12.某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B 两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件:全部服装按单价打七折,但校方需承担2200元的运费; B公司的优惠条件:男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.13.我市为改善农村生活条件,满足居民清洁能源的需求,计划为某村400户居民修建A、B两种型号的沼气池共24个.政府出资36万元,其余资金从各户筹集.两种沼气池的型号、修建费用、可供使用户数、占地面积如下表:政府土地部门只批给该村沼气池用地212平方米,设修建A型沼气池x个,修建两种沼气池共需费用y万元.?(1)求y与x之间函数关系式;?(2)试问有哪几种满足上述要求的修建方案;?(3)要想完成这项工程,每户居民平均至少应筹集多少钱?14.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x 的取值情况进行分析,说明按哪种优惠方法购买比较便宜;15.由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖,某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为万元/台.若一年内该产品的售价y(万元/台)与月份x(1≤x ≤12且为整数)满足关系式:⎩⎨⎧≤≤<≤+-=)124(2.0)41(4.005.0x x x y ,一年后,发现这一年来实际每月的销售量p(台)与月份x 之间存在如图所示的变化趋势.(1)求实际每月的销售量p(台)与月份x 之间的函数表达式;(2)全年中哪个月份的实际销售利润w 最高,最高为多少万元?16.某公司营销A ,B 两种产品.根据市场调研,发现如下信息:根据以上信息,解答下列问题:(1)求二次函数解析式;(2)该公司准备购进A ,B 两种产品共10吨,请设计一个营销方案,使销售A ,B 两种产品获得的利润之和最大,最大利润是多少?17.某公司销售一种进价为20元/个的计算机,销售量y (万个)与销售价格x (元/个)的变化如下表:同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?18.今年,6月12日为端午节,在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况。

数学中考应用题及答案

数学中考应用题及答案

数学中考应用题及答案1. 某工厂生产一种产品,原计划每天生产100件,实际每天生产120件。

若原计划生产时间为30天,实际生产时间为25天,求实际生产效率比原计划提高了百分之几?答案:解:首先计算原计划和实际的生产总量。

原计划生产总量 = 100件/天× 30天 = 3000件实际生产总量 = 120件/天× 25天 = 3000件接下来计算提高的百分比。

提高的百分比 = [(实际生产量 - 原计划生产量) / 原计划生产量] × 100%提高的百分比 = [(3000 - 3000) / 3000] × 100% = 0%答:实际生产效率与原计划相比没有提高。

2. 某商店购进一批商品,进价为每件20元,若按每件30元出售,可售出500件。

若每件商品提价1元,销售量将减少20件。

求该商店为获得最大利润,每件商品应定价多少元?答案:解:设每件商品提价x元,则每件商品的售价为(30+x)元,销售量为(500-20x)件。

利润函数为:y = (30+x-20)(500-20x) = -20x^2 + 300x + 5000这是一个开口向下的二次函数,对称轴为x = 7.5。

当x = 7.5时,y取得最大值,此时售价为30 + 7.5 = 37.5元。

答:每件商品应定价为37.5元,此时利润最大。

3. 某校组织学生去春游,若租用45座客车,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,其余车刚好坐满。

求该校共有多少名学生?答案:解:设租用45座客车x辆,则学生总数为45x + 15。

根据题意,租用60座客车时,有(x-1)辆坐满,一辆空着,所以学生总数为60(x-1)。

将两个表达式相等,得到方程:45x + 15 = 60(x-1)解方程得:45x + 15 = 60x - 6015 + 60 = 60x - 45x75 = 15xx = 5所以,学生总数为:45 × 5 + 15 = 240人。

中考数学应用题汇编及解析

中考数学应用题汇编及解析

一、代数应用题:1、农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间治理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间治理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间治理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?[解析] (1)由题意,得1.62120%=-〔元〕; 〔2〕设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =〔千克〕(120%) 1.811700x x x +-==〔千克〕答:〔1〕当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; 〔2〕小王去年卖给国家的稻谷共为11700千克.2、机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提升了用油的重复利用率,并且发现在技术革新的根底上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?[解析]〔1〕由题意,得70(160%)7040%28⨯-=⨯=〔千克〕 〔2〕设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --=部门经理小张这个经理的介绍能反映该公司员工的月工资实际水平吗?欢送你来我们公司应聘!我公司员工的月平均工资是2500元,薪水是较高的.解得:1275,10x x ==-〔舍去〕(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.3、某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工 治理人员 普通工作人员人员结构 总经理 部门经理 科研人员销售人员 高级技工 中级技工勤杂工员工数(名) 1 3 2 3 24 1 每人月工资(元)21000 840020252200 1800 1600950请你根据上述内容,解答以下问题:〔1〕该公司“高级技工〞有 名;〔2〕所有员工月工资的平均数x 为2500元,中位数为 元,众数为 元; 〔3〕小张到这家公司应聘普通工作人员.请你答复右图中小张的问题,并指出用〔2〕中的哪个 数据向小张介绍员工的月工资 实际水平更合理些; 〔4〕去掉四个治理人员的工资后,请你计算出其他员工的月平均工资y 〔结果保存整数〕,并判断y 能否反映该公司员工的月工资实际水平.[解析] 〔1〕由表中数据知有16名;〔2〕由表中数据知中位数为1700;众数为1600;〔3〕这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.〔说明:该问中只要写对其中一个数据或相应统计量〔中位数或众数〕也可以〕 〔4〕250050210008400346y ⨯--⨯=≈1713〔元〕.y 能反映.4、某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC 由同一平面内的两段抛物线组成,其中AB 所在的抛物线以A 为顶点、开口向下,BC 所在的抛物线以C 为顶点、开口向上.以过山脚〔点C 〕的水平线为x 轴、过山顶〔点A 〕的铅垂线为y 轴建立平面直角坐标系如图〔单位:百米〕.AB 所在抛物线的解析式为8412+-=x y ,BC 所在抛物线的解析式为2)8(41-=x y ,且)4,(m B . 〔1〕设),(y x P 是山坡线AB 上任意一点,用y 表示x ,并求点B 的坐标;〔2〕从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上〔见图〕. ①分别求出前三级台阶的长度〔精确到厘米〕; ②这种台阶不能一直铺到山脚,为什么?〔3〕在山坡上的700米高度〔点D 〕处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E 处,1600=OE 〔米〕.假设索道DE 可近似地看成一段以E 为顶点、开口向上的抛物线,解析式为2)16(281-=x y .试求索道的最大悬空..高度.[∴8412+-=x y ,0≥x ,〔…2分〕 ∴)8(42y x -=,y x -=82〔…3分〕∵)4,(m B ,∴482-=m =4,∴)4,4(B〔…4分〕〔2〕在山坡线AB 上,y x -=82,)8,0(A①令80=y ,得00=x ;令998.7002.081=-=y ,得08944.0002.021≈=x ∴第一级台阶的长度为08944.001=-x x 〔百米〕894≈〔厘米〕〔…6分〕同理,令002.0282⨯-=y 、002.0383⨯-=y ,可得12649.02≈x 、15492.03≈x ∴第二级台阶的长度为03705.012=-x x 〔百米〕371≈〔厘米〕 〔…7分〕 第三级台阶的长度为02843.023=-x x 〔百米〕284≈〔厘米〕〔…8分〕②取点)4,4(B ,又取002.04+=y ,那么99900.3998.32≈=x∵002.0001.099900.34<=-∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 〔…10分〕 〔注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性〕 ②另解:连接任意一段台阶的两端点P 、Q ,如图 ∵这种台阶的长度不小于它的高度 ∴︒≤∠45PQR当其中有一级台阶的长大于它的高时, ︒<∠45PQR〔…9分〕在题设图中,作OA BH ⊥于H那么︒=∠45ABH ,又第一级台阶的长大于它的高∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚〔…10分〕〔3〕)7,2(D 、)0,16(E 、)4,4(B 、)0,8(C由图可知,只有当索道在BC 上方时,索道的悬空..高度才有可能取最大值〔…11分〕 索道在BC 上方时,悬空..高度2)16(281-=x y 2)8(41--x )96403(1412-+-=x x 38)320(1432+--=x〔…13分〕当320=x 时,38max =y ∴索道的最大悬空..高度为3800米. 5、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y 〔米〕与挖掘时间x 〔时〕之间关系的局部图象.请解答以下问题: 〔1〕乙队开挖到30米时,用了_____小时.开挖6小时时, 甲队比乙队多挖了______米; 〔2〕请你求出:①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?PQR时)〔3〕如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?[解析] 〔1〕2;10;〔2〕①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点〔6,60〕, ∴6 k 1=60,解得k 1=10, ∴y =10x .②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点〔2,30〕、〔6,50〕,∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩∴y =5x +20.③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队.〔说明:通过观察图象并用方程来解决问题,正确的也给分〕 〔3〕由图可知,甲队速度是:60÷6=10〔米/时〕.设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米.6、利达经销店为某工厂代销一种建筑材料〔这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理〕.当每吨售价为260元时,月销售量为45吨.该经销店为提升经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x 〔元〕,该经销店的月利润为y 〔元〕. 〔1〕当每吨售价是240元时,计算此时的月销售量;〔2〕求出y 与x 的二次函数关系式〔不要求写出x 的取值范围〕;〔3〕请把〔2〕中的二次函数配方成2()y a x h k =-+的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元;〔4〕小静说:“当月利润最大时,月销售额也最大.〞你认为对吗?请说明理由.[解析] 〔1〕5.71024026045⨯-+=60〔吨〕.〔2〕260(100)(457.5)10xy x -=-+⨯,化简得: 23315240004y x x =-+-.〔3〕24000315432-+-=x x y 23(210)90754x =--+.利达经销店要获得最大月利润,材料的售价应定为每吨210元.〔4〕我认为,小静说的不对.理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=xx W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大.∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元;而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.〔说明:如果举出其它反例,说理正确,也相应给分〕二、几何应用题:8、图10—1是某学校存放学生自行车的车棚的示意图〔尺寸如下图〕,车棚顶部是圆柱侧面的一局部,其展开图是矩形.图10—2是车棚顶部截面的示意图,AB 所在圆的圆心为O . 车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积〔不考虑接缝等因素,计算结果保存π〕.[解析]连结OB ,过点O 作OE ⊥AB ,垂足为E ,交AB 于F ,如图1.…………〔1分〕由垂径定理,可知: E 是AB 中点,F 是AB 中点,∴EF 是弓形高 .∴AE ==AB 2123,EF =2. …………〔2分〕 设半径为R 米,那么OE =(R -2)米.O BA·图10—2图10—1 AB2米 43米·图1EF A在Rt △AOE 中,由勾股定理,得 R 2=22)32()2(+-R .解得 R =4. ……………………………………………………………………〔5分〕 ∵sin ∠AOE =23=OA AE , ∴ ∠AOE =60°, ………………………………〔6分〕∴∠AOB =120°. ∴ AB 的长为1804120π⨯=38π. ………………………〔7分〕∴帆布的面积为38π×60=160π〔平方米〕. …………………………………〔8分〕 〔说明:此题也可以由相交弦定理求圆的半径的长.对于此种解法,请参照此评分标准相应给分〕9、图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格〔每个小方格的边长均为1个单位长〕,其对称中央为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中央也是点O ,它以每秒1个单位长的速度由起始位置向外扩大〔即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……〕,直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动〔即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动〕.正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠局部面积为y 个平方单位.〔1〕请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠局部〔重叠局部用阴影表示〕,并分别写出重叠局部的面积;〔2〕①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式.〔3〕对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠局部面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.〔说明:问题〔3〕是额外加分题,加分幅度为1~4分〕图14-6D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5D图14-7E C BA DFG H M Q NOP[解析]〔1〕相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.〔2〕①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,那么MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-〔7-x 〕= x -1. ∴y=MT ·MS =〔x -1〕〔2x -1〕=2x 2-3x +1. ②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,那么 TQ =7-x ,∴MT =MQ -TQ =6-〔7-x 〕=x -1. ∴y=MN ·MT =6〔x -1〕=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,那么 TQ=x -7,∴MT =MQ -TQ =6-〔x -7〕=13-x . ∴y = MN ·MT =6〔13-x 〕=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,那么MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =〔13-x 〕〔27-2x 〕=2x 2-53x +351.〔说明:以上四种情形,所求得的y 与x 的函数关系式正确的,假设不化简不扣分〕 〔3〕对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36. ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;图2-4 E C B A D F G H Q N O P T 图2-5E C B A DF GH M N O PT 图2-6 E C B A DF G HK Q N OP R S 图2-3 E C B A D F G H M Q N OP S T 图2-2 E C B A D FG HMN O P 图2-1 E C B AD Q O P当x=35时,y取得最大值36.④在DA边上移动时,当42≤x≤43及55≤x≤56时,y取得最小值0;当x=49时,y取得最大值36.。

2023年数学中考试题精选:方程、不等式和函数应用(一)

2023年数学中考试题精选:方程、不等式和函数应用(一)

2023年数学中考精选(一)1.(2023.北京16题)学校组织学生参加木艺艺术品加工劳动实践活动,已知某木艺艺术品加工完成共需A,B,C,D,E,F,G七道工序,加工要求如下:①工序C,D须在工序A完成后进行,工序E须在工序B,D都完成后进行,工序F须在工序C,D都完成后进行;②一道工序只能由一个学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品加工,则需要______分钟,若由两名学生合作完成此木艺艺术的加工,则最少需要_____分钟。

2.(2023.沈阳21题)甲、乙两人加工同一种零件,每小时甲比乙多加工2个这种零件,甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等,求乙每小时加工多少个这种零件.3.(2023.贵州省19题)为推动乡村振兴,政府大力扶持小型企业. 根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x件产品,解答下列问题:(1)更新设备后每天生产_____件产品(用含x的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品。

4.(2023.上海22题)“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售,使用这张加油卡加油,每一升油,油的单价降低0.30元,假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y元/升,原价为x元/升,求y关于x 的函数解析式(不用写出定义域)(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?5.(2023.江西省18题)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺少25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元,购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?6.(2023.云南省21题).蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意,某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A、B两种型号的帐篷. 若购买A种型号帐篷2顶和B种型号帐篷4顶,则需5200元;若购买A种型号帐篷3顶和B种型号帐篷1顶,则需2800元.(1)求每顶A种型号帐篷和每顶B种型号帐篷的价格;(2)若该景区需要购买A、B两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A种型号帐篷数量不超过购买B种型号帐篷数量的(1/3),为使购买帐篷的总费用最低,应购买A种型号帐篷和B 种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?7.(2023.山东省济南市20题)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩,已知A型充电桩比B型充电桩的单价少0.3元,且用15万元购买A型充电桩与20万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A,B型充电桩,购买总费用不超过26万元,且B型充电桩的购买数量不少于A型充电桩购买数量的1,2问:共有哪几种购买方案?哪种方案所需购买总费用最少?8.(2023.北京23题)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B 种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A种客车多少辆?这次研学去了多少人?(2)若该校计划租用A、B两种车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?9.(2023.四川省泸州21题)端午节是中国传统节日,人们有吃粽子的习俗,今年端午节来临之际,某商场预测A粽子能够畅销. 根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A 粽子的数量比节后用相同金额购进的数量少4千克,根据以上信息,解答下列问题:(1)该商场节后每千克A粽子的进价是多少元?(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获利利润最大? 最大利润是多少?10.(2023.扬州市26题)近年不,市民交通安全意识逐步增强,头盔需求量增大,某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元。

中考数学应用题分类及参考答案(精编)

中考数学应用题分类及参考答案(精编)

中考数学应用题分类及参考答案(精编)一、方程应用1.为加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.求月平均增长率.2.一带一路给沿线地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,甲志愿者计划完成此项工作的天数?二、一次函数应用4.低碳生活绿色出行的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为_________;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?三、二次函数应用5.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.四、解直角三角形应用6.灯塔是港口城市的标志性建筑之一,如图所示,在点B处测得灯塔最高点A的仰角∠ABD=45°,再沿BD方向前进至C处测得最高点A的仰角∠ACD=60°,BC=15.3m,求灯塔的高度AD(结果精确到1m,参考数据:√ 2≈1.41,√ 3≈1.73)7.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:√ 3,且点A,B,C,D,E 在同一平面内,求小明同学测得古塔AB的高度.8.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,求甲楼的高度.五、方程与不等式应用9.某市为创建文明城市,开展美化绿化城市活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?六、方程与函数应用10.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?七、一次函数与二次函数应用11.某汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数y(辆)有如下关系:(1)观察表格,辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:请求出公司的最大月收益是多少元.八、解直角三角形与方程应用12.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC 的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC长为260m.(1)求该滑雪场的高度h;(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.九、解直角三角形与圆应用13.如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sinA=ac ,sinB=bc,可得asinA=bsinB=csinC=2R,即asinA=bsinB=csinC=2R(规定sin90°=1).(1)探究活动:如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么:asinA ( )bsinB( )csinC(用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形.(2)初步应用:在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.(3)综合应用:如图3,在某次数学活动中,小玲同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度.(结果保留小数点后一位,参考数据:√3≈1.732,sin15°=√6−√24)十、方程、不等式与函数应用14.要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲,乙两种切割方式,如图2.切割,拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒__________个;若使用甲种方式切割的木板材y 张,则使用乙种方式切割的木板材__________张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20-12a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.参考答案1.解:设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990. 2.解:设每件产品的实际定价是x 元,则原定价为(x+40)元.5000x+40=4000x,解得x =160 ,经检验x =160是原方程的解.3.解:设甲志愿者计划完成此项工作需x 天,故甲的工效都为:1x ,由于甲、乙两人工效相同,则乙的工效为1x ,甲前两个工作日完成了1x ×2,剩余的工作量甲完成了1x (x −2−3),乙在甲工作两个工作日后完成了1x (x −2−3),则2x +2(x−2−3)x=1,解得x=8,经检验,x=8是原方程的解.4.解析:(1)在OA 段,速度=100.5 =20km/h(2)当1.5≤x ≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,y=20x ﹣20,当x=2.5时,解得y=30,乙地离小红家30千米.5(1)证明:∵矩形MEFN 与矩形EBCF 面积相等 ∴ME =BE,AM =GH∵四块矩形花圃的面积相等,即S 矩形AMND =2S 矩形MEFN ∴AM =2ME ∴AE =3BE (2)∵篱笆总长为100m∴2AB+GH+3BC =100即2AB+12AB+3BC=100 ∴AB=40-65 BC 设BC 的长度为xm,矩形区域ABCD 的面积为ym 2则y=BC ·AB=x(40- 65x)=−65x 2+40x ∵x>0,40- 65x>0 ∴0<x<1003∴ y=−65x 2+40x(0<x<1003)6.36m7.(20+10√ 3)m 8.(36﹣10√ 3)m9(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得360x−3601.6x =4解得x=33.75,经检验x=33.75是原分式方程的解,1.6x=1.6×33.75=54(2)设平均每年绿化面积增加a 万平方米,根据题意得54×2+2(54+a)≥360,解得a ≥72,则至少每年平均增加72万平方米. 10(1)y =10x+100(2)由题意得(10x+100)×(55﹣x ﹣35)=1760,整理得x 2﹣10x ﹣24=0,x 1=12,x 2=﹣2(舍去),55﹣x =43,这种消毒液每桶实际售价43元.11(1)设解析式y=kx+b,由题意得{3000k +b =1003200k +b =96,解得{k =−150b =160 ∴y 与x 间的函数关系是y =−150x +160(2)填表如下:(3)W =(−50x +160)(x −150)−(x −3000) =(−150x 2+163x −24000)−(x −3000) =−150x 2+162x −21000=−150(x −4050)2+307050当x=4050时,W 最大=307050,所以,当每辆车的月租金为4050元时,公司获得最大月收益307050元.12(1)过B 作BF ∥AD,过D 过AF ⊥AD,两直线交于F,过B 作BE 垂直地面交地面于E,如图:根据题知∠ABF =∠DAB =30°,AF =12AB =135m,BE:CE =1:2.4 设BE 长t 米,则CE 长2.4t 米. ∵BE 2+CE 2=BC2∴t 2+(2.4t)2=2602,解得t =100m(负值舍去),h =AF+BE =235m(2)设甲种设备每小时的造雪量是xm 3,则乙种设备每小时的造雪量是(x+35)m 3,根据题意得150x=500x+35,解得x =15,经检验,x =15是原方程的解,也符合题意,x+35=50.答:甲种设备每小时的造雪量是15m 3,则乙种设备每小时的造雪量是50m 3. 13(1)探究活动:a sinA = b sinB = csinC理由:如图2,过点C 作直径CD 交⊙O 于点D,连接BD. ∴∠A=∠D,∠DBC=90°∴sinA=sinD,sinD=a 2R ∴asinA = aa 2R=2R同理可证:b sinB =2R,c sinC =2R ∴a sinA = b sinB = csinC =2R (2)初步应用:∵asinA = bsinB =2R ∴8sin60° = bsin45° ∴b=8sin45°sin60°=8√63(3)综合应用:由题意得:∠D =90°,∠A =15°,∠DBC =45°,AB =100 ∴∠ACB =30°设古塔高DC=x,则BC=√2x ,AB sin∠ACB =BCsinA ,100sin30°=√2xsin15°,x=50(√3-1=36.6,古塔CD=36.6m.14(1)要制作200个A,B 两种规格的顶部无盖木盒,制作A 种木盒x 个,故制作B 种木盒(200-x)个;有200张规格为40cm ×40cm 的木板材,使用甲种方式切割的木板材y 张, 故使用乙种方式切割的木板材(200-y)张.(2)使用甲种方式切割的木板材y 张,则可切割出4y 个长、宽均为20cm 的木板,使用乙种方式切割的木板材(200-y)张,则可切割出8(200-y)个长为10cm,宽为20cm 的木板; 设制作A 种木盒x 个,则需要长、宽均为20cm 的木板5x 个,制作B 种木盒(200-x)个,则需要长、宽均为20cm 的木板(200-x)个,需要长为10cm 、宽为20cm 的木板4(200-x)个; 故{4y =5x +(200−x)8(200−y)=4(200−x),解得{x =100y =150 故制作A 种木盒100个,制作B 种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张.(3)用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,总成本为150×5+8×50=1150(元)两种木盒的销售单价均不能低于7元,不超过18元,所以{7≤a ≤187≤20−12a ≤18,解得{7≤a ≤184≤a ≤26,a 的取值范围为7≤a ≤18. 设利润为W,则W=100a+100(20-12a)-1150整理得W=850+50a,当a=18时,W 有最大值,最大值为850+50×18=1750,此时B 种木盒的销售单价定为20-12×18=11(元)即A 种木盒的销售单价定为18元,B 种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.。

2022年中考数学真题分项汇编(全国通用):应用题(函数、不等式、方程)(解析版)

2022年中考数学真题分项汇编(全国通用):应用题(函数、不等式、方程)(解析版)

专题19 应用题(函数、不等式、方程)一.解答题1.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg 的新鲜龙眼在无损耗的情况下可以加工成1kg 的龙眼干.(1)若新鲜龙眼售价为12元/kg ,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg 最多能卖出100kg ,超出部分平均售价是5元/kg ,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg 新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w 元,请写出w 与a 的函数关系式.【答案】(1)龙眼干的售价应不低于36元/kg (2)11,(100)50361700,(100)50a a w a a ⎧<⎪⎪=⎨⎪-≥⎪⎩【分析】(1)设龙眼干的售价应不低于x 元/kg ,新鲜龙眼共3a 千克,得到总收益为12×3a =36a 元;加工成龙眼干后总收益为ax 元,再根据龙眼干的销售收益不低于新鲜龙眼的销售收益得到不等式ax ≥36a ,解出即可;(2)设龙眼干的售价为y 元/千克,当100a <千克时求出新鲜龙眼的销售收益为12a 元,龙眼干的销售收益为47150ay 元,根据“龙眼干的销售收益不低于新鲜龙眼的销售收益,且龙眼干的定价取最低整数价格”得到4712150ay a ,解出39y =;然后再当100a ≥千克时同样求出新鲜龙眼收益与龙眼干收益,再相减即可求解. (1)解:设龙眼干的售价应不低于x 元/kg ,设新鲜龙眼共3a 千克,总销售收益为12×3a =36a (元), 加工成龙眼干后共a 千克,总销售收益为x ×a =ax (元),∵龙眼干的销售收益不低于新鲜龙眼的销售收益,∴ax ≥36a ,解出:x ≥36,故龙眼干的售价应不低于36元/kg .(2)解:a 千克的新鲜龙眼一共可以加工成147(16%)3150a a 千克龙眼干,设龙眼干的售价为y 元/千克,则龙眼干的总销售收益为47150ay 元, 当100a ≤千克时,新鲜龙眼的总收益为12a 元,∵龙眼干的销售收益不低于新鲜龙眼的销售收益,∴4712150ay a ,解出12150180038.34747y 元, 又龙眼干的定价取最低整数价格,∴39y =, ∴龙眼干的销售总收益为476113915050a a , 此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差61111125050a wa a 元; 当100a >千克时,新鲜龙眼的总收益为121005(100)(5700)a a 元, 龙眼干的总销售收益为61150a 元, 此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差 611361(5700)(700)5050a w a a 元, 故w 与a 的函数关系式为()11,10050361700,(100)50a a w a a ⎧≤⎪⎪=⎨⎪->⎪⎩. 【点睛】本题考查了一元一次不等式的应用、一次函数的实际应用等,本题的关键是读懂题意,明确题中的数量关系,正确列出函数关系式或不等式求解.2.(2022·黑龙江)学校开展大课间活动,某班需要购买A 、B 两种跳绳.已知购进10根A 种跳绳和5根B 种跳绳共需175元:购进15根A 种跳绳和10根B 种跳绳共需300元.(1)求购进一根A 种跳绳和一根B 种跳绳各需多少元?(2)设购买A 种跳绳m 根,若班级计划购买A 、B 两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?【答案】(1)购进一根A 种跳绳需10元,购进一根B 种跳绳需15元(2)有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根;方案二:购买A 种跳绳24根,B 种跳绳21根;方案三:购买A 种跳绳25根,B 种跳绳20根(3)方案三需要费用最少,最少费用是550元【分析】(1)设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,可列方程组1051751510300x y x y +=⎧⎨+=⎩, 解方程组即可求得结果;(2)根据题意可列出不等式组()()101545560101545548m m m m ⎧+-≤⎪⎨+-≥⎪⎩,解得:2325.4m ≤≤,由此即可确定方案; (3)设购买跳绳所需费用为w 元,根据题意,得()1015455675w m m m =+-=-+,结合函数图像的性质,可知w 随m 的增大而减小,即当25m =时525675550=-⨯+=.(1)解:设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,根据题意,得1051751510300x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩, 答:购进一根A 种跳绳需10元,购进一根B 种跳绳需15元;(2)根据题意,得()()101545560101545548m m m m ⎧+-≤⎪⎨+-≥⎪⎩, 解得2325.4m ≤≤,∵m 为整数,∴m 可取23,24,25.∴有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根;方案二:购买A 种跳绳24根,B 种跳绳21根;方案三:购买A 种跳绳25根,B 种跳绳20根;(3)设购买跳绳所需费用为w 元,根据题意,得()1015455675w m m m =+-=-+∵50-<,∴w 随m 的增大而减小,∴当25m =时,w 有最小值,即w 525675550=-⨯+=(元)答:方案三需要费用最少,最少费用是550元.【点睛】本题主要考查的是不等式应用题、二元一次方程组应用题、一次函数相关应用题,根据题意列出对应的方程是解题的关键.3.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【答案】(1)m=10;(2)11种;(3)购进甲种运动鞋95双,购进乙种运动鞋105双,可获得最大利润【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可.(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答.(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【详解】解:(1)依题意得,30002400m m20=-,去分母得,3000(m﹣20)=2400m,解得m=100.经检验,m=100是原分式方程的解.∴m=100.(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,()()()()240100x16080(200x)21700{240100x16080(200x)22300 -+--≥-+--≤①②,解不等式①得,x≥95,解不等式②得,x≤105,∴不等式组的解集是95≤x≤105.∵x是正整数,105﹣95+1=11,∴共有11种方案.(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,∴当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样.③当60<a<70时,60﹣a<0,W随x的增大而减小,∴当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.4.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.【答案】(1)购买绿萝38盆,吊兰8盆(2)369元【分析】(1)设购买绿萝x 盆,购买吊兰y 盆,根据题意建立方程组4696390x y x y +=⎧⎨+=⎩,解方程组即可得到答案;(2)设购买绿萝x 盆,购买吊兰y 盆,总费用为z ,得到关于z 的一次函数3414z y =-+,再建立关于y 的不等式组,解出y 的取值范围,从而求得z 的最小值.(1)设购买绿萝x 盆,购买吊兰y 盆∵计划购买绿萝和吊兰两种绿植共46盆∴46x y +=∵采购组计划将预算经费390元全部用于购买绿萝和吊兰,绿萝每盆9元,吊兰每盆6元∴96390x y +=得方程组4696390x y x y +=⎧⎨+=⎩解方程组得388x y =⎧⎨=⎩∵38>2×8,符合题意∴购买绿萝38盆,吊兰8盆;(2)设购买绿萝x 盆,购买吊兰吊y 盆,总费用为z∴46x y +=,96z x y =+∴4143z y =-∵总费用要低于过390元,绿萝盆数不少于吊兰盆数的2倍∴41433902y x y -<⎧⎨≥⎩将46x y =-代入不等式组得4143390462y y y -<⎧⎨-≥⎩∴4683y <≤∴y 的最大值为15 ∵3414z y =-+为一次函数,随y 值增大而减小∴15y =时,z 最小∴4631x y =-=∴96369z x y =+=元故购买两种绿植最少花费为369元.【点睛】本题考查二元一次方程组、一次函数、不等式组的性质,解题的关键是数量掌握二元一次方程组、一次函数、不等式组的相关知识.5.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?【答案】(1)甲种客车每辆200元,乙种客车每辆300元(2)租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元【分析】(1)可设甲种客车每辆x 元,乙种客车每辆y 元,根据等量关系:一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元,列出方程组求解即可;(2)设租车费用为w 元,租用甲种客车a 辆,根据题意列出不等式组,求出a 的取值范围,进而列出w 关于a 的函数关系式,根据一次函数的性质求解即可.(1)解:设甲种客车每辆x 元,乙种客车每辆y 元,依题意知,500231300x y x y +=⎧⎨+=⎩ ,解得200300x y =⎧⎨=⎩, 答:甲种客车每辆200元,乙种客车每辆300元;(2)解:设租车费用为w 元,租用甲种客车a 辆,则乙种客车()8a - 辆,()15258150a a +-≥,解得:5a ≤,()20030081002400w a a a =+-=-+,1000-<,w ∴随a 的增大而减小, a 取整数,a ∴最大为5,5a ∴=时,费用最低为100524001900-⨯+=(元),853-=(辆).答:租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元.【点睛】本题考查一次函数的应用,一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.6.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg 的新鲜龙眼在无损耗的情况下可以加工成1kg 的龙眼干.(1)若新鲜龙眼售价为12元/kg ,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg 最多能卖出100kg ,超出部分平均售价是5元/kg ,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg 新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w 元,请写出w 与a 的函数关系式.【答案】(1)龙眼干的售价应不低于36元/kg (2)11,(100)50361700,(100)50a a w a a ⎧<⎪⎪=⎨⎪-≥⎪⎩ 【分析】(1)设龙眼干的售价应不低于x 元/kg ,新鲜龙眼共3a 千克,得到总收益为12×3a =36a 元;加工成龙眼干后总收益为ax 元,再根据龙眼干的销售收益不低于新鲜龙眼的销售收益得到不等式ax ≥36a ,解出即可;(2)设龙眼干的售价为y 元/千克,当100a <千克时求出新鲜龙眼的销售收益为12a 元,龙眼干的销售收益为47150ay 元,根据“龙眼干的销售收益不低于新鲜龙眼的销售收益,且龙眼干的定价取最低整数价格”得到4712150ay a ,解出39y =;然后再当100a ≥千克时同样求出新鲜龙眼收益与龙眼干收益,再相减即可求解. (1)解:设龙眼干的售价应不低于x 元/kg ,设新鲜龙眼共3a 千克,总销售收益为12×3a =36a (元), 加工成龙眼干后共a 千克,总销售收益为x ×a =ax (元),∵龙眼干的销售收益不低于新鲜龙眼的销售收益,∴ax ≥36a ,解出:x ≥36,故龙眼干的售价应不低于36元/kg .(2)解:a 千克的新鲜龙眼一共可以加工成147(16%)3150a a 千克龙眼干,设龙眼干的售价为y 元/千克,则龙眼干的总销售收益为47150ay 元, 当100a ≤千克时,新鲜龙眼的总收益为12a 元,∵龙眼干的销售收益不低于新鲜龙眼的销售收益, ∴4712150ay a ,解出12150180038.34747y 元, 又龙眼干的定价取最低整数价格,∴39y =, ∴龙眼干的销售总收益为476113915050a a , 此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差61111125050a wa a 元; 当100a >千克时,新鲜龙眼的总收益为121005(100)(5700)a a 元,龙眼干的总销售收益为61150a 元, 此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差611361(5700)(700)5050a w a a 元, 故w 与a 的函数关系式为()11,10050361700,(100)50a a w a a ⎧≤⎪⎪=⎨⎪->⎪⎩. 【点睛】本题考查了一元一次不等式的应用、一次函数的实际应用等,本题的关键是读懂题意,明确题中的数量关系,正确列出函数关系式或不等式求解.7.(2022·黑龙江)学校开展大课间活动,某班需要购买A 、B 两种跳绳.已知购进10根A 种跳绳和5根B 种跳绳共需175元:购进15根A 种跳绳和10根B 种跳绳共需300元.(1)求购进一根A 种跳绳和一根B 种跳绳各需多少元?(2)设购买A 种跳绳m 根,若班级计划购买A 、B 两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?【答案】(1)购进一根A 种跳绳需10元,购进一根B 种跳绳需15元(2)有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根;方案二:购买A 种跳绳24根,B 种跳绳21根;方案三:购买A 种跳绳25根,B 种跳绳20根(3)方案三需要费用最少,最少费用是550元【分析】(1)设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,可列方程组1051751510300x y x y +=⎧⎨+=⎩, 解方程组即可求得结果;(2)根据题意可列出不等式组()()101545560101545548m m m m ⎧+-≤⎪⎨+-≥⎪⎩,解得:2325.4m ≤≤,由此即可确定方案; (3)设购买跳绳所需费用为w 元,根据题意,得()1015455675w m m m =+-=-+,结合函数图像的性质,可知w 随m 的增大而减小,即当25m =时525675550=-⨯+=.(1)解:设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,根据题意,得1051751510300x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩, 答:购进一根A 种跳绳需10元,购进一根B 种跳绳需15元;(2)根据题意,得()()101545560101545548m m m m ⎧+-≤⎪⎨+-≥⎪⎩,解得2325.4m ≤≤,∵m 为整数,∴m 可取23,24,25.∴有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根;方案二:购买A 种跳绳24根,B 种跳绳21根;方案三:购买A 种跳绳25根,B 种跳绳20根;(3)设购买跳绳所需费用为w 元,根据题意,得()1015455675w m m m =+-=-+∵50-<,∴w 随m 的增大而减小,∴当25m =时,w 有最小值,即w 525675550=-⨯+=(元)答:方案三需要费用最少,最少费用是550元.【点睛】本题主要考查的是不等式应用题、二元一次方程组应用题、一次函数相关应用题,根据题意列出对应的方程是解题的关键.8.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【答案】(1)m =10;(2)11种;(3)购进甲种运动鞋95双,购进乙种运动鞋105双,可获得最大利润【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可.(2)设购进甲种运动鞋x 双,表示出乙种运动鞋(200﹣x )双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答.(3)设总利润为W ,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【详解】解:(1)依题意得,30002400m m 20=-,去分母得,3000(m ﹣20)=2400m ,解得m =100.经检验,m =100是原分式方程的解.∴m =100.(2)设购进甲种运动鞋x 双,则乙种运动鞋(200﹣x )双,根据题意得,()()()()240100x 16080(200x)21700{240100x 16080(200x)22300-+--≥-+--≤①②, 解不等式①得,x ≥95,解不等式②得,x ≤105,∴不等式组的解集是95≤x ≤105.∵x 是正整数,105﹣95+1=11,∴共有11种方案.(3)设总利润为W ,则W =(140﹣a )x +80(200﹣x )=(60﹣a )x +16000(95≤x ≤105),①当50<a <60时,60﹣a >0,W 随x 的增大而增大,∴当x =105时,W 有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.②当a =60时,60﹣a =0,W =16000,(2)中所有方案获利都一样.③当60<a <70时,60﹣a <0,W 随x 的增大而减小,∴当x =95时,W 有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.9.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.【答案】(1)购买绿萝38盆,吊兰8盆(2)369元【分析】(1)设购买绿萝x 盆,购买吊兰y 盆,根据题意建立方程组4696390x y x y +=⎧⎨+=⎩,解方程组即可得到答案;(2)设购买绿萝x 盆,购买吊兰y 盆,总费用为z ,得到关于z 的一次函数3414z y =-+,再建立关于y 的不等式组,解出y 的取值范围,从而求得z 的最小值.(1)设购买绿萝x 盆,购买吊兰y 盆∵计划购买绿萝和吊兰两种绿植共46盆∴46x y +=∵采购组计划将预算经费390元全部用于购买绿萝和吊兰,绿萝每盆9元,吊兰每盆6元∴96390x y +=得方程组4696390x y x y +=⎧⎨+=⎩解方程组得388x y =⎧⎨=⎩ ∵38>2×8,符合题意∴购买绿萝38盆,吊兰8盆;(2)设购买绿萝x 盆,购买吊兰吊y 盆,总费用为z∴46x y +=,96z x y =+∴4143z y =-∵总费用要低于过390元,绿萝盆数不少于吊兰盆数的2倍∴41433902y x y-<⎧⎨≥⎩ 将46x y =-代入不等式组得4143390462y y y -<⎧⎨-≥⎩∴4683y <≤ ∴y 的最大值为15∵3414z y =-+为一次函数,随y 值增大而减小∴15y =时,z 最小∴4631x y =-=∴96369z x y =+=元故购买两种绿植最少花费为369元.【点睛】本题考查二元一次方程组、一次函数、不等式组的性质,解题的关键是数量掌握二元一次方程组、一次函数、不等式组的相关知识.10.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?【答案】(1)甲种客车每辆200元,乙种客车每辆300元(2)租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元【分析】(1)可设甲种客车每辆x 元,乙种客车每辆y 元,根据等量关系:一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元,列出方程组求解即可;(2)设租车费用为w 元,租用甲种客车a 辆,根据题意列出不等式组,求出a 的取值范围,进而列出w 关于a 的函数关系式,根据一次函数的性质求解即可.(1)解:设甲种客车每辆x 元,乙种客车每辆y 元,依题意知,500231300x y x y +=⎧⎨+=⎩ ,解得200300x y =⎧⎨=⎩ , 答:甲种客车每辆200元,乙种客车每辆300元;(2)解:设租车费用为w 元,租用甲种客车a 辆,则乙种客车()8a - 辆,()15258150a a +-≥,解得:5a ≤,()20030081002400w a a a =+-=-+,1000-<,w ∴随a 的增大而减小, a 取整数,a ∴最大为5,5a ∴=时,费用最低为100524001900-⨯+=(元),853-=(辆).答:租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元.【点睛】本题考查一次函数的应用,一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.11.(2022·广西河池)为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.(1)桂花树和芒果树的单价各是多少元?(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n ,总费用为w 元,求w 关于n 的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?【答案】(1)桂花树单价90元/棵,芒果树的单价50元/棵;(2)()4030003560w n n =+≤≤;当购买35棵挂花树,25棵芒果树时,费用最低,最低费用为4400元.【分析】(1)设桂花树单价x 元/棵,芒果树的单价y 元/棵,根据桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元,列出二元一次方程组解出即可;(2)设购买挂花树n 棵,则芒果树为()60n -棵,根据题意求出w 关于n 的函数关系式,然后根据桂花树不少于35棵求出n 的取值范围,再根据n 是正整数确定出购买方案及最低费用.(1)解:设桂花树单价x 元/棵,芒果树的单价y 元/棵,根据题意得:4032370x y x y =+⎧⎨+=⎩, 解得:9050x y =⎧⎨=⎩, 答:桂花树单价90元/棵,芒果树的单价50元/棵;(2)设购买桂花树的棵数为n ,则购买芒果树的棵数为()60n -棵,根据题意得()()9050604030003560w n n n n =+-=+≤≤,400>,∴w 随n 的增大而增大,∴当35n =时,=4035+3000=4400w ⨯最小元,此时()60=603525n --=,∴当购买35棵挂花树,25棵芒果树时,费用最低,最低费用为4400元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.12.(2022·辽宁锦州)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y (个)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w 元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?【答案】(1)2100y x =-+;(2)40元或20元;(3)当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元;【分析】(1)直接由待定系数法,即可求出一次函数的解析式;(2)根据题意,设当天玩具的销售单价是x 元,然后列出一元二次方程,解方程即可求出答案; (3)根据题意,列出w 与x 的关系式,然后利用二次函数的性质,即可求出答案.(1)解:由图可知,设一次函数的解析式为y kx b =+,把点(25,50)和点(35,30)代入,得25503530k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩, ∴一次函数的解析式为2100y x =-+;(2)解:根据题意,设当天玩具的销售单价是x 元,则(10)(2100)600x x -⨯-+=,解得:140x =,220x =,∴当天玩具的销售单价是40元或20元;(3)解:根据题意,则(10)(2100)w x x =-⨯-+,整理得:22(30)800w x =--+;∵20-<,∴当30x =时,w 有最大值,最大值为800;∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.【点睛】本题考查了二次函数的性质,二次函数的最值,一次函数的应用,解一元二次方程,解题的关键是熟练掌握题意,正确的找出题目的关系,从而进行解题.13.(2022·内蒙古呼和浩特)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?【答案】(1)去年每吨土豆的平均价格是2200元(2)应将175吨土豆加工成薯片,最大利润为202500元【分析】(1)设去年每吨土豆的平均价格是x 元,则第一次采购的平均价格为(x +200)元,第二次采购的平均价格为(x -200)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的土豆枣数,根据所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,据此列不等式组求解,然后求出最大利润.(1)设去年每吨土豆的平均价格是x 元, 由题意得,3000005000002200200x x ⨯=+- , 解得:2200x =,经检验:2200x =是原分式方程的解,且符合题意,答:去年每吨土豆的平均价格是2200元;(2)由(1)得,今年的土豆数为:30000033752400⨯=(吨), 设应将m 吨土豆加工成薯片,则应将(375-m )吨加工成淀粉, 由题意得,()237533756058m m m m ≥--+≤⎧⎪⎪⎨⎪⎪⎩, 解得:150175m ≤≤,。

中考数学应用题(各类应用题汇总练习)

中考数学应用题(各类应用题汇总练习)

中考数学应用题(各类应用题汇总练习)中考数学应用题是考察学生在解决实际问题中应用数学知识和思维方法的能力。

这类题目通常涉及到数学与日常生活、生产劳动、科学技术等方面的联系,要求学生能够理解问题背景,运用数学知识去解决问题。

一、人民币兑换问题题目要求学生计算将一种货币兑换成另一种货币的数目。

例如,将人民币兑换成美元,或者将美元兑换成欧元等。

题目可设计如下:甲有5000人民币,最近他打算去美国旅行,需要将人民币兑换成美元。

已知1美元兑换成6.5人民币,甲打算兑换多少美元?二、购物打折问题题目要求学生计算购物时的打折优惠,例如满减、折扣等。

题目可设计如下:小明去商场购买一条裤子,这条裤子原价280元,商场正在举行活动,凡是购买满300元的商品都可以打8折。

小明购买这条裤子需要支付多少钱?三、完全平方数问题题目要求学生判断一个数是否为完全平方数,并计算它的平方根。

题目可设计如下:已知某个数的平方根是16,请计算这个数是多少?四、速度和距离问题题目要求学生根据给定的速度和时间,计算距离。

题目可设计如下:甲以每小时60千米的速度骑自行车,乙以每小时80千米的速度骑自行车,他们同时从相距200千米的地方出发相向而行。

请问他们相遇需要多少时间?五、平均数问题题目要求学生计算一组数的平均数,并应用平均数解决实际问题。

题目可设计如下:小明参加了五次考试,分别得到60分、70分、80分、90分和100分,请问他的平均分是多少?以上是中考数学应用题中的一些常见类型。

通过解答这些问题,学生们可以理解数学知识在实际生活中的应用,培养数学思维和解决问题的能力。

中考数学应用题汇编及解析

中考数学应用题汇编及解析

一、代数应用题:1、农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间管理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?[解析] (1)由题意,得1.62120%=-(元); (2)设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =(千克)(120%) 1.811700x x x +-==(千克)答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; (2)小王去年卖给国家的稻谷共为11700千克.2、机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?[解析](1)由题意,得70(160%)7040%28⨯-=⨯=(千克) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --=部门经理解得:1275,10x x ==-(舍去)(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.3、某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1(2中位数为 元,众数为(3问题,并指出用(2实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.[解析] (1)由表中数据知有16名;(2)由表中数据知中位数为1700;众数为1600;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也可以) (4)250050210008400346y ⨯--⨯=≈1713(元).y 能反映.4、某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC 由同一平面内的两段抛物线组成,其中AB 所在的抛物线以A 为顶点、开口向下,BC 所在的抛物线以C 为顶点、开口向上.以过山脚(点C )的水平线为x 轴、过山顶(点A )的铅垂线为y 轴建立平面直角坐标系如图(单位:百米).已知AB 所在抛物线的解析式为8412+-=x y ,BC 所在抛物线的解析式为2)8(41-=x y ,且已知)4,(m B . (1)设),(y x P 是山坡线AB 上任意一点,用y 表示x ,并求点B 的坐标;(2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图).①分别求出前三级台阶的长度(精确到厘米); ②这种台阶不能一直铺到山脚,为什么?(3)在山坡上的700米高度(点D )处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E 处,1600=OE (米).假设索道DE 可近似地看成一段以E 为顶点、开口向上的抛物线,解析式为2)16(281-=x y .试求索道的最大悬空..高度.[∴8412+-=x y ,0≥x , (…2分) ∴)8(42y x -=,y x -=82(…3分) ∵)4,(m B ,∴482-=m =4,∴)4,4(B(…4分)(2)在山坡线AB 上,y x -=82,)8,0(A①令80=y ,得00=x ;令998.7002.081=-=y ,得08944.0002.021≈=x ∴第一级台阶的长度为08944.001=-x x (百米)894≈(厘米)(…6分)同理,令002.0282⨯-=y 、002.0383⨯-=y ,可得12649.02≈x 、15492.03≈x ∴第二级台阶的长度为03705.012=-x x (百米)371≈(厘米) (…7分) 第三级台阶的长度为02843.023=-x x (百米)284≈(厘米)(…8分)②取点)4,4(B ,又取002.04+=y ,则99900.3998.32≈=x∵002.0001.099900.34<=-∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 (…10分)(注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性) ②另解:连接任意一段台阶的两端点P 、Q ,如图 ∵这种台阶的长度不小于它的高度 ∴︒≤∠45PQR当其中有一级台阶的长大于它的高时, ︒<∠45PQR(…9分)在题设图中,作OA BH ⊥于H则︒=∠45ABH ,又第一级台阶的长大于它的高∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 (…10分)(3))7,2(D 、)0,16(E 、)4,4(B 、)0,8(C由图可知,只有当索道在BC 上方时,索道的悬空..高度才有可能取最大值(…11分) 索道在BC 上方时,悬空..高度2)16(281-=x y 2)8(41--x )96403(1412-+-=x x 38)320(1432+--=x (…13分)当320=x 时,38m ax =y∴索道的最大悬空..高度为3800米. 5、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题: (1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米; (2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?PQR时)(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?[解析] (1)2;10;(2)①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点(6,60), ∴6 k 1=60,解得k 1=10, ∴y =10x .②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点(2,30)、(6,50),∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩∴y =5x +20.③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队.(说明:通过观察图象并用方程来解决问题,正确的也给分) (3)由图可知,甲队速度是:60÷6=10(米/时).设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米.6、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x (元),该经销店的月利润为y (元). (1)当每吨售价是240元时,计算此时的月销售量;(2)求出y 与x 的二次函数关系式(不要求写出x 的取值范围);(3)请把(2)中的二次函数配方成2()y a x h k =-+的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元;(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.[解析] (1)5.71024026045⨯-+=60(吨).(2)260(100)(457.5)10xy x -=-+⨯,化简得: 23315240004y x x =-+-.(3)24000315432-+-=x x y 23(210)90754x =--+.利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对.理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=xx W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大. ∴当x 为210元时,月销售额W 不是最大. ∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元;而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.(说明:如果举出其它反例,说理正确,也相应给分)二、几何应用题:8、图10—1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图10—2是车棚顶部截面的示意图, AB 所在圆的圆心为O . 车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).[解析]连结OB ,过点O 作OE ⊥AB ,垂足为E ,交 AB 于F ,如图1.…………(1分)由垂径定理,可知: E 是AB 中点,F 是 AB 中点,∴EF 是弓形高 .∴AE ==AB 2123,EF =2. …………(2分) 设半径为R 米,则OE =(R -2)米.在Rt △AOE 中,由勾股定理,得 R 2=22)32()2(+-R .解得 R =4. ……………………………………………………………………(5分)O BA·图10—2图10—1图1∵sin ∠AOE =23=OA AE , ∴ ∠AOE =60°, ………………………………(6分)∴∠AOB =120°. ∴ AB 的长为1804120π⨯=38π.………………………(7分) ∴帆布的面积为38π×60=160π(平方米). …………………………………(8分)(说明:本题也可以由相交弦定理求圆的半径的长.对于此种解法,请参照此评分标准相应给分)9、图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中心也是点O ,它以每秒1个单位长的速度由起始位置向外扩大(即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动(即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y 个平方单位.(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式. (3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)图14-6D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5 D图14-7DP[解析](1)相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.(2)①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,则MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-(7-x )= x -1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则 TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1. ∴y=MN ·MT =6(x -1)=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则 TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x . ∴y = MN ·MT =6(13-x )=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =(13-x )(27-2x )=2x 2-53x +351.(说明:以上四种情形,所求得的y 与x 的函数关系式正确的,若不化简不扣分) (3)对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36. ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;当x =35时,y 取得最大值36.④在DA 边上移动时,当42≤x ≤43及55≤x ≤56时,y 取得最小值0; 当x =49时,y 取得最大值36.图2-4 D 图2-5D P图2-6D图2-3 DQ P 图2-2D 图2-1D Q P。

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题中考初中数学应用题经典练题一、综合题(共8题;共85分)1.(10分)(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3)。

根据表格,当用水量不超过22立方米时,每立方米的水费为a元,超过22立方米后,每立方米的水费为1.5元。

1) 已知某用户用水10立方米,共交水费23元,求a的值。

解:设a为每立方米的水费。

当用水量不超过22立方米时,总用水量为10立方米,总水费为10a元。

当用水量超过22立方米时,总用水量为0立方米,总水费为0元。

因此,总水费为10a元,根据题意,有10a+12(1.5)=23,解得a=1.05.2) 在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解:当用水量不超过22立方米时,总用水量为x立方米,总水费为xa元。

当用水量超过22立方米时,总用水量为5月份用水量减去22立方米,总水费为(5月份用水量-22)×1.5元。

因此,总水费为xa+(5月份用水量-22)×1.5元,根据题意,有xa+(5月份用水量-22)×1.5=71,代入a=1.05,解得5月份用水量为34立方米。

2.(10分)XXX要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元。

1) 求每个A型放大镜和每个B型放大镜各多少元?设每个A型放大镜的价格为x元,每个B型放大镜的价格为y元。

根据题意,有8x+5y=220,4x+6y=152.解得x=12,y=28,因此每个A型放大镜12元,每个B 型放大镜28元。

2) XXX决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?设购买A型放大镜的数量为m,购买B型放大镜的数量为n。

根据题意,有mx+ny≤1180,m+n=75.要求购买的A型放大镜数量最多,即要求x/m的值最小。

中考数学典型应用题

中考数学典型应用题

中考数学:应用题1.据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?2. 山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?3.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?4.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.54.某服装厂设计了一款新式夏装,想尽快制作8800 件投入市场,服装厂有A、B 两个制衣车间,A 车间每天加工的数量是B车间的1.2 倍,A、B 两车间共同完成一半后,A 车间出现故障停产,剩下全部由B 车间单独完成,结果前后共用20 天完成,求A、B 两车间每天分别能加工多少件.6.学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.7.为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.8.为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1220元,问购进A 、B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.9. 在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工。

中考数学应用题练习题库及答案

中考数学应用题练习题库及答案

中考数学应用题练习题库及答案在下面的文章中,我将提供一些中考数学应用题的练习题库及答案。

文章将根据合适的格式书写,以确保信息的清晰呈现。

请阅读以下内容:题目:中考数学应用题练习题库及答案一、选择题:1. 一根铁丝长2米,要将它剪成两段,使得其中一段是另一段的3倍,求两段铁丝各有多长?A. 1米和1米B. 0.8米和1.2米C. 0.6米和1.4米D. 0.5米和1.5米答案:C2. 如果一个等差数列的首项是3,公差是4,那么它的第8项是多少?A. 27B. 28C. 29D. 30答案:C3. 一块面积为64平方厘米的正方形纸板,从中剪掉一个面积为36平方厘米的小正方形纸板,剩下的形状是什么?A. 长方形B. 正方形C. 圆形D. 梯形答案:A二、填空题:1. 已知正方形边长为5厘米,求其周长是多少?答案:20厘米2. 某商品原价为100元,现以8折优惠出售,打完折后的价格是多少元?答案:80元3. 若两根相交线段的长度分别为5厘米和12厘米,求它们的夹角的正弦值。

答案:0.8三、解答题:1. 一连数的和是12345,已知这个连数有45个数,第一个数和最后一个数依次为a和b,求a和b的大小。

答案:a=1,b=45解析:连续数的和等于首项和末项乘以项数的一半,即(a+b) * 45/2 = 12345。

解方程得到a=1,b=45。

2. 高为15厘米的三角形与高为12厘米的梯形的面积相等,那么这两个多边形底边之间的长度差是多少?答案:4厘米解析:三角形的面积为底边乘以高的一半,梯形的面积为上底加下底再乘以高的一半。

用等式表示为(15 * 底边) / 2 = (12 * (上底 + 下底)) / 2。

整理得底边 = 上底 + 下底 - 4。

以上是一些中考数学应用题的练习题库及答案,希望对你的学习有所帮助。

2023年全国各地中考数学真题分类汇编之一次方程(组)及其应用(含解析)

2023年全国各地中考数学真题分类汇编之一次方程(组)及其应用(含解析)

一次方程(组)及其应用一、单选题1.(2023·浙江温州·统考中考真题)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g.设蛋白质、脂肪的含量分别为,,可列出方程为()A.B.C.D.2.(2023·湖北荆州·统考中考真题)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为( )A.B.C.D.3.(2023·黑龙江齐齐哈尔·统考中考真题)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为的导线,将其全部截成和两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有()A.5种B.6种C.7种D.8种4.(2023·四川成都·统考中考真题)《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余尺.问木长多少尺?设木长尺,则可列方程为()A.B.C.D.5.(2023·四川南充·统考中考真题)《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x尺,则可列方程为()A.B.C.D.6.(2023·四川宜宾·统考中考真题)“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有只,兔有只,则所列方程组正确的是( )A.B.C.D.7.(2023·江苏连云港·统考中考真题)元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,鸡马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行里,慢马每天行里,驽马先行天,快马几天可追上慢马?若设快马天可追上慢马,由题意得()A.B.C.D.8.(2023·浙江宁波·统考中考真题)茶叶作为浙江省农业十大主导产业之一,是助力乡村振兴的民生产业.某村有土地60公顷,计划将其中的土地种植蔬菜,其余的土地开辟为茶园和种植粮食,己知茶园的面积比种粮食面积的2倍少3公顷,问茶园和种粮食的面积各多少公顷?设茶园的面积为x公顷,种粮食的面积为y公顷,可列方程组为()A.B.C.D.9.(2023·浙江绍兴·统考中考真题)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为斛,小容器的容量为斛,则可列方程组是()A.B.C.D.10.(2023·湖南·统考中考真题)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设有x只鸡,y只兔.依题意,可列方程组为()A.B.C.D.11.(2023·广西·模拟预测)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.B.C.D.12.(2023·黑龙江·统考中考真题)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A,B,C三种图书,A种每本30元,B种每本25元,C种每本20元,其中A种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有()A.5种B.6种C.7种D.8种13.(2023·四川南充·统考中考真题)关于x,y的方程组的解满足,则的值是()A.1B.2C.4D.814.(2022春·湖北十堰·七年级统考期末)《九章算术》是我国古代数学的经典书,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等;交易其一,金轻十三两.问金、银一枚各重几何?”意思是甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可列方程组为()A.B.C.D.15.(2023·四川眉山·统考中考真题)已知关于的二元一次方程组的解满足,则m的值为()A.0B.1C.2D.3二、填空题16.(2023·全国·统考中考真题)《九章算术》中记载了一道数学问题,其译文为:有人合伙买羊,每人出5钱,还缺45钱;每人出7钱,还缺3钱.问合伙人数是多少?为解决此问题,设合伙人数为x人,可列方程为__________.17.(2023·辽宁大连·统考中考真题)我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出元钱,会多钱;每人出元钱,又差钱,问人数有多少.设有人,则可列方程为:_______________.18.(2023·四川泸州·统考中考真题)关于,的二元一次方程组的解满足,写出的一个整数值___________.19.(2023·内蒙古通辽·统考中考真题)点Q的横坐标为一元一次方程的解,纵坐标为的值,其中a,b满足二元一次方程组,则点Q关于y轴对称点的坐标为___________.20.(2023·浙江·统考中考真题)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝斤,干燥后耗损斤两(古代中国斤等于两).今有干丝斤,问原有生丝多少?”则原有生丝为__________斤.三、解答题21.(2023·江苏连云港·统考中考真题)解方程组22.(2023·浙江台州·统考中考真题)解方程组:23.(2023·湖南常德·统考中考真题)解方程组:甲地上涨,乙地降价元,已知销售单价调整前甲地比乙地少元,调整后甲地比乙地少元,求调整前甲、乙两地该商品的销售单价.27.(2023·全国·统考中考真题)2022年12月28日查干湖冬捕活动后,某商家销售A,B两种查干湖野生鱼,如果购买1箱A种鱼和2箱B种鱼需花费1300元:如果购买2箱A种鱼和3箱B种鱼需花费2300元.分别求每箱A种鱼和每箱B种鱼的价格.28.(2023·重庆·统考中考真题)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?29.(2023·四川广安·统考中考真题)“广安盐皮蛋”是小平故里的名优特产,某超市销售两种品牌的盐皮蛋,若购买9箱种盐皮蛋和6箱种盐皮蛋共需390元;若购买5箱种盐皮蛋和8箱种盐皮蛋共需310元.(1)种盐皮蛋、种盐皮蛋每箱价格分别是多少元?(2)若某公司购买两种盐皮蛋共30箱,且种的数量至少比种的数量多5箱,又不超过种的2倍,怎样购买才能使总费用最少?并求出最少费用.(含部分(含的部分3.15以上的部分3.63量的上限分别增加.人,年用气量为,则该年此户需缴纳燃气费用为人,年用气量为,该年此户需缴纳燃气费用为元,求与的函比甲户多用多少立方米的燃气?(结果精确到)包,包,参考答案一、单选题1.【答案】A【分析】根据碳水化合物、蛋白质与脂肪的含量共30g列方程.【详解】解:设蛋白质、脂肪的含量分别为,,则碳水化合物含量为,则:,即,故选:A.【点拨】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程.2.【答案】A【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子=木条+4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:绳子=木条-1,据此列出方程组即可.【详解】解:设木条长x尺,绳子长y尺,那么可列方程组为:,故选:A.【点拨】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.3.【答案】C【分析】设和两种长度的导线分别为根,根据题意,得出,进而根据为正整数,即可求解.【详解】解:设和两种长度的导线分别为根,根据题意得,,即,∵为正整数,∴则,故有7种方案,故选:C.【点拨】本题考查了二元一次方程的应用,根据题意列出方程求整数解是解题的关键.4.【答案】A【分析】设木长尺,根据题意“用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余尺”,列出一元一次方程即可求解.【详解】解:设木长尺,根据题意得,,故选:A.【点拨】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.5.【答案】A【分析】设长木长为x尺,则绳子长为尺,根据“将绳子对折再度量长木,长木还剩余1尺”,可列出方程.【详解】设长木长为x尺,则绳子长为尺,根据题意,得故选:A.【点拨】本题考查一元一次方程解决实际问题,理解题意,找出等量关系列出方程是解题的关键.6.【答案】B【分析】根据题意,由设鸡有只,兔有只,则由等量关系有35个头和有94条腿列出方程组即可得到答案.【详解】解:设鸡有只,兔有只,则由题意可得,故选:B.【点拨】本题考查列二元一次方程组解决古代数学问题,读懂题意,找准等量关系列方程组是解决问题的关键.7.【答案】D【分析】设快马天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马天可追上慢马,由题意得故选:D.【点拨】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.8.【答案】B【分析】根据某村有土地60公顷,计划将其中的土地种植蔬菜,得到种植茶园和种植粮食的面积为,结合茶园的面积比种粮食面积的2倍少3公顷,列出方程组即可.【详解】解:设茶园的面积为x公顷,种粮食的面积为y公顷,由题意,得:,即:故选B.【点拨】本题考查根据实际问题列方程组.找准等量关系,正确的列出方程组,是解题的关键.9.【答案】B【分析】设大容器的容积为x斛,小容器的容积为y斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x、y的二元一次方程组.【详解】解:设大容器的容积为x斛,小容器的容积为y斛,根据题意得:.故选:B.【点拨】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x、y的二元一次方程组是解题的关键.10.【答案】C【分析】根据等量关系“鸡的只数兔的只数”和“2鸡的只数兔的只数”即可列出方程组.【详解】解:设有x只鸡,y只兔,由题意可得:,故选:C.【点拨】本题主要考查了由实际问题抽象出二元一次方程组,解题的关键是找出等量关系.11.【答案】D【分析】设快马x天可以追上慢马,根据路程=速度×时间,即可得出关于x的一元一次方程,此题得解.【详解】解:设快马x天可以追上慢马,依题意,得:240x-150x=150×12.故选:D.【点拨】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.12.【答案】B【分析】设采购A种图书x本,B种图书y本,C种图书z本,根据采购三种图书需500元列出方程,再依据x的数量分两种情况讨论求解即可.【详解】解:设采购A种图书x本,B种图书y本,C种图书z本,其中且均为整数,根据题意得,,整理得,,①当时,,∴∵且均为整数,∴当时,,∴;当时,,∴;当时,,∴;②当时,,∴∵且均为整数,∴当时,,∴;当时,,∴;当时,,∴;综上,此次共有6种采购方案,故选:B.【点拨】本题主要考查了二元一次方程的应用,正确理解题意、进行分类讨论是解答本题的关键.13.【答案】D【分析】法一:利用加减法解方程组,用表示出,再将求得的代数式代入,得到的关系,最后将变形,即可解答.法二:中得到,再根据求出代入代数式进行求解即可.【详解】解:法一:,得,解得,将代入,解得,,,得到,,法二:得:,即:,∵,∴,,故选:D.【点拨】本题考查了根据二元一次方程解的情况求参数,同底数幂除法,幂的乘方,熟练求出的关系是解题的关键.14.【答案】C【分析】根据题意第一个等量关系为9枚黄金和11枚白银的重量相等列二元一次方程;再根据第二个等量关系为1枚黄金和10枚白银重量和比8枚黄金和1枚白银重量和大13列二元一次方程,即可得二元一次方程组.【详解】解:设每枚黄金重x两,每枚白银重y两,根据题意得,.故选:C.【点拨】本题考查二元一次方程组的实际应用,找出两个等量关系是列方程组的关键.15.【答案】B【分析】将方程组的两个方程相减,可得到,代入,即可解答.【详解】解:,得,,代入,可得,解得,故选:B.【点拨】本题考查了根据解的情况求参数,熟练利用加减法整理代入是解题的关键.二、填空题16.【答案】【分析】根据题中钱的总数列一元一次方程即可.【详解】解:设合伙人数为x人,根据题意列方程;故答案为:.【点拨】本题主要考查了一元一次方程的应用,准确分析列方程是解题的关键.17.【答案】【分析】设有人,每人出8元钱,会多3钱,则物品的钱数为:元,每人出7元钱,又差4钱,则物品的钱数为:元,根据题意列出一元一次方程即可求解.【详解】设有人,每人出8元钱,会多3钱,则物品的钱数为:元,每人出7元钱,又差4钱,则物品的钱数为:元,则可列方程为:故答案为:.【点拨】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.18.【答案】7(答案不唯一)【分析】先解关于x、y的二元一次方程组的解集,再将代入,然后解关于a的不等式的解集即可得出答案.【详解】将两个方程相减得,∵,∴,∴,∵,∴,∴,∴的一个整数值可以是7.故答案为:7(答案不唯一).【点拨】本题主要考查了解二元一次方程组和解一元一次不等式,整体代入的思想方法是解答本题的亮点.19.【答案】【分析】先分别解一元一次方程和二元一次方程组,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:,移项合并同类项得,,系数化为1得,,∴点Q的横坐标为5,∵,由得,,解得:,把代入①得,,解得:,∴,∴点Q的纵坐标为,∴点Q的坐标为,又∴点Q关于y轴对称点的坐标为,故答案为:.【点拨】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q的坐标是解题的关键.20.【答案】【分析】设原有生丝斤,根据题意列出方程,解方程即可求解.【详解】解:设原有生丝斤,依题意,解得:,故答案为:.【点拨】本题考查了一元一次方程的应用,根据题意列出方程解题的关键.三、解答题21.【答案】【分析】方程组运用加减消元法求解即可.【详解】解:①+②得,解得,将代入①得,解得.∴原方程组的解为【点拨】本题主要考查了解二元一次方程组,方法主要有:代入消元法和加减消元法.22.【答案】【分析】把两个方程相加消去y,求解x,再把x的值代入第1个方程求解y即可.【详解】解:①+②,得.∴.把代入①,得.∴这个方程组的解是.【点拨】本题考查的是二元一次方程组的解法,熟练的利用加减消元法解方程组是解本题的关键.23.【答案】【分析】方程组利用加减消元法求解即可.【详解】解:将①得:③得:将代入①得:所以是原方程组的解.【点拨】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.24.【答案】(1)参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)租14辆45座客车较合算【分析】(1)设参加此次研学活动的师生有x人,原计划租用45座客车y辆,根据题意列出二元一次方程组求解即可;(2)由(1)结论求出所需费用比较即可.【详解】(1)解:设参加此次研学活动的师生有x人,原计划租用45座客车y辆依题意得解得:,答:参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)∵要使每位师生都有座位,∴租45座客车14辆,则租60座客车10辆,,,∵∴租14辆45座客车较合算.【点拨】题目主要考查二元一次方程组的应用及有理数乘法的应用,理解题意是解题关键.25.【答案】该客车的载客量为40人【分析】设该客车的载客量为人,由题意知,,计算求解即可.【详解】解:设该客车的载客量为人,由题意知,,解得,,∴该客车的载客量为40人.【点拨】本题考查了一元一次方程的应用.解题的关键在于根据题意正确的列方程.26.【答案】调整前甲、乙两地该商品的销售单价分别为元【分析】设调整前甲、乙两地该商品的销售单价分别为元,根据题意,列出二元一次方程组,解方程组即可求解.【详解】解:设调整前甲、乙两地该商品的销售单价分别为元,根据题意得,解得:答:调整前甲、乙两地该商品的销售单价分别为元【点拨】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.27.【答案】每箱A种鱼的价格是700元,每箱B种鱼的价格是300元.【分析】设每箱A种鱼的价格是元,每箱B种鱼的价格是元,根据题意建立方程组,解方程组即可得.【详解】解:设每箱A种鱼的价格是元,每箱B种鱼的价格是元,由题意得:,解得,答:每箱A种鱼的价格是700元,每箱B种鱼的价格是300元.【点拨】本题考查了二元一次方程组的应用用,正确建立方程组是解题关键.28.【答案】(1)甲区有农田50000亩,乙区有农田40000亩;(2)100亩【分析】(1)设甲区有农田亩,则乙区有农田亩,根据甲区农田的和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;(2)设派往甲区每架次无人机平均喷洒亩,派往甲区的无人机架次为架次,则派往乙区每架次无人机平均喷洒亩,派往乙区的无人机架次为架次,根据两区喷洒的面积相同建立方程,解方程即可得.【详解】(1)解:设甲区有农田亩,则乙区有农田亩,由题意得:,解得,则,答:甲区有农田50000亩,乙区有农田40000亩.(2)解:设派往甲区每架次无人机平均喷洒亩,派往甲区的无人机架次为架次,则派往乙区每架次无人机平均喷洒亩,派往乙区的无人机架次为架次,由题意得:,即,解得,答:派往甲区每架次无人机平均喷洒100亩.【点拨】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.29.【答案】(1)种盐皮蛋每箱价格是30元,种盐皮蛋每箱价格是20元;(2)购买种盐皮蛋18箱,种盐皮蛋12箱才能使总费用最少,最少费用为780元【分析】(1)设种盐皮蛋每箱价格是元,种盐皮蛋每箱价格是元,根据题意建立方程组,解方程组即可得;(2)设购买种盐皮蛋箱,则购买种盐皮蛋箱,根据题意建立不等式组,解不等式组可得的取值范围,再结合为正整数可得所有可能的取值,然后根据(1)的结果逐个计算总费用,找出总费用最少的购买方案即可.【详解】(1)解:设种盐皮蛋每箱价格是元,种盐皮蛋每箱价格是元,由题意得:,解得,答:种盐皮蛋每箱价格是30元,种盐皮蛋每箱价格是20元.(2)解:设购买种盐皮蛋箱,则购买种盐皮蛋箱,购买种的数量至少比种的数量多5箱,又不超过种的2倍,,解得,又为正整数,所有可能的取值为18,19,20,①当,时,购买总费用为(元),②当,时,购买总费用为(元),③当,时,购买总费用为(元),所以购买种盐皮蛋18箱,种盐皮蛋12箱才能使总费用最少,最少费用为780元.【点拨】本题考查了二元一次方程组的应用、一元一次不等式组的应用,正确建立方程组和不等式组是解题关键.30.【答案】(1)534;(2);(3)26立方米【分析】(1)根据第一阶梯的费用计算方法进行计算即可;(2)根据“单价×数量=总价”可得y与x之间的函数关系式;(3)根据两户的缴费判断收费标准列式计算即可解答.【详解】(1)∵,∴该年此户需缴纳燃气费用为:(元),故答案为:534;(2)关于的表达式为(3)∵,∴甲户该年的用气量达到了第三阶梯.由(2)知,当时,,解得.又∵,且,∴乙户该年的用气量达到第二阶梯,但末达到第三阶梯.设乙户年用气量为.则有,解得,∴.答:该年乙户比甲户多用约26立方米的燃气.【点拨】本题考查了一次函数的应用,一元一次方程的应用以及列代数式,解题的关键是找准等量关系,正确列出一元一次方程.31.【答案】(1)该班的学生人数为45人;(2)至少购买了甲树苗80棵【分析】(1)设该班的学生人数为x人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m棵,则购买了乙树苗棵树苗,再根据总费用不超过5400元列出不等式求解即可.【详解】(1)解:设该班的学生人数为x人,由题意得,,解得,∴该班的学生人数为45人;(2)解:由(1)得一共购买了棵树苗,设购买了甲树苗m棵,则购买了乙树苗棵树苗,由题意得,,解得,∴m得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点拨】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.32.【答案】(1)这台M型平板电脑的价值为元;(2)她应获得元的报酬【分析】(1)设这台M型平板电脑的价值为元,根据题意,列出方程进行求解即可;(2)根据题意,列出代数式即可.【详解】(1)解:设这台M型平板电脑的价值为元,由题意,得:,解得:;∴这台M型平板电脑的价值为元;(2)解:由题意,得:;答:她应获得元的报酬.【点拨】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.33.【答案】(1)豆沙粽的单价为4元,肉粽的单价为8元;(2)①豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②【分析】(1)设豆沙粽的单价为x元,则肉粽的单价为元,依题意列一元一次方程即可求解;(2)①设豆沙粽优惠后的单价为a元,则肉粽优惠后的单价为b元,依题意列二元一次方程组即可求解;②根据销售额=销售单价销售量,列一元二次方程,解之即可得出m的值.【详解】(1)解:设豆沙粽的单价为x元,则肉粽的单价为元,依题意得,解得;则;所以豆沙粽的单价为4元,肉粽的单价为8元;(2)解:①设豆沙粽优惠后的单价为a元,则肉粽优惠后的单价为b元,依题意得,解得,所以豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②依题意得,解得或,,∴,.【点拨】本题考查了一元二次方程的应用、二元一次方程组的应用和一元一次方程的应用,根据题意找到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
员工
管理人员
普通工作人员
人员结构
总经理
部门经理
科研人员
销售人员
高级技工
中级技工
勤杂工
员工数(名)
1
3
2
3
24
1
每人月工资(元)
21000
8400
2025
2200
1800
1600
950
请你根据上述内容,解答下列问题:
(1)该公司“高级技工”有名;
(2)所有员工月工资的平均数 为2500元,
中位数为元,众数为元;
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元?
[解]⑴若商店经营该商品不降价,则一天可获利润100×(100-80)=2000(元)
⑵①依题意得:
(100-80-x)(100+10x)=2160
即x -10x+16=0 -
解得:x =2,x =8
经检验:x =2,x =8都是方程的解,且符合题意.
答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.
∴甲工程队需施工 ÷ =20(天).
最低施工费用为0.6×20+0.35×30=2.25(万元).
答:(1)甲、乙两个工程队单独完成该工程各需40天和60天;
(2)要使该工程的施工费最低,甲、乙两队各做20天和30天,最低施工费用是2.25万元.
5、(2006南安)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
∴y=5x+20.
③由题意,得10x>5x+20,解得x>4.
所以,4小时后,甲队挖掘河渠的长度开始超过乙队.
(说明:通过观察图象并用方程来解决问题,正确的也给分)
(3)由图可知,甲队速度是:60÷6=10(米/时).
设甲队从开挖到完工所挖河渠的长度为z米,依题意,得
解得 =110.
答:甲队从开挖到完工所挖河渠的长度为110米.
2006年全国中考数学应用题集锦
一、代数型应用题:
1、(2006重庆)机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.
(3)小张到这家公司应聘普通工作
人员.请你回答右图中小张的
问题,并指出用(2)中的哪个
数据向小张介绍员工的月工资
实际水平更合理些;
(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资 (结果保留整数),并判断 能否反映该公司员工的月工资实际水平.
[解](1)由表中数据知有16名;
(2)由表中数据知中位数为1700;众数为1600;
4、(2006山东日照)在我市南沿海公路改建工程中,某段工程拟在30天内(含30天)完成.现有甲、乙两个工程队,从这两个工程队资质材料可知:若两队合做24天恰好完成;若两队合做18天后,甲工程队再单独做10天,也恰好完成.请问:
(1)甲、乙两个工程队单独完成该工程各需多少天?
(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲、乙两队各做多少天(同时施工即为合做)?最低施工费用是多少万元?
[解](1)由题意,得 (千克)
(2)设乙车间加工一台大型机械设备润滑用油量为 千克,
由题意,得
整理,得
解得: (舍去)
答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.
(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.
2、(2006河北)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
(1)乙队开挖到30米时,用了_____小时.开挖6小时时,
甲队比乙队多挖了______米;
(2)请你求出:
①甲队在0≤x≤6的时段内,y与x之间的函数关系式;
②乙队在2≤x≤6的时段内,y与x之间的函数关系式;
③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?
(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?
(1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?
(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?
[解](1)2;10;
(2)①设甲队在0≤x≤6的时段内y与x之间的函数关系式为y=k1x,
由图可知,函数图象过点(6,60),
∴6k1=60,解得k1=10,
∴y=10x.
②设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b,
由图可知,函数图象过点(2,30)、(6,50),
∴ 解得
[解](1)设:甲、乙两个工程队单独完成该工程各需x天、y天,
由题意得方程组: ,
解之得:x=40,y=60.
(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,根据题意,要使工程在规定时间内完成且施工费用最低,只要使乙工程队施工30天,其余工程由甲工程队完成.
由(1)知,乙工程队30天完成工程的 ,
(3)这个经理的介绍不能反映该公司员工的月工资实际水平.
用1700元或1600元来介绍更合ห้องสมุดไป่ตู้些.
(说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也可以)
(4) ≈1713(元).
能反映.
3、(2006河北)有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:
相关文档
最新文档