通信电子线路实验报告
通信电子线路实训报告
一、实训背景随着信息技术的飞速发展,通信电子线路在现代社会中扮演着越来越重要的角色。
为了提高我们的专业技能,增强实际操作能力,我们选择了通信电子线路实训作为本次课程的主要内容。
通过本次实训,我们不仅加深了对通信电子线路理论知识的理解,而且掌握了通信电子线路的实际操作技能。
二、实训目的1. 理解通信电子线路的基本概念和基本原理。
2. 掌握通信电子线路的实验操作方法。
3. 培养实际动手能力,提高工程实践水平。
4. 增强团队协作意识,提高沟通协调能力。
三、实训内容本次实训主要包括以下内容:1. 通信电子线路基本概念与原理:学习通信电子线路的基本概念、基本原理以及各类电路的特性。
2. 通信电子线路实验操作:通过实验,掌握通信电子线路的实际操作方法,如电路搭建、参数测量、故障排查等。
3. 通信电子线路综合实验:完成一个通信电子线路的综合实验项目,将所学知识应用于实际项目中。
四、实训过程1. 理论讲解:首先,由指导老师对通信电子线路的基本概念、基本原理进行讲解,并介绍实验操作方法和注意事项。
2. 实验操作:按照实验指导书的要求,进行通信电子线路的实验操作。
实验内容包括:- 基本放大电路实验:搭建放大电路,测试放大倍数、带宽等参数。
- 滤波电路实验:搭建滤波电路,测试滤波效果。
- 调制与解调电路实验:搭建调制与解调电路,测试调制效果和解调效果。
3. 综合实验:完成一个通信电子线路的综合实验项目,如设计一个无线通信系统。
五、实训结果与分析1. 基本放大电路实验:通过搭建放大电路,成功实现了信号的放大。
实验结果显示,放大倍数、带宽等参数符合预期。
2. 滤波电路实验:通过搭建滤波电路,成功实现了信号的滤波。
实验结果显示,滤波效果符合预期。
3. 调制与解调电路实验:通过搭建调制与解调电路,成功实现了信号的调制与解调。
实验结果显示,调制效果和解调效果符合预期。
4. 综合实验:成功设计并搭建了一个无线通信系统,实现了信号的发射、接收和传输。
东南大学信息学院通信电子线路实验实验报告
3.1 常用仪器的使用04012540 印友进一、实验内容1、说明频谱仪的主要工作原理,示波器测量精度与示波器带宽、与被测信号频率之间关系。
答:(1)频谱仪结构框图为:频谱仪的主要工作原理:①对信号进行时域的采集,对其进行傅里叶变换,将其转换成频域信号。
这种方法对于AD 要求很高,但还是难以分析高频信号。
②通过直接接收,称为超外差接收直接扫描调谐分析仪。
即:信号通过混频器与本振混频后得到中频,采用固定中频的办法,并使本振在信号可能的频谱范围内变化。
得到中频后进行滤波和检波,就可以获取信号中某一频率分量的大小(帕斯瓦尔定理)。
(2)示波器的测量精度与示波器带宽、被测信号频率之间的关系:示波器的带宽越宽,在通带内的衰减就越缓慢;示波器带宽越宽,被测信号频率离示波器通带截止频率点就越远,则测得的数据精度约高。
2、画出示波器测量电源上电时间示意图,说明示波器可以捕获电源上电上升时间的工作原理。
答:上电时间示意图:工作原理:捕获这个过程需要示波器采样周期小于过渡时间。
示波器探头与电源相连,使示波器工作于“正常”触发方式,接通电源后,便有电信号进入示波器,由于示波器为“正常”触发方式,所以在屏幕上会显示出电势波形;并且当上电完成后,由于没有触发信号,示波器将不再显示此信号。
这样,就可以利用游标读出电源上电的上升时间。
3、简要说明在FM 调制过程中,调制信号的幅度与频率信息是如何加到FM 波中的?答:载波的瞬时角频率为()()c f t k u t ωωΩ=+,(其中f k 为与电路有关的调频比例常数)已调的瞬时相角为000t ()()t t c f t dt t k u t dt θωωθΩ=++⎰⎰()=所以FM 已调波的表达式为:000()cos[()]t om c f u t U t k u t dt ωθΩ=++⎰当()cos m u t U t ΩΩ=Ω时,00()cos[sin ]om c f u t U t M t ωθ=+Ω+其中f M 为调制指数其值与调制信号的幅度m U Ω成正比,与调制信号的角频率Ω反比,即m f fU M k Ω=Ω。
通信电子线路实验报告 浙江工业大学
通信电子线路实验报告金艳霞通信1202 201203110210 实验一高频谐振功率放大器一、实验目的1、进一步理解谐振功率放大器的工作原理及负载阻抗和激励信号电压变化对其工作状态的影响。
2、掌握谐振功率放大器的调谐特性和负载特性。
二、实验内容1、调试谐振功放电路特性,观察各点输出波形。
2、改变输入信号大小,观察谐振功率放大器的放大特性。
3、改变负载电阻值,观察谐振功率放大器的负载特性三、实验仪器1、BT-3频率特性测试仪(选项)一台2、高频电压表(选项)一台3、20MHz双踪模拟示波器一台4、万用表一块5、调试工具一套四、实验原理1、电路的基本原理利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。
根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90º,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
图3-1为由两级功率放大器组成的高频功率放大器电路,其中晶体管Q1组成甲类功率放大器,晶体管Q2组成丙类谐振功率放大器,这两种功率放大器的应用十分广泛。
五、实验步骤1、按下开关KE1,调节WE1,使QE1的发射极电压VE=2.2V (即使ICQ=7mA,通过测量P5与G两焊点之间的电压,见图0-2所示)。
2、连接JE2、JE3、JE4、JE5。
3、使用BT—3型频率特性测试仪,调整TE1、TE2,使得TE1初级与CE7,TE2初级与CE4谐振均在10.7MHz,同时测试整个功放单元的幅频特性曲线,使峰值在10.7MHz处(如果没有BT-3型频率特性测试仪,则这一步不作要求)。
4、从INE1处输入10.7MHz的载波信号(此信号由高频信号源提供,参考高频信号源的使用),信号大小为VP-P=250mV左右。
通信电子线路实验报告
实验报告课程名称通信电子电路专业班级通信工程姓名学号指导教师2011 年月日实验一 OrCAD系统基本实验1、实验目的掌握OrCAD电子设计自动化(EDA)软件的应用。
掌握基本的电子电路仿真实验方法。
2、实验环境PC微机;OrCAD 10.5工具包。
3、实验内容(1)实验相关的基本知识掌握认真阅读本实验指导书的第一部分;掌握OrCAD 10.5电子设计自动化(EDA)软件系统中的电子电路原理图设计包——Capture CIS的使用方法和基本操作,为今后的实验和研究作技术上的准备。
(2)给定实验内容A. 按本实验指导书的第一部分中介绍的方法,使用OrCAD 10.5完成二极管限幅电路的计算机仿真实验。
B. 利用Capture CIS为本实验建立一个新的PSpice项目,项目名可以自行选取。
C. 绘制出如右图所示的给定仿真电子电路原理图,包括放置电子元器件、放置导线、放置断页连接器、修改各元器件的参数等操作。
仿真电路中各元器件的参数如下表:行该偏置点分析,将其仿真结果(图)拷贝作为实验结果;E. 完成本电路的DC扫描分析参数设置(参见本指导书的6.2.2节), 运行该DC扫描分析,将其仿真结果(图)拷贝作为实验结果;F. 完成本电路的瞬时分析参数设置(参见本指导书的6.2.3节), 运行该瞬时分析,将其仿真结果(图)拷贝作为实验结果;G. 完成本电路的AC扫描分析参数设置(参见本指导书的6.2.4节), 运行该AC扫描分析,将其仿真结果(图)拷贝作为实验结果。
4、实验报告内容A. 你所绘制的仿真电子电路原理图B. 你所完成的偏置点分析结果图C. 你所完成的DC扫描分析结果图D. 你所完成的瞬时分析结果图E. 你所完成的AC扫描分析结果图F. 写出本次实验结果分析及及实验心得通过本次实验,我对ORCAD的特性和使用有了初步了解,也体会到了这个软件的强大。
利用ORCAD进行电路的设计和仿真非常方便,一般步骤是首先在元件库中调用电路中使用到的元件,并设置元件的各个参数,再分别进行电路偏置点分析,DC扫描分析,瞬时分析AC扫描分析。
《通信电子线路》实验报告-高频功率放大器
《通信电子线路》实验报告实验名称:高频功率放大器学院:专业班级:姓名:学号:联系方式指导教师:一、实验环境Multisim 14.0二、实验目的1、进一步了解Multisim仿真步骤,熟练操作获取波形2、仿真验证高频功率放大器原理,观察高频功率放大器工作在过压、临界、和欠压状态的波形三、实验原理和设计高频功率放大器工作在三极管截止区,导通角小于90度,属于丙类放大器。
故三极管输出波形为尖顶余弦脉冲序列(临界或欠压)或是凹顶余弦脉冲序列(过压),信号经过选频网络后,能够恢复指定频率的波形信号。
原理图如图2.1所示。
图2.1输出电流Ic和Vce 关系曲线,如图2.2图2.2四、实验步骤1,按照原理图连接电路。
2,计算电路谐振频率,画出幅频响应和相频响应。
3,选择合适的电源电压值,使三极管发射结反偏,集电结反偏。
4,调节基极偏置电压源、信号源幅度、并联回路电阻值和集电极电源,观察输出电压Vc 、输出电流ic波形,判断电路状态五、实验结果及分析1、并联谐振回路的幅频响应和相频响应,如图4.1所示图4.1并联谐振回路谐振频率为11.56MHz,与电路参数计算相吻合。
其0.707带宽为15.65MHz2、输入信号改为f= 11,56MHz,计算频谱如图4.2.1所示图4.2.1输出信号频谱如图4.2.2所示图4.2.23、观察时域波形。
调节参数Vbb= 0.7V反偏,Vi = 0.9Vrms,Vcc = 10V,波形如图4.3.1所示图4.3.1根据三极管特性,发射极反偏时,电流信号Ib需克服Vbb和Vbz才能导通,所以Ib和Ic应为尖顶余弦脉冲。
但是仿真出波形为完整余弦脉冲,不符合理论。
可能的原因有,三极管导通电压参数与理论值差异较大,发射结反偏程度低。
三极管模型不符合实际特性,无截止区。
调节Vbm,使Vi = 1.0V,其余参数不变,观察时域波形,如图4.3.2输出电压Vc产生失真,可能因放大倍数等参数不合适导致。
通信电子线路实验报告
通信电子线路实验报告一、调频解调电路实验实验内容:1.将拨动开关JP8置于1、2之间,接通“调频信号的解调电路”的直流电压。
2.用信号源产生一个FM信号,参数为:载波频率f c=6.5MHz,调制频偏Freq DIV=0.5MHz,调制信号频率fΩ=10kHz。
3.将FM信号加到P18端,将拨动开关JP3置于1、2之间(把音频输出与功放输入相连接),拨动开关JP9置于1、2之间,用示波器观察P19的波形。
4.调节FM信号的各个参数,观察P19波形的变化。
二、高频小信号谐振放大器一、实验内容1.将拨动开关JP11 置于1~2之间,接通“小信号谐振放大器”的直流电压+12V;2.小信号谐振放大器静态工作点的调整:调节电位器W1,使BG1 集电极电流Ic1约为1.5mA左右(通过测量P3 点的电压来确定电流IC1);3.从P1端接入6.5MHZ的正弦信号,幅度约为50mV 左右;4.用示波器观察比较P2端的波形,应有不失真的放大波形;5.选IST-B“频率键控”(18号)功能,并设始频为5.0MHZ,频率间隔为100KHz,按IST-B 键盘光标键,随着信号频率的变化,应能观察到P2 信号输出波形从小到大,再从大到小的变化。
并记录谐振点的频率。
6.选IST-B“频响测试”(13 号)功能,并设置参数:始频为5.5MHZ,频率间隔为100KHZ,N=20,S=1ms。
P1为输入点,P2为输出点,P2点接示波器探头(X10档),做一次频响测试,并记录测试结果。
(P1、P2 点各有一个测量孔,用于插接IST-B 的探头)7.P2点接示波器探头(X1档)步骤同六再做一次频响测试,并记录测试结果。
8.将拨动开关JP1 置于2、3 使谐振回路并接电阻R8 重复实验6。
比较接与不接R8两种情况下频响曲线有何区别。
二、实验结果及分析1、实验中幅度-频率数据记录:2、实验中用IST -B “频响测试”功能测得的频响波形如下:3、实验结果分析通过MATLAB ,利用采样点频率及对应的电压值描绘出频响曲线图,如下分析:(1)从图中我们可以看出:小信号谐振放大器在谐振频率两侧呈现的是衰减的趋势,由于谐振回路中电感品质因数Q 有限,因此频响并不关于谐振点呈现重中心对称的结论。
通讯电子线路实验报告 宙
大连理工大学本科实验报告课程名称:通信电子线路实验学院:电子信息与电气工程学部专业:电子信息工程班级:电子0803 学号: 200872184 学生姓名:蔡兴洋2010年11月13日实验一、振幅调制器一、实验目的1.掌握调幅器的工作原理以及用模拟乘法器集成电路MC1496实现全载波调幅和抑止载波双边带调幅的方法。
2.了解已调波与调制信号的关系。
3.掌握调幅指数测量与计算方法。
4.通过实验对全载波调幅和抑止载波双边带调幅的波形进行比较,加深理解。
二、实验内容1、抑制载波的调制波观察在载波信号和调制信号经过乘法器输出为调制信号后,调节平衡电位器VR8,使MC1496的1、4脚调制信号电压振幅相等,即U1=U4,就可以产生抑制载波的双边带调幅信号。
此时,经过差放放大后的调制信号振幅很大,形成抑制载波双边带调幅信号。
2、全载波波形调节VR8,使U1≠U4,使调制信号振幅减小,继续调整UΩ,让m值约为30%,形成全载波调幅波。
m=(U max-U min)/(U max+U min)。
3、实验体会调幅波的波形收到调制信号振幅和载波信号振幅的共同影响,体现在m值的大小上。
如果调制信号振幅过大,m>1,则为强调制,出现抑制载波;如果调制信号振幅小于载波信号,m<1,则为弱调制,出现全载波;m=1时为临界调制。
它保持着高频载波频率的特性,但包络形状与调制信号相似。
调幅波的振幅大小,由调制信号的强度决定。
调幅波的上、下边带频谱就是信息频谱,载频不包含信息内容,只是一个“交通工具”。
实验二、变容二极管调频器一、实验目的1.了解压控振荡器的工作原理。
2.掌握变容二极管调频电路的原理。
3.学会调频器调制特性的测量方法。
二、实验内容1、变容二极管调频原理变容二极管压控振荡器是利用变容二极管作为可变电容的调谐型振荡器。
变容二极管是一种在反向偏置条件下,势垒电容随外加电压变化而变化的二极管器件。
变容二极管的结电容公式如下:C j =C j0(1‒V D V B )r (V D <0)式中C j0 是偏置为0 时的电容值,V B 是势垒电位差(一般为0.5~0.7V );V D 是偏置电压;r 是电容变化指数(由工艺决定)。
通信电子线路实验报告
中南大学《通信电子线路》实验报告学院信息科学与工程学院题目调制与解调实验学号专业班级姓名指导教师实验一振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号。
本实验中载波是由晶体振荡产生的10MHZ高频信号。
1KHZ的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V5与V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
图2-1 MC1496内部电路图用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。
器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
《通信电子线路》实验报告
输入信号Vi(mv)TP3
200mv
输入信号fs(MHz)
输出信号Vo(v)TP1
增益(dB)
通频带特性测试:(1)
输入信号fs(KHz)
465KHz
输入信号Vi(mv)TP6
50
100
150
200
输出信号Vo(v)TP7
增益Avo(dB)
动态曲线: 幅度-频率特性曲线:
(2)调节输入信号频率,测试并计算出。
二极管双平衡混频器的基本工作原理是利用二极管伏安特性的非线性。众所周知,二极管的伏安特性为指数律,用幂级数展开为
当加到二极管两端的电压v为输入信号VS和本振电压VL之和时,V2项产生差频与和频。其它项产生不需
要的频率分量。由于上式中u的阶次越高,系数越小。因此,对差频与和频构成干扰最严重的是v的一次方项(因其系数比v2项大一倍)产生的输入信号频率分量和本振频率分量。
由图2-2(a)和(b)可以看出,VL单独作用在RL上所产生的ωL分量,相互抵消,故RL上无ωL分量。由VS产生的分量在VL上正下负期间,经D3产生的分量和经D4产生的分量在RL上均是自下经上。但在VL下正上负期间,则在RL上均是自上经下。即使在VL一个周期内,也是互相抵消的。但是VL的大小变化控制二极管电流的大小,从而控制其等效电阻,因此VS在VL瞬时值不同情况下所产生的电流大小不同,正是通过这一非线性特性产生相乘效应,出现差频与和频。
输入信号fs(MHz)
输出信号Vo(v)TP1
增益(dB)
调节输入信号频率,测试并计算出。
谐振曲线的矩形系数测试:
(1)调节信号频率,测试并计算出。
(2)计算矩形系数。
(1)用示波器观测TP6,调节①号板信号源模块,使之输出幅度为150mV、频率为465KHz正弦波信号。
通信电子电路实验报告
一、实验目的1. 了解通信电子电路的基本组成和工作原理。
2. 掌握通信电子电路的基本实验技能和操作方法。
3. 培养分析问题和解决问题的能力。
二、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 通信电子电路实验板5. 连接线三、实验原理通信电子电路是现代通信系统中的核心组成部分,其主要功能是将信号进行调制、放大、解调等处理,以实现信号的传输。
本实验主要涉及以下通信电子电路:1. 模拟调制解调电路:将模拟信号进行调制和解调,实现信号的传输。
2. 数字调制解调电路:将数字信号进行调制和解调,实现信号的传输。
3. 放大电路:对信号进行放大,提高信号的传输质量。
四、实验内容1. 模拟调制解调电路实验(1)实验目的:掌握模拟调制解调电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入调制电路的输入端。
③ 使用示波器观察调制电路的输出波形。
④ 改变调制电路的参数,观察输出波形的变化。
⑤ 将调制电路的输出信号接入解调电路的输入端。
⑥ 使用示波器观察解调电路的输出波形。
⑦ 改变解调电路的参数,观察输出波形的变化。
2. 数字调制解调电路实验(1)实验目的:掌握数字调制解调电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入调制电路的输入端。
③ 使用示波器观察调制电路的输出波形。
④ 改变调制电路的参数,观察输出波形的变化。
⑤ 将调制电路的输出信号接入解调电路的输入端。
⑥ 使用示波器观察解调电路的输出波形。
⑦ 改变解调电路的参数,观察输出波形的变化。
3. 放大电路实验(1)实验目的:掌握放大电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入放大电路的输入端。
③ 使用示波器观察放大电路的输出波形。
④ 改变放大电路的参数,观察输出波形的变化。
⑤ 使用数字万用表测量放大电路的增益。
通信电子线路实习报告
通信电子线路实习报告通信电子线路实习报告姓名:学号:同组者:巢楚颉,曾高,胡超,刘诗荣指导老师:*代玲莉AM调幅电路设计与制作一.实验目的:实验目的:掌握通信电子电路的实际开发所要掌握技术,培养其动手能力,观察能力,分析和解决实际问题的能力,巩固、加深理论课知识,增加感性认识,进一步加深对通信电子电路应用的理解,提高对电路制造调试能力和系统设计能力。
提高对常见电路故障的分析和判断能;培养学生严肃认真、实事求是的科学态度,理论联系实际的工作作风和辩证思维能力。
二.实验仪器:实验仪器:芯片MC1496信号源低频和高频信号发生器双踪示波器电路板,电阻,电容,电源,引线以及焊接电路所需工具等若干三.实验原理:实验原理:幅度调制是正弦波或脉冲序列的幅度随调制信号线形变化的过程,标准调幅信号可用下式表示:其中Ac为外加直流,f(t)表示调制信号.在AM调幅中,输出已调信号的包络与输入调制信号成正比,基于此我们采用控制输入调制信号的幅度来改变调制度ma,使其可在10%~100%之间程控调节,步进量10%.本系统中采用的是模拟乘法器MC1496来实现调制器的设计,MC1496中包含了由带双电流源的标准差动放大器驱动的四个高位放大器输出集电极交叉耦合,产生了两个输入电压的全波平衡调制乘积现象,也就是说输出信号是一个常数乘以两个输入信号的乘积,即为V0=KV1V2.使用模拟乘法器比较容易实现调幅。
调制质量高。
实验原理图如下所示:图1AM调幅电路原理图四.实验内容和步骤:实验内容和步骤:(1).在计算机上利用Protel99se软件按照原理图进行画图,并标记好各个元器件的数值和正负极性等。
(2).再次利用Protel99se软件对所做的原理图进行自动排列顺序,以求排列好的PCB电路图美观流畅,如果排列好的PCB图不够理想,则可以手动进行排列整齐,封装好的PCB原理图如下图所示:图2封装好的PCB原理图(3).对照封装好的PCB原理图,利用焊接工具将各元器件一次焊接在电路板上,再次对照原路图,检查是否连接正确和有无焊接技术上的错误。
通信电子线路大型实验报告 zjut 浙江工业大学
9. 实验总结
9 / 10
ቤተ መጻሕፍቲ ባይዱ
通过本次通信电子线路大型实验,我学习收获了很多。 首先,这是一个调频发射系统,在理论层面上用到了通信原理中调频的相关知识。频率 调制, 是一种高效的抗干扰性强的调制方式, 无线话筒采用该方式能够实现有效可靠的信号 发射与传输;其次,之前学习的高频电子线路课程、模拟电子技术课程的相关知识得到了实 际应用。本次实验中,用到了低频三极管信号放大、射极跟随器、电容反馈式三端振荡器、 高频功放等具体的电路;再者,利用实际元器件按照原理图搭电路,也是一大全新学习点, 需要考虑的问题很多,比如合理的线路布局、背面的焊接、高频部分电感效应问题。 在实验过程中,我们也碰到一些问题。在电路焊接成功、静态工作点正确的情况下,依 然无法实现高频振荡。 经老师指导和自己的仔细检查, 发现振荡电路部分的一个陶瓷电容值 有误,即使用了不正确的电容。低频部分的一个电解电容极性焊接反了,随后发现并做了调 整。 实验是动手实践的过程, 理论只有与实际相结合, 才能发挥知识的无穷力量。 本次实验, 既是对我理论知识的检验, 也是动手能力的考验。 自己剖析, 能力尚待提高, 学习之路不止。
3. 系统原理分析
3.1 调频系统的组成 与调幅系统相比, 调频系统具有较强的抗干扰能力和较高的效率, 所以它在无线通信、 广播电视、遥控遥测等方面获得了广泛的应用。图 1(a)和(b)所示为典型的调频发射与 接收系统的组成框图:
高频振荡 与 频率调制
缓冲 隔离
倍频
功率 激励
高频 功放
音频放大
调制信号 (a)
微型麦克风将采集来的语音信号转换成电压信号输入电路,R15 为麦克风偏置电阻,用 来确定麦克风的静态工作点。C16 电容用来稳定放大器,同时起到低通滤波的作用。R16、 R17、R18、R19、R20 为三极管 9013 的偏置电阻。C17 为旁路电容,三极管静态工作时,其 不起任何作用。当输入交流信号时,R19 被其短路。C14、C15 接地,起到滤波的作用。C18 为隔离电容。 理论上,该部分能对输入的语音信号放大 10 倍左右。被放大后的语音信号,就是调频 系统的基带信号。 4.2 高频振荡与频率调制 调频系统中,需要一个频率高的信号作为载波。载波的频率将被基带信号所控制,携带 有基带信号的全部信息。在通信领域的众多调制方式中,频率调制具有很强的抗干扰性,用 在对信号质量要求较高的近远距离信号传输中。本实验高频载波的产生和调频功能由图 4 的电路完成。
通信电子线路课程设计实验报告
《通信电子线路课程设计》课程实验报告一、实验目的巩固理论知识,提高实际动手能力和分析能力,掌握调频发射整机电路的设计与调试方法,以及高频电路调试中常见故障的分析与排除;学会如何将高频单元电路组合起来实现满足工程实际要求的整机电路的设计与调试技术。
二、实验仪器1)直流稳压电源一台;2)数字万用表一台;3)示波器(≥100MHz)一台;4)调频收音机(87~108MHz)一台;5)电烙铁、镊子、斜口钳。
三、系统原理分析图1 小功率调频无线话筒的系统框图图2 振荡部分高频等效电路四、电路原理分析1.音频放大低频放大,由三极管实现功能。
理论上该部分能对输入的语音信号放大10 倍左右,被放大后的语音信号就是调频系统的基带信号。
微型麦克风将采集的语音信号转换成电压信号输入电路,R15 微麦克风偏置电阻,用来确定麦克风的静态工作点。
C16 用来稳定放大器,同时起到低通滤波的作用。
R16、R17、R18、R19、R20 为三极管9013 的偏置电阻。
C17 为旁路电容,三极管静态工作时,不起任何作用。
当输入交流信号时,R19 被C17 短路,C14、C15 接地起到滤波作用。
C18 为隔离电容。
图 2 音频放大模块原理图2.高频振荡与频率调制调频系统中,用一个频率较高的信号作为载波。
载波的频率将被基带信号所控制,携带基带信号的全部信息。
此处采用电容三端式振荡器,加了变容二极管Cx1 和反馈网络,外接电源后只要有一个微小的开关扰动就能产生自激振荡,最终输出频率为几十M 的正弦波。
通过调节可调电感L1,可逐渐改变正弦波的频率直至达到期望值。
图 3 高频振荡模块原理图3.缓冲隔离与高频功放缓冲高频振荡部分输出的信号,同时隔离前后级电路。
此处采用的是射极跟随器,三极管T2 9018 的静态工作点由偏置电阻R7、R8、R9 确定。
此处同样设置了一个简单的模拟滤波电路,由C12、C13、L4 构成,C9 为隔离电容。
图4 缓冲隔离模块原理图高频振荡电路输出的调制信号幅值一般较小,而话筒天线传输出去的信号是在无线信道中传播的,必然存在一定程度上的幅值衰减,所以必须在震荡电路之后添加一个高频功率放大器。
通信电子线路Multisim仿真实验报告
通信电子线路实验报告Multisim调制电路仿真目录一、综述 (1)二、实验内容 (2)1.常规调幅AM (2)(1)基本理论 (2)(2)Multisim电路仿真图 (3)(3)结论: (6)2.双边带调制DSB (6)(1)基本理论 (6)(2)Multisim电路仿真图 (7)3.单边带调制SSB (8)(1)工作原理 (8)(2)Multisim电路仿真图 (9)4.调频电路FM (10)(1)工作原理 (10)(2)Multisim电路仿真图 (10)5.调相电路PM (11)(1)工作原理 (11)(2)Multisim电路仿真图 (12)三、实验感想 (12)一、综述基带信号是原始的电信号,一般是指基本的信号波形,在数字通信调制技术中则指相应的电脉冲。
在无线遥测遥控系统和无线电技术中调制就是用基带信号控制高频载波的参数(振幅、频率和相位),使这些参数随基带信号变化。
用来控制高频载波参数的基带信号称为调制信号。
未调制的高频电振荡称为载波(可以是正弦波,也可以是非正弦波,如方波、脉冲序列等)。
调制方式按照调制信号的性质分为模拟调制和数字调制两类;按照载波的形式分为连续波调制和脉冲调制两类。
模拟调制有调幅(AM)、调频(FM)和调相(PM)。
数字调制有振幅键控(ASK)、移频键控(FSK)、移相键控(PSK)和差分移相键控 (DPSK)等。
脉冲调制有脉幅调制(PAM)、脉宽调制(PDM)、脉频调制(PFM)、脉位调制(PPM)、脉码调制(PCM)和增量调制(ΔM)。
⑴调幅(AM):用调制信号控制载波的振幅,使载波的振幅随着调制信号变化。
已调波称为调幅波。
调幅波的频率仍是载波频率,调幅波包络的形状反映调制信号的波形。
调幅系统实现简单,但抗干扰性差,传输时信号容易失真。
⑵调频(FM):用调制信号控制载波的振荡频率,使载波的频率随着调制信号变化。
已调波称为调频波。
调频波的振幅保持不变,调频波的瞬时频率偏离载波频率的量与调制信号的瞬时值成比例。
通信电路制作实验报告(3篇)
第1篇一、实验目的1. 理解通信电路的基本组成和工作原理。
2. 掌握通信电路中常用元件的性能和作用。
3. 学习通信电路的调试方法和故障排除技巧。
4. 提高实际操作能力和动手能力。
二、实验器材1. 通信电路实验箱2. 双踪示波器3. 函数信号发生器4. 信号源5. 测试仪6. 连接线7. 阻抗箱三、实验原理通信电路主要包括发送电路、接收电路和传输线路。
本实验主要涉及以下原理:1. 调制与解调:将信息信号转换成适合传输的信号(调制),在接收端再将信号还原为信息信号(解调)。
2. 放大与滤波:放大信号,增强信号强度,同时滤除干扰信号。
3. 编码与解码:将信息信号进行编码,以便于传输和识别,接收端再将编码信号解码为信息信号。
四、实验步骤1. 搭建通信电路:根据实验要求,搭建通信电路,包括发送电路、接收电路和传输线路。
2. 调试电路:调整电路参数,使电路工作在最佳状态。
3. 测试电路性能:使用测试仪测量电路的各项性能指标,如增益、带宽、信噪比等。
4. 分析实验结果:根据实验数据,分析电路性能,找出存在的问题,并提出改进措施。
五、实验内容1. 调制与解调实验:- 使用函数信号发生器产生基带信号。
- 使用调制电路将基带信号调制为高频信号。
- 使用解调电路将调制信号解调为基带信号。
- 比较调制前后信号的变化,验证调制和解调电路的工作原理。
2. 放大与滤波实验:- 使用信号源产生信号。
- 使用放大电路放大信号。
- 使用滤波电路滤除干扰信号。
- 测量放大和滤波后的信号强度,验证放大和滤波电路的工作原理。
3. 编码与解码实验:- 使用编码电路将信息信号编码。
- 使用解码电路将编码信号解码。
- 比较编码前后信号的变化,验证编码和解码电路的工作原理。
六、实验结果与分析1. 调制与解调实验:- 通过实验验证了调制和解调电路的工作原理。
- 发现调制后的信号频率较高,带宽较宽,有利于信号的传输。
- 解调后的信号与基带信号基本一致,说明解调电路能够有效还原信息信号。
通信电路实验报告心得(3篇)
第1篇一、前言随着科技的不断发展,通信技术在现代社会中扮演着越来越重要的角色。
为了更好地掌握通信电路的基本原理和实际应用,我们进行了一系列的通信电路实验。
通过这些实验,我对通信电路有了更加深入的了解,以下是我对这次实验的心得体会。
二、实验目的1. 理解通信电路的基本原理和组成;2. 掌握通信电路中常用器件的特性及工作原理;3. 熟悉通信电路的测试方法和分析方法;4. 培养实验操作技能和团队协作精神。
三、实验内容及方法1. 实验内容(1)通信电路基本组成实验:观察通信电路的组成,了解各个部分的功能和相互关系。
(2)调制与解调实验:学习调制与解调的基本原理,通过实验掌握调制和解调过程。
(3)放大器实验:了解放大器的工作原理,学习放大器的设计与测试方法。
(4)滤波器实验:掌握滤波器的基本原理,学习滤波器的设计与测试方法。
(5)通信系统实验:综合运用所学知识,设计并实现一个简单的通信系统。
2. 实验方法(1)观察法:通过观察实验现象,分析通信电路的组成和功能。
(2)实验法:按照实验步骤,进行通信电路的搭建、调试和测试。
(3)数据分析法:对实验数据进行整理和分析,验证实验结果。
四、实验心得1. 通信电路的基本原理和组成通过实验,我深刻理解了通信电路的基本原理和组成。
通信电路主要由发射端、传输信道和接收端组成。
发射端负责将信息信号调制为适合传输的信号,传输信道负责将调制后的信号传输到接收端,接收端负责对接收到的信号进行解调,恢复出原始信息。
2. 调制与解调调制是将信息信号转换为适合传输的信号,解调是将传输信号恢复为原始信息。
通过实验,我掌握了调幅(AM)、调频(FM)和调相(PM)等调制方式的基本原理,以及相应的解调方法。
3. 放大器放大器在通信电路中起到信号放大的作用。
实验中,我了解了放大器的基本原理,学习了放大器的设计与测试方法,掌握了放大器的性能指标。
4. 滤波器滤波器在通信电路中起到信号滤波的作用。
通信电子线路实习报告
本次通信电子线路实习旨在通过实际操作,加深对通信电子线路理论知识的理解,提高动手能力,培养解决实际问题的能力。
通过实习,期望能够掌握以下技能:1. 熟悉通信电子线路的基本原理和电路结构。
2. 能够独立进行电路的组装、调试和测试。
3. 学会使用基本的电子测试仪器,如示波器、信号发生器等。
4. 增强团队协作和沟通能力。
二、实习单位简介本次实习单位为我国某知名通信设备生产企业,公司主要从事通信设备的研发、生产和销售,拥有一支专业的技术团队。
三、实习内容1. 理论基础学习:实习初期,我们首先对通信电子线路的基本理论进行了深入学习,包括模拟信号与数字信号、滤波器、放大器、调制解调器等基本概念。
2. 电路组装与调试:在理论学习的指导下,我们开始进行电路组装。
实习过程中,我们组装了多种通信电子线路,如滤波器、放大器、调制解调器等。
在组装过程中,我们学会了如何正确选择元器件,如何焊接电路板,以及如何进行电路调试。
3. 测试与验证:组装完成后,我们使用示波器、信号发生器等仪器对电路进行测试和验证。
通过测试,我们验证了电路的性能是否符合设计要求,并对电路进行了必要的调整和优化。
4. 项目实践:在实习过程中,我们还参与了一个实际项目。
该项目涉及通信电子线路的设计和调试,我们负责其中一部分的设计和调试工作。
通过这个项目,我们深入了解了通信电子线路在实际应用中的设计和调试方法。
1. 理论知识方面:通过本次实习,我们对通信电子线路的理论知识有了更加深入的理解,掌握了通信电子线路的基本原理和电路结构。
2. 实践操作方面:在实习过程中,我们学会了如何组装、调试和测试通信电子线路,提高了动手能力。
3. 团队合作与沟通能力:在项目实践中,我们学会了如何与团队成员进行有效沟通,提高了团队合作能力。
4. 解决问题的能力:在实习过程中,我们遇到了各种问题,通过查阅资料、请教老师和团队成员,我们学会了如何分析和解决这些问题。
五、实习总结本次通信电子线路实习是一次非常有意义的学习经历。
通信电子线路实验报告
一、实验目的1. 理解通信电子线路的基本原理和组成;2. 掌握通信电子线路实验仪器的使用方法;3. 通过实验验证通信电子线路理论知识的正确性;4. 培养实验操作能力和分析问题、解决问题的能力。
二、实验原理通信电子线路是研究信号在传输过程中,如何通过电子电路进行调制、解调、放大、滤波等处理的学科。
本实验主要涉及以下内容:1. 调制:将信息信号(基带信号)加载到高频载波上,以便于信号的传输;2. 解调:将调制后的信号还原为基带信号;3. 放大:提高信号强度,满足传输要求;4. 滤波:去除信号中的噪声,提高信号质量。
三、实验器材1. 通信电子线路实验箱;2. 双踪示波器;3. 高频信号发生器;4. 万用表;5. 长度可调同轴电缆。
四、实验内容1. 调制实验(1)实验目的:掌握调制原理和调制电路的设计方法。
(2)实验步骤:① 调制信号发生:使用示波器观察调制信号波形,确保其频率、幅度等参数符合要求;② 载波信号发生:使用高频信号发生器产生高频载波信号,频率与调制信号频率相同;③ 调制电路搭建:将调制信号和载波信号接入调制电路,观察调制后的信号波形;④ 分析调制效果:根据调制后的信号波形,分析调制深度、相位等参数,判断调制效果。
2. 解调实验(1)实验目的:掌握解调原理和解调电路的设计方法。
(2)实验步骤:① 解调信号发生:使用示波器观察解调信号波形,确保其频率、幅度等参数符合要求;② 解调电路搭建:将解调信号接入解调电路,观察解调后的信号波形;③ 分析解调效果:根据解调后的信号波形,分析解调深度、相位等参数,判断解调效果。
3. 放大实验(1)实验目的:掌握放大电路的设计方法,提高信号强度。
(2)实验步骤:① 放大信号发生:使用示波器观察放大信号波形,确保其频率、幅度等参数符合要求;② 放大电路搭建:将放大信号接入放大电路,观察放大后的信号波形;③ 分析放大效果:根据放大后的信号波形,分析放大倍数、频率响应等参数,判断放大效果。
通信电子线路实验报告
通信电子线路实验报告通信电子线路实验报告概述:通信电子线路是现代通信系统中不可或缺的组成部分。
本实验旨在通过搭建和测试不同类型的通信电子线路,深入了解其原理和功能。
本报告将详细介绍实验过程、结果分析以及对通信电子线路的应用前景进行探讨。
实验一:放大器电路在本实验中,我们搭建了一个基本的放大器电路,通过输入信号的放大来实现信号传输。
我们使用了共射极放大器电路,该电路具有较高的电压增益和较低的输出电阻。
通过测量输入和输出信号的幅度,我们可以计算出电压增益。
实验结果表明,放大器电路能够有效地放大输入信号,从而提高信号的传输质量。
实验二:滤波器电路滤波器电路是通信电子线路中常用的组件,它可以通过选择性地通过或阻断特定频率的信号来实现信号的处理和调整。
我们搭建了一个RC低通滤波器电路,并通过改变电容和电阻的数值来调整滤波器的截止频率。
实验结果显示,滤波器电路能够有效地滤除高频杂波,使得输出信号更加纯净和稳定。
实验三:调制解调电路调制解调电路是现代通信系统中必不可少的部分,它能够将信息信号转换为适合传输的载波信号,并在接收端将载波信号还原为原始信息信号。
我们搭建了一个简单的调制解调电路,通过改变调制信号的幅度和频率来观察调制效果。
实验结果表明,调制解调电路能够有效地实现信号的传输和还原,为通信系统的正常运行提供了基础支持。
实验四:数字信号处理电路随着数字通信技术的发展,数字信号处理电路在通信系统中的作用日益重要。
我们搭建了一个简单的数字信号处理电路,通过数字滤波器对输入信号进行滤波和调整。
实验结果显示,数字信号处理电路能够有效地抑制噪声和干扰,提高信号的传输质量和可靠性。
应用前景:通信电子线路在现代通信系统中具有广泛的应用前景。
随着通信技术的不断发展,人们对通信电子线路的需求也越来越高。
通信电子线路的应用领域涵盖了移动通信、卫星通信、光纤通信等多个领域。
例如,在移动通信领域,通信电子线路可以实现无线信号的放大和调整,提高信号的传输距离和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、实验内容:
1.测试变容二极管的静态调制特性 2.观察调频波波形 3.观察调制信号振幅对频偏的影响 4.观察寄生调幅现象
三、电路基本原理:
载波的频率的变化量与调制信号成线性关系,常采用变容二极管实现调频。 该调频电路即为实验三所做振荡器电路,将 S2 置于“1”为 LC 振荡电路,从 J1 处加入调制信号, 改变变容二极管反向电压即改变变容二极管的结电容,从而改变振荡器频率。R1,R3 和 VR1 为变容二 极管提供静态时的反向直流偏置电压。实验电路见图 5-1。
中 南 大 学
课题名称: 学 班 学 姓 院: 级: 号: 名: 通信电子线路实验报告 信息科学与工程学院 XXXXXXXXXX XXXXXXXXXXXXX XXXXXX XXXXXX
指导老师:
1
2
实验一
一、实验目的:
振幅调制器
1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。 2.研究已调波与调制信号及载波信号的关系。 3.掌握调幅系数测量与计算的方法。 4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
包络检波电路
8
四、实验步骤
1.解调全载波调幅信号 (1)m<30%的调幅波检波: 从 J45(ZF.IN)处输入 455KHZ,0.1V. m<30%的已调波,短路环 J46 连通,调整 CP6 中周,使 J51(JB.IN) 处输 出 0.5V~1V 已调幅信号。 将开 关 S13 拨 向左端 ,S14,S15,S16 均拨向右端 , 将示波器 接入 J52(JB.OUT),观察输出波形. (2)加大调制信号幅度,使 m=100%,观察记录检波输出波形. 2.观察对角切割失真: 保持以上输出,将开关 S15 拨向左端,检波负载电阻由 3.3KΩ 变为 100KΩ ,在 J52 处用示波器观察 波形,并记录与上述波形进行比较. 3.观察底部切割失真: 将开关 S16 拨向左端,S15 也拨向左端,在 J52 处观察波形并记录与正常鲜调波形进行比较。 4.将开关 S15,S16 还原到右端,将开关 S14 拨向左端,在 S52 处可观察到检波器不加高频滤波 的现象。
10.38V 10.38V -0.76V
-0.76V –7.16V
R39、R46 与电位器 VR8 组成平衡调节电路,改变 VR8 可以使乘法器实现抑止载波的振幅调制或 有载波的振幅调制。 2. 抑止载波振幅调制: J12 端输入载波信号 Vc(t),其频率 fc=10MHz,峰-峰值 UCP-P=100~300mV。 J16 端输入调制信号 VΩ (t),其频率 fΩ =1KHz,先使峰-峰值 UΩ P-P=0,调节 VR8,使输出 VO=0(此时 U4=U1),再逐渐增加 UΩ P-P,则输出信号 VO(t)的幅度逐渐增大,最后出现如图 2-3(a)所示的抑 止载波的调幅信号。由于器件内部参数不可能完全对称,致使输出出现漏信号。脚①和④分别接电阻 R43 和 R49 可以较好地抑止载波漏信号和改善温度性能。
7
实验二
一、实验目的:
1.掌握调幅波的解调方法。 2.掌握二极管峰值包络检波的原理。
调幅波信号的解调
3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,产生的原因以及克服的方 法。
二、实验内容:
1.完成普通调幅波的解调 2.观察抑制载波的双边带调幅波的解调 3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波的现象。
五、实验测量数据结果及分析
1.整理实验数据 表 5.1 VD(V) F0(MHZ) 2 9.693 9.689 3 9.713 9.715 4 9.730 9.732 5 9.745 9.749 5.2 9.748 9.750
2.在同一坐标纸上画出静态调制特性曲线,并求出其调制灵敏度 S,说明曲线斜率受哪些因素的 影响。
4
3.全载波振幅调制 m
Um max Um min ,J12 端输入载波信号 Vc(t) , fc=10MHz, UCP-P= Um max Um min
100~300mV,调节平衡电位器 VR8,使输出信号 VO(t)中有载波输出(此时 U1 与 U4 不相等) 。再 从 J16 端输入调制信号,其 fΩ =1KHz,当 UΩ P-P 由零逐渐增大时,则输出信号 VO(t)的幅度发生变 化,最后出现如图 2-3(b)所示的有载波调幅信号的波形,记下 AM 波对应 Ummax 和 Ummin,并 计算调幅度 m。 4.加大 VΩ ,观察波形变化,画出过调制波形并记下对应的 VΩ 、VC 值进行分析。 附:调制信号 VΩ 可以用外加信号源,也可直接采用实验箱上的低频信号源。将示波器接入 J22 处, (此时 J17 短路块应断开)调节电位器 VR3,使其输出 1KHz 信号不失真信号,改变 VR9 可以改 变输出信号幅度的大小。将短路块 J17 短接,示波器接入 J19 处,调节 VR9 改变输入 VΩ 的大小。
3
图 2-1 MC1496 内部电路图 用 1496 集成电路构成的调幅器电路图如图 2-2 所示,图中 VR8 用来调节引出脚①、④之间的 平衡,VR7 用来调节⑤脚的偏置。器件采用双电源供电方式(+12V,-9V) ,电阻 R29、R30、R31、R32、 R52 为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
Uc(t)
uΩ (t)
u。 (t)
uΩ (t)
Um m i n
Um m a
o t
x
Uc(t)
图 2-3(a) 抑制载波调幅波形
uc(t)
图 2-3(b) 普通调幅波波形
五、实验测量数据结果及分析
1.整理实验数据,写出实测 MC1496 各引脚的实测数据。 实验数据如下: V8 5.80V V10 5.81V V1 0.02V V4 0.01V V6 V12 V2 V3 V5
三、电路基本原理:
图 6-1 MC3361 构成的鉴频电路
ห้องสมุดไป่ตู้
该实验电路如图 6-1 所示,该电路工作电压为+5V。通常输入信号频率为 10.7MHZ,内部振荡信 号为 10.245MHZ。本实验电路中根据前端电路信号频率,将输入信号频率定为 6.455MHZ,内部振荡
14
频率为 6MHZ,二次混频信号仍为 455KHZ。集成块 16 脚为高频 6.455MHZ 信号输入端。通过内部混 频电路与 6.0MHZ 本振信号差拍出 455KHZ 中频信号由 3 脚输出,该信号经过 FL1 陶瓷滤波器 (455KHZ)输出 455KHZ 中频信号并经 5 脚送到集成电路内部限幅、鉴频、滤波。MC3361 的鉴频采 用如图 6-2 所示的乘积型相位鉴频器, 其中的相移网络部份由 MC3361 的 8 脚引出在组件外部 (由 CP4 移相器)完成。
二、实验内容:
1.调测模拟乘法器 MC1496 正常工作时的静态值。 2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 3.实现抑止载波的双边带调幅波。
三、电路基本原理
幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化,振幅变化与调制信号的 振幅成正比。本实验中载波是由晶体振荡产生的 10MHZ 高频信号。1KHZ 的低频信号为调制信号。 振幅调制器即为产生调幅信号的装置。 在本实验中采用集成四象限模拟乘法器 MC1496(电路图图 2-1)来完成调幅作用,电路的两组 差动对 V1-V4,以反极性方式相连接,与之相对的恒流源又组成一对差分电路,V5 与 V6,因此恒流 源的控制电压可正可负,实现了四象限工作。D、V7、V8 为差动放大器 V5 与 V6 的恒流源。进行调幅 时,载波信号加在 V1-V4 的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器 V5、V6 的输入 端,即引脚的①、④之间,②、③脚外接 1KΩ 电位器,以扩大调制信号动态范围,已调制信号取自双 差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
10.36V 10.40V -0.78V
-0.78V –7.23V
2.画出调幅实验中 m=30%、m=100%、m > 100% 的调幅波形,分析过调幅的原因。 M = 30%
M = 100%
5
M > 100%
3.画出当改变 VR8 时能得到几种调幅波形,分析其原因。
6
4.画出 100%调幅波形及抑止载波双边带调幅波形,比较两者区别。
12
3.画出实际观察到的调频波波形,并说明频偏变化与调制信号振幅的关系。
13
实验六
一、实验目的:
调频波解调实验
1.掌握集成电路频率解调器的工作原理。 2.熟悉集成电路 MC3361 的基本功能与用法。 3.掌握 MC3361 用于频率解调的调试方法。
二、实验内容:
1.观察 MC3361 二次混频的波形。 2.用 MC3361 完成频率解调,观察不失真输出波形与哪些因素有关。
三、电路基本原理
二极管包络检波器主要用于解调含有较大载波分量的大信号。本实验电路如图 3-1 所示,主要由 二极管 D7 及 RC 低通滤波器组成, 利用二极管的单向导电特性和检波负载 RC 的充放电过程实现检波. 所以 RC 时间常数的选择很重要,RC 时间常数过大,则会产生对角切割失真又称惰性失真。RC 常数 太小,高频分量会滤不干净.综合考虑要求满足下式:
图 2-2 MC1496 构成的振幅调制电路
四、实验步骤:
1.静态工作点调测:使调制信号 VΩ =0,载波 Vc=0(短路块 J11、J17 开路),调节 VR7、VR8 使各 引脚偏置电压接近下列参考值: V8 5.62V V10 5.62V V1 0V V4 0V V6 V12 V2 V3 V5
相乘器 相移网络 Φ (ω ) Vs
‘
低通滤波器 RC Vs
“
io
Vo
图 6-2 鉴频器