(完整)2019年高考文理数学选做题练习
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=()A. {x|−4<x<3}B. {x|−4<x<−2}C. {x|−2<x<2}D. {x|2<x<3}2.设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则()A. (x+1)2+y2=1B. (x−1)2+y2=1C. x2+(y−1)2=1D. x2+(y+1)2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A. a<b<cB. a<c<bC. c<a<bD. b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A. 165cmB. 175cmC. 185cmD. 190cm5.函数f(x)=sinx+xcosx+x2在[−π,π]的图象大致为()A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. 516B. 1132C. 2132D.11167.已知非零向量a⃗,b⃗ 满足|a⃗|=2|b⃗ |,且(a⃗−b⃗ )⊥b⃗ ,则a⃗与b⃗ 的夹角为()A. π6B. π3C. 2π3D. 5π68.下图是求12+12+12的程序框图,图中空白框中应填入()A. A=12+AB. A=2+1AC. A=11+2AD. A=1+12A9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A. a n=2n−5B. a n=3n−10C. S n=2n2−8nD. S n=12n2−2n 10.已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A. x22+y2=1 B. x23+y22=1 C. x24+y23=1 D. x25+y24=111.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(π2,π)单调递增③f(x)在[−π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A. 8√6πB. 4√6πC. 2√6πD. √6π二、填空题(本大题共4小题,共20.0分)13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .16. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.设(sinB −sinC)2=sin 2A −sinBsinC . (1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD −A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN//平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.20.已知函数f(x)=sinx−ln(1+x),f′(x)为f(x)的导数.证明:)存在唯一极大值点;(1)f′(x)在区间(−1,π2(2)f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i−1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=−1),b=P(X=0),c= P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1−p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.22.在直角坐标系xOy中,曲线C的参数方程为{x=1−t21+t2y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】【分析】本题考查了一元二次不等式的解法和交集的运算,属基础题.利用一元二次不等式的解法和交集的运算即可得出.【解答】解:∵M={x|−4<x<2},N={x|x2−x−6<0}={x|−2<x<3},∴M∩N={x|−2<x<2}.故选C.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z−i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z−i=x+(y−1)i,∴|z−i|=√x2+(y−1)2=1,∴x2+(y−1)2=1,故选C.3.【答案】B【解析】【分析】本题考查了指数函数和对数函数的单调性运用,属基础题.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选B.4.【答案】B【解析】【分析】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.充分运用黄金分割比例,计算可估计身高.【解答】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,,由头顶至咽喉的长度与咽喉至肚脐的长度之比是√5−12可得咽喉至肚脐的长度小于√5−12=√5−1≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是√5−12,可得肚脐至足底的长度小于26+52√5−1√5−12≈110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×√5−12≈65cm,即该人的身高大于65+105=170cm,故选B.5.【答案】D【解析】【分析】本题考查了函数图象的作法及函数的奇偶性,解题关键是奇偶性和特殊值,属基础题.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C,从而可得结果.【解答】解:∵f(x)=sinx+xcosx+x2,x∈[−π,π],∴f(−x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[−π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C,故选D.6.【答案】A【解析】【分析】本题主要考查概率的求法,考查古典概型、组合的应用,考查运算求解能力,属于基础题.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,则该重卦恰有3个阳爻的概率p=mn =2064=516.故选A.7.【答案】B【解析】【分析】本题考查了平面向量的数量积和向量的夹角,属基础题.由(a⃗−b⃗ )⊥b⃗ ,可得(a⃗−b⃗ )⋅b⃗ =0,进一步得到|a⃗||b⃗ |cos<a⃗,b⃗ >−b⃗ 2=0,然后求出夹角即可. 【解答】 解:∵(a ⃗ −b ⃗ )⊥b ⃗ ,∴(a ⃗ −b ⃗ )⋅b ⃗ =a ⃗ ⋅b ⃗ −b ⃗ 2=|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >−b ⃗ 2=0, ∴cos <a ⃗ ,b ⃗ >=|b⃗ |2|a ⃗ ||b⃗ |=12,∵<a ⃗ ,b ⃗ >∈[0,π],∴<a ⃗ ,b ⃗ >=π3,故选B . 8.【答案】A【解析】【分析】本题考查了程序框图的应用问题,是基础题.模拟程序的运行,由题意,依次写出每次得到的A 的值,观察规律即可得解. 【解答】解:模拟程序的运行,可得: A =12,k =1;满足条件k ≤2,执行循环体,A =12+12,k =2;满足条件k ≤2,执行循环体,A =12+12+12,k =3;此时,不满足条件k ≤2,退出循环,输出A 的值为12+12+12,观察A 的取值规律可知图中空白框中应填入A =12+A . 故选A . 9.【答案】A【解析】【分析】本题考查等差数列的通项公式以及前n 项和公式,关键是求出等差数列的公差以及首项,属于基础题.根据题意,设等差数列{a n }的公差为d ,则有{4a 1+6d =0a 1+4d =5,求出首项和公差,然后求出通项公式和前n 项和即可. 【解答】解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n (−3+2n−5)2=n 2−4n ,故选:A .10.【答案】B【解析】【分析】本题考查了椭圆的定义以及方程、余弦定理,属中档题.根据椭圆的定义以及余弦定理列方程可解得a=√3,b=√2,可得椭圆的方程.【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=a2,∴|AF2|=a,|BF1|=32a,则|AF2|=|AF1|=a,所以A为椭圆短轴端点,在Rt△AF2O中,cos∠AF2O=1a,在△BF1F2中,由余弦定理可得cos∠BF2F1=4+(a2)2−(32a)22×2×a2=4−2a22a,根据cos∠AF2O+cos∠BF2F1=0,可得1a +4−2a22a=0,解得a2=3,∴a=√3,b2=a2−c2=3−1=2.所以椭圆C的方程为:x23+y22=1,故选B.11.【答案】C【解析】【分析】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.根据绝对值的应用,结合三角函数的性质分别进行判断即可.【解答】解:f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),且f(x)的定义域为R,则函数f(x)是偶函数,故①正确;当x∈(π2,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误;当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0,得2sinx=0,即x=0或x=π,由f(x)是偶函数,得在[−π,0)上还有一个零点x=−π,即函数f(x)在[−π,π]有3个零点,故③错误;当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选C.12.【答案】D【解析】【分析】本题考查多面体外接球体积的求法,是中档题.设∠PAC=θ,PA=PB=PC=2x,EC=y,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求外接球O的体积.【解答】解:设∠PAC=θ,PA=PB=PC=2x,EC=y,因为E,F分别是PA,AB的中点,所以EF=12PB=x,AE=x,在△PAC中,cosθ=4x2+4−4x22×2x×2=12x,在△EAC中,cosθ=x2+4−y22×2x,整理得x2−y2=−2,①因为△ABC是边长为2的正三角形,所以CF=√3,又∠CEF=90°,则x2+y2=3,②,由①②得x=√22,所以PA=PB=PC=√2,所以PA2+PB2=4=AB2,即PA⊥PB,同理可得PA⊥PC,PB⊥PC,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为√2+2+2=√6,所以球O的体积为.故选D.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究曲线上某点的切线方程,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y′=3(2x+1)e x+3(x2+x)e x=3e x(x2+3x+1),∴当x=0时,y′=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,属于基础题.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:设等比数列{a n}的公比为q,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.15.【答案】0.18【解析】【分析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,第六场一定是甲胜,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p 1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p 2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p 3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p 4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p =p 1+p 2+p 3+p 4=0.036+0.036+0.054+0.054=0.18. 故答案为:0.18. 16.【答案】2【解析】【分析】本题考查双曲线的简单性质,是中档题.由题意画出图形,结合已知可得F 1B ⊥OA ,可得一条渐近线方程的倾斜角为,从而可得,进而求出离心率.【解答】 解:如图,∵F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,且F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0, ∴F 1B ⊥F 2B,F 1A =AB , ∴OA ⊥F 1B ,则△AOF 1≌△AOB , 则,所以一条渐近线的斜率为,所以e =c a =√1+b 2a 2=2,故答案为:2.17.【答案】解:(1)∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sinB −sinC)2=sin 2A −sinBsinC .则sin 2B +sin 2C −2sinBsinC =sin 2A −sinBsinC , ∴由正弦定理得:b 2+c 2−a 2=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc =12,∵0<A <π,∴A =π3.(2)∵√2a +b =2c ,A =π3,∴由正弦定理得√2sinA +sinB =2sinC , ∴√62+sin(2π3−C)=2sinC ,即√62+√32cosC +12sinC =2sinC ,即√62+√32cosC −32sinC =0, 即sin(C −π6)=√22,,则,∴C −π6=π4,C =π4+π6, ∴sinC =sin(π4+π6)=sin π4cos π6+cos π4sin π6=√22×√32+√22×12=√6+√24.【解析】本题考查了正弦定理、余弦定理,属于中档题. (1)由正弦定理得:b 2+c 2−a 2=bc ,再由余弦定理求出A .(2)由已知及正弦定理可得:sin(C −π6)=√22,可解得C 的值,由两角和的正弦函数公式即可得解.18.【答案】(1)证明:如图,过N 作NH ⊥AD ,连接BH ,则NH//AA 1,H 是AD 中点,且NH =12AA 1, 又MB//AA 1,MB =12AA 1,∴四边形NMBH 为平行四边形,则NM//BH ,由H 为AD 中点,而E 为BC 中点,∴BE//DH ,BE =DH ,则四边形BEDH 为平行四边形,则BH//DE , ∴NM//DE ,∵NM ⊄平面C 1DE ,DE ⊂平面C 1DE , ∴MN//平面C 1DE ;(2)解:以D 为坐标原点,以平面ABCD 内垂直于DC 的直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A 1(√3,−1,4),NM ⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2), 设平面A 1MN 的一个法向量为m⃗⃗⃗ =(x,y,z),由{m ⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =√32x +32y =0m⃗⃗⃗ ⋅NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x −12y +2z =0,取x =√3,得m ⃗⃗⃗ =(√3,−1,−1), 又平面MAA 1的一个法向量为n ⃗ =(1,0,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=√3√5=√155. ∴二面角A −MA 1−N 的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N 作NH ⊥AD ,证明NM//BH ,再证明BH//DE ,可得NM//DE ,再由线面平行的判定可得MN//平面C 1DE ;(2)以D 为坐标原点建立空间直角坐标系,分别求出平面A 1MN 与平面MAA 1的一个法向量,由两法向量所成角的余弦值可得二面角A −MA 1−N 的正弦值.19.【答案】解:(1)设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2),由题意可得F (34,0),故|AF |+|BF |=x 1+x 2+32, 因为|AF|+|BF|=4, 所以x 1+x 2=52, 联立{y =32x +t y 2=3x,整理得9x 2+12(t −1)x +4t 2=0,由韦达定理可知,x 1+x 2=−12(t−1)9,从而−12(t−1)9=52,解得t =−78,所以直线l 的方程为y =32x −78.(2)设直线l :y =32x +m ,A (x 1,y 1),B (x 2,y 2), 由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2, 联立{y =32x +m y 2=3x,整理得y 2−2y +2m =0,由韦达定理可知,y 1+y 2=2,又y 1=−3y 2,解得y 1=3,y 2=−1, 代入抛物线C 方程得,x 1=3,x 2=13, 即A (3,3),B (13,−1),故|AB |=√(3−13)2+(3+1)2=4√133.【解析】本题考查了抛物线的定义,考查直线与抛物线的位置关系,属于中档题.(1)根据韦达定理以及抛物线的定义可得.(2)由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2,由韦达定理可得y 1+y 2=2,从而解出A 、B 两点坐标,使用弦长公式计算即可.20.【答案】证明:(1)f(x)的定义域为(−1,+∞), 令f′(x )=ℎ(x)=cosx −11+x , ℎ′(x )=−sinx +1(1+x)2,令g(x)=−sinx +1(1+x)2,则g′(x)=−cosx −2(1+x)3<0在(−1,π2)恒成立, ∴ℎ′(x )在(−1,π2)上为减函数,又ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x )在(−1,π2)上存在唯一的零点x 0,结合单调性可得,f′(x )在(−1,x 0)上单调递增,在(x 0,π2)上单调递减, 可得f′(x )在区间(−1,π2)存在唯一极大值点; (2)由(1)知,当x ∈(−1,0)时,f′(x )单调递增, 则f′(x )<f′(0)=0,则f(x)单调递减; 当x ∈(0,x 0)时,f′(x )单调递增, 则f′(x )>f′(0)=0,f(x)单调递增; 由于f′(x )在(x 0,π2)上单调递减, 且f′(x 0)>0,,由零点存在定理可知,函数f′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f′(x )单调递减,则f′(x )>f′(x 1)=0,故f(x)单调递增; 当x ∈(x 1,π2)时,f′(x )单调递减, 则f′(x )<f′(x 1)=0,f(x)单调递减. 当x ∈(π2,π)时,cosx <0,−11+x <0, 于是f′(x )=cosx −11+x <0,f(x)单调递减, 其中f(π2)=1−ln(1+π2)>1−ln(1+3.22)=1−ln2.6>1−lne =0,f(π)=−ln(1+π)<−ln3<0. 于是可得下表:结合单调性可知,函数f(x)在(−1,π2]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(π2,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sinx−ln(1+x)<1−ln(1+π)<1−ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.【解析】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查逻辑思维能力,难度较大.(1)f(x)的定义域为(−1,+∞),求出原函数的导函数,令f′(x)=ℎ(x)=cosx−11+x,进一步求导,得到ℎ′(x)在(−1,π2)上为减函数,结合ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x)在(−1,π2)上存在唯一得零点x0,结合单调性可得,f′(x)在(−1,x0)上单调递增,在(x0,π2)上单调递减,可得f′(x)在区间(−1,π2)存在唯一极大值点;(2)由(1)知,当x∈(−1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)> 0,f(x)单调递增;由于f′(x)在(x0,π2)上单调递减,且f′(x0)>0,,可得函数f′(x)在(x0,π2)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈(x1,π2)时,f(x)单调递减.当x∈(π2,π)时,f(x)单调递减,再由f(π2)>0,f(π)<0.然后列x、f′(x)与f(x)的变化情况表得答案.21.【答案】(1)解:X的所有可能取值为−1,0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=α(1−β),(2)(i)证明:∵α=0.5,β=0.8,∴由(1)得,a=0.4,b=0.5,c=0.1.因此p i=0.4p i−1+0.5p i+0.1p i+1(i=1,2,…,7),故0.1(p i+1−p i)=0.4(p i−p i−1),即p i+1−p i=4(p i−p i−1),又∵p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;(ii)解:由(i)可得,p8=(p8−p7)+(p7−p6)+⋯+(p1−p0)+p0=p1(1−48)1−4=48−13p1,∵p 8=1,∴p 1=348−1,∴p 4=(p 4−p 3)+(p 3−p 2)+(p 2−p 1)+(p 1−p 0)+p 0=44−13p 1=1257.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.【解析】本题主要考查数列的应用,考查离散型随机变量的分布列,属于难题. (1)由题意可得X 的所有可能取值为−1,0,1,再由相互独立试验的概率求P(X =−1),P(X =0),P(X =1)的值,则X 的分布列可求;(2)(i)由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i−1+bp i +cp i+1,得到(p i+1−p i )=4(p i −p i−1),由p 1−p 0=p 1≠0,可得{p i+1−p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列;(ii)由(i)可得,p 8=(p 8−p 7)+(p 7−p 6)+⋯+(p 1−p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=348−1,进一步求得p 4=1257,即可求解. 22.【答案】解:(1)由{x =1−t 21+t 2y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t2, 两式平方相加,得x 2+y 24=1(x ≠−1),∴C 的直角坐标方程为x 2+y 24=1(x ≠−1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0,即直线l 的直角坐标方程为2x +√3y +11=0.(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0,联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2−12=0. 由Δ=16m 2−64(m 2−12)=0, 得m =±4,∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小, 即为直线2x +√3y +4=0与直线2x +√3y +11=0之间的距离√22+3=√7.【解析】本题考查简单曲线的极坐标方程,考查参数方程化为普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x =ρcosθ,y =ρsinθ代入2ρcosθ+√3ρsinθ+11=0,可得直线l 的直角坐标方程.(2)写出与直线l 平行的直线方程为2x +√3y +m =0,与曲线C 联立,化为关于x 的一元二次方程,利用判别式等于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证1a +1b+1c≤a2+b2+c2;因为abc=1.即证:abca +abcb+abcc≤a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即证:2bc+2ac+2ab≤2a2+2b2+2c2;即证:2a2+2b2+2c2−2bc−2ac−2ab≥0,即证(a−b)2+(a−c)2+(b−c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a−b)2≥0;(a−c)2≥0;(b−c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a−b)2+(a−c)2+(b−c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.a+b≥2√ab;b+c≥2√bc;c+a≥2√ac;当且仅当a=b,b=c,c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a)≥3×8√ab⋅√bc⋅√ac=24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.【解析】本题考查基本不等式的运用,分析法和综合法的证明方法,属于中档题.(1)利用基本不等式和“1”的运用可证;(2)利用综合法可证.。
【高考专题】最新2019年高考数学 函数图象 专题复习(含答案)文理通用版
2019年高考数学函数图象 文理通用一.选择题(共40小题)1.函数4()|41|x x f x =-的图象大致是( ) A . B .C .D .2.已知22(2)(2sin 1)(4)f x x ln x =-,则数()f x 的部分图象大致为( )A .B .C .D . 3.x 为实数,[]x 表示不超过x 的最大整数,()[]f x x x =-,若()f x 的图象上恰好存在一个点与2()(1)(20)g x x a x =+--剟的图象上某点关于y 轴对称,则实数a 的取值范围为( )A .(0,1)B .1(1,)4--C .1(0,1)(1,)4--D .1(0,1](1,]4--⋃ 4.函数sin31cos x y x=+,(,)x ππ∈-图象大致为( ) A . B . C . D .5.函数()cos sin f x x x x =-,[x π∈-,]π的大致图象为( )A .B .C .D .6.函数1(1)y ln x x =-+的图象大致为( ) A . B . C . D .7.函数(1)cos ()1x x e x f x e -=+的部分图象大致为( ) A . B .C . D .8.函数1()(1)x x e f x x e +=-(其中e 为自然对数的底数)的图象大致为( ) A . B . C . D .9.函数2()(1)f x ln x x =+-的图象大致是( )A .B .C .D .10.函数2()sin cos f x x x =+的部分图象符合的是( )A .B .C .D .11.将函数()f x 的图象沿x 轴向左平移1个单位长度,得到奇函数()g x 的图象,则()f x 可能是下列函数中的哪个函数?( )A .1()1f x x =+B .11()x x f x e e --=-C .2()f x x x=+ D .2()log (1)1f x x =++ 12.函数sin y x x π=-的大致图象是( )A .B .C .D .13.如图,在直角坐标系xOy 中,边长为1的正方形OMNP 的两个顶点在坐标轴上,点A ,B 分别在线段MN ,NP 上运动.设PB MA x ==,函数()f x OA BA =,()g x OA OB =,则()f x 与()g x 的图象为( )A .B .C .D .14.函数2()sin f x x x x =+的图象大致为( )A .B .C .D . 15.函数2(1)21ln x y x x +=-+的部分图象大致是( ) A . B . C . D .16.如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T .若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .17.函数3()cos f x x x x =-的大致图象为( )A .B .C .D .18.已知函数2|1()|23x f x x e x -=--+,则()f x 的大致图象是( )A .B .C .D .19.函数()f x =( ) A .B .C .D . 20.函数1(1)y x ln x =-+的图象大致为( ) A . B . C . D .21.函数2()(41)x f x x x e =-+的大致图象是( )A .BC .D .22.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+23.函数1()sin 1x f x x ln x -=+的大致图象为( ) A . B .C .D .24.函数3()||y x x ln x =-的图象是( )A .B .C .D .25.函数||sin 2()2x x f x =的图象大致为( )A .B .C .D .26.函数2()()x f x x tx e =+(实数t 为常数,且0)t <的图象大致是( )A .B .C .D .27.函数2()(2)||f x x ln x =-的图象为( )A .B .C .D .28.函数()1ln xf x x =+,的图象大致是( ) A . B .C . D .29.函数()cos sin f x x x x =-在[3x π∈-,3]π的大致图象为( )A .B .C .D . 30.函数233()sin ()22f x x x x ππ=-剟的图象大致为( ) A . B .C .D .31.函数2||8x y ln x =-的图象大致为( ) A . B . C . D .32.反映函数2()||f x x x -=-基本性质的图象大致为( )A .B .C .D .33.函数433()x xf x x --=的大致图象为( ) A . B . C . D .34.函数2()22x x f x x -=--的图象大致为( )A .B .C .D .35.函数()|1||1|f x ln x ln x =+--的大致图象为( )A .B .C .D .36.函数11x y lnx -=+的图象大致为( ) A . B . C . D .37.设函数2()1xx xe f x e =+的大致图象是( ) A . B .C .D . 38.函数()||cos f x x x =的部分图象为( )A.B.C.D.39.函数()sin2cosf x x x x=+的大致图象有可能是() A.B.C.D.40.函数1()()cosf x x xx=+在[3-,0)(0⋃,3]的图象大致为()A.B.C.D.参考答案一.选择题(共40小题)【解答】解:4()()()|41|x x f x f x f x --=≠≠--, 故()f x 为非奇非偶函数,故排除A ,B .当x →+∞时,()0f x →,当x →-∞时,()f x →+∞,故排除C ,故选:D .【解答】解:2(2)cos2(2)f x xln x =-,令2x t =,则2()cos f t t lnt =-,(0)t ≠2()cos f x xlnx ∴=-,(0)x ≠.cos y x =为偶函数,2y lnt =为偶函数,2()cos f x xlnx ∴=-,(0)x ≠.为偶函数.排除B ,C .当(0,1)x ∈时,cos 0x -<,20lnx <.所以当(0,1)x ∈时,()0f x >,排除A .故选:D .【解答】解:设()h x 与()g x 关于y 轴对称,则2()()(1)h x g x x a =-=--,(02)x 剟.()f x 的图象上恰好存在一个点与2()(1)(20)g x x a x =+--剟的图象上某点关于y 轴对称,可以等价为()f x 与()h x 在[0,2]上有一个交点,①当0a <时,()f x 与()h x 图象如图:当()h x 与()f x 在[1,2]的部分相切时,联立()h x 与()f x 在[1,2]的部分2(1)1y x a y x ⎧=--⎨=-⎩, 得2320x x a -+-=,由△0=得,14a =-, 当1a -…时,()h x 始终在1y =上方,与()f x 无交点.故此时1(1,)4a ∈--. ②0a =时,有两个交点,不成立.③当0a >时,()f x 与()h x 图象如图:要使()f x 与()h x 在[0,2]上有一个交点,需满足:(0)0(2)(0)1h h h ⎧⎨=⎩……,即(0a ∈,1]. 综上,1(0,1](1,]4--⋃. 故选:D .【解答】解:函数sin31cos x y x =+满足sin3()()1cos x f x f x x--==-+,函数为奇函数,排除A , 由于3sin2()121cos 2f πππ==-+,sin ()031cos 3f πππ==+,2sin 2()0231cos 3f πππ==+ 故排除B ,C故选:D .【解答】解:()cos sin (cos sin )()f x x x x x x x f x -=-+=--=-,函数()f x 是奇函数,图象关于原点对称,排除A ,C()cos sin 102222f ππππ=-=-<,排除B , 故选:D .【解答】解:由于函数1(1)y ln x x=-+在(1,0)-,(0,)+∞单调递减,故排除B ,D , 当1x =时,120y ln =->,故排除C ,故选:A .【解答】解:(1)cos()(1)cos ()()11x x x x e x e x f x f x e e ------==-=-++, ∴函数()f x 为奇函数,故排除B ,D ,当x →+∞时,()0f x →,故排除C ,故选:A .【解答】解:当0x >时,1x e >,则()0f x <;当0x <时,1x e <,则()0f x <,所以()f x 的图象恒在x 轴下方,排除B ,C ,D , 故选:A .【解答】解:代0x =,知函数过原点,故排除D .代入1x =,得0y <,排除C .带入0.0000000001x =-,0y <,排除A .故选:B .【解答】解:函数()f x 是偶函数,图象关于y 轴对称,(0)sin0cos01f =+=排除C ,22()sin cos sin 02424f ππππ=+=>,排除A ,D , 故选:B .【解答】解:A .将函数()f x 的图象沿x 轴向左平移1个单位长度得到12y x =+,图象关于原点不对称,不是奇函数,不满足条件. B .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到x x y e e -=-,则此时函数为奇函数,满足条件. C .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到211y x x =+++,(0)1230f =+=≠,则函数不是奇函数,D .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到2log (2)1y x =++,定义域关于原点不对称,不是奇函数,故选:B .【解答】解:()sin (sin )()f x x x x x f x ππ-=-+=--=-,则函数()f x 是奇函数,图象关于原点对称,排除B ,C ,当x →+∞,()f x →+∞,排除A ,故选:D .【解答】解:由已知可得(1,)A x ,(,1)B x ,[0x ∈,1],则(1,1)BA x x =--,(1,)OA x =,(,1)OB x =,所以2()1(1)(1)f x OA BA x x x x ==-+-=-,()2g x OA OB x ==,故选:A .【解答】解:函数2()sin f x x x x =+是偶函数,关于y 轴对称,故排除B , 令()sin g x x x =+,()1cos 0g x x ∴'=+…恒成立,()g x ∴在R 上单调递增,(0)0g =,()()0f x xg x ∴=…,故排除D ,当0x >时,()()f x xg x =单调递增,故当0x <时,()()f x xg x =单调递减,故排除C . 故选:A .【解答】解:当2x =时,f (2)330441ln ln ==>-+,故排除C , 当12x =时,3132()401224lnf ln ==>,故排除D , 当x →+∞时,()0f x →,故排除B ,故选:A .【解答】解:函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快, 故对应的图象为B ,【解答】解:函数33()cos()()cos ()f x x x x x x x f x -=----=-+=-,则函数()f x 是奇函数,图象关于原点对称,排除C ,D ,33()cos ()()022222f πππππ=-=-<,排除B , 故选:A .【解答】解:由题意知2|12|1()|2323|x x f x x e x x x e --=--+=-+-,223y x x =-+对称轴为1x =,|1|x y e -=对称轴为1x =,所以知()f x 的对称轴为1x =,排除B ,D . 代特殊值3x =得0y <,排除C ,选A .故选:A .【解答】解:1(0)02ln f ==,排除C ,Df (1)11)0ln e e -=<+,排除B 故选:A .【解答】解:f (1)1012ln =>-,排除C ,D , 由10(1)y x ln x ==-+,则方程无解,即函数没有零点,排除B , 故选:A .【解答】解:当0x <时,2410x x -+>,0x e >,所以()0f x >,故可排除B ,C ; 当2x =时,f (2)230e =-<,故可排除D .故选:A .【解答】解:由图可知()02f π>,故可排除A ,B ; 对于||:()cos x C f x e x =+,当(0,1)x ∈时()0f x >,故可排除C .故选:D .【解答】解:111()sin sin sin ()111x x x f x x lnx ln x ln f x x x x --+--=-=-==-+-+,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,C ,f (3)1sin302ln =<,排除B ,【解答】解:3()()||()f x x x ln x f x -=--=-,函数是奇函数,图象关于原点对称,排除B , 函数的定义域为{|0}x x ≠,由()0f x =,得3()||0x x ln x -=,即2(1)||0x ln x -=,即1x =±,即函数()f x 有两个零点,排除D , f (2)620ln =>,排除A ,故选:C .【解答】解:||||sin(2)sin 2()()22x x x x f x f x ----===-,函数()f x 是奇函数,图象关于原点对称,排除A ,B , ||44sin(2)14()0422f ππππ⨯==>,排除C , 故选:D .【解答】解:由()0f x =得20x tx +=,得0x =或x t =-,即函数()f x 有两个零点,排除A ,C , 函数的导数22()(2)())[(2)]x x x f x x t e x tx e x t x t e '=+++==+++,当x →-∞时,()0f x '>,即在x 轴最左侧,函数()f x 为增函数,排除D , 故选:B .【解答】解:22()(2)||(2)||()f x x ln x x ln x f x -=--=-=,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,D ,当x →+∞时,()f x →+∞,排除C ,故选:B .【解答】解:||||()()1||1||ln x ln x f x f x x x --===+-+,则函数()f x 是偶函数,图象关于y 轴对称,排除B ,D f (1)0=,则f (e )1011lne e e ==>++,排除A , 故选:C .【解答】解:()cos sin (cos sin )()f x x x x x x x f x -=-+=--=-,函数()f x 是奇函数,图象关于原点对称,排除B ,D()cos sin 0f πππππ=-=-<,排除C ,故选:A .【解答】解:因为233,()sin ()22x f x x x f x ππ--=-=-剟,所以()f x 为奇函数,图象关于原点对称,排除A ,C , 又因为()333222x f x f πππ⎛⎫- ⎪⎝⎭时剟?,排除B 故选:D .【解答】解:函数的定义域为{|0}x x ≠, 则22()()||||()88x x f x ln x ln x f x --=--=-=,则函数()f x 是偶函数,图象关于y 轴对称,排除B , 当x →+∞时,y →+∞,排除A ,2222()2088e e f e lne =-=-<, ∴函数在0x >时,存在负值,排除C ,故选:D .【解答】解:函数22()||()||()f x x x x x f x ---=---=-=,则()f x 是偶函数,排除C 且在(0,)+∞上是增函数,排除B 、D ,故选:A .【解答】解:443333()()x x x xf x f x x x -----==-=-,则()f x 是奇函数,则图象关于原点对称,排除A , f (1)183033=-=>,排除D , 当x →+∞,3x →+∞,则()f x →+∞,排除C ,故选:B .【解答】解:2()22()x x f x x f x --=--=,则()f x 是偶函数,排除C ,f (3)1798088=--=>,排除A , f (5)112532703232=--=--<,排除D , 故选:B .【解答】解:()|1||1|(|1||1|)()f x ln x ln x ln x ln x f x -=--+=-+--=-,即()f x 是奇函数, 图象关于原点对称,排除A ,C ,f (2)3130ln ln ln =-=>,排除B ,故选:D .【解答】解:当x →+∞时,y →+∞,排除D ,由0y =得101x lnx -=+,得10x -=,即1x =, 即函数只有一个零点,排除A ,B ,故选:C .【解答】解:f (1)201e e =>+,排除D ,122(1)011e ef e e ----==-<++,排除B ,C 故选:A .【解答】解:()||cos()||cos ()f x x x x x f x -=--==,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,B ,1()cos 33362f ππππ==>,故排除D , 故选:C .【解答】解:()sin(2)cos()sin2cos ()f x x x x x x x f x -=--+-=+=,则函数()f x 是偶函数,排除D , 由()2sin cos cos 0f x x x x x =+=,得cos (2sin 1)0x x x +=, 得cos 0x =,此时2x π=或32π, 由2sin 10x x +=得1sin 2x x =-, 作出函数sin y x =和12y x=-,在(0,2)π内的图象,由图象知两个函数此时有两个不同的交点, 综上()f x 在(0,2)π有四个零点,排除B ,C ,故选:A .【解答】解:11()()cos()()cos ()f x x x x x f x x x-=---=-+=-,函数是奇函数,图象关于原点对称,排除B ,D ,f (1)2cos10=>,排除C ,故选:A .。
2019年高考数学各省市文理13套真题及解析 (1)
B: an = 3n − 10
C: Sn = 2n243; 1 2A
D:
Sn
=
1 n2 2
−
2n
数学
-----------------------------------------
10. |BF1|
C C
F1(−1, 0), F2(1, 0) F2 ( ).
C
A, B . |AF2| = 2|F2B|, |AB| =
—来自傻子俱乐部,最爱你们的小数君
微信公众号:数学竞赛的那些事儿(
)
数学
试卷 4
-----------------------------------------
2019
学
考试
理科数学 I
23 题
150 . 考试 120 .
1. 答卷 2. 答 3. 4. 考
考 答题
题
题
答题
考
考
上.
答题 上
题答案
B: a < c < b
4.
√
√
5−1 ( 2
5−1 2
≈
0.618
)
.
上
105 cm
26 cm
( ).
C: x2 + (y − 1)2 = 1 C: c < a < b
√ 5 − 1. 2
D: x2 + (y + 1)2 = 1 D: b < c < a
A: 165 cm
C: 185 cm
5.
数
f (x)
2B
答题 上
答案. 答案 答 试卷上
答 答案
答案
上 答案
(完整版)2019年高考文科数学全国2卷含答案
2019年普通高等学校招生全国统一考试(全国II 卷) 文科数学1.设集合{}1-|>=x x A ,{}2|<=x x B ,则=⋂B A ( ) A. ),1(+∞- B. )2,(-∞ C. )2,1(- D. φ2. 设(2)z i i =+,则z = ( ) A. 12i + B. 12i -+ C. 12i - D. 12i --3. 已知向量(2,3)=a , (3,2)=b ,则-=a b ( )B. 2C. D. 504. 生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23 B. 35C. 25D. 155. 在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6. 设()f x 为奇函数,且当0≥x 时,()1=-xf x e ,则当0<x 时,()=f x ( ) A. 1--x e B. 1-+x e C. 1---x e D . 1--+x e7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面8. 若123,44x x ππ==是函数()sin (0)f x x ωω=>两个相邻的极值点,则ω=A .2B. 32C. 1D.129.若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( ) A.2 B.3 C.4 D.810. 曲线2sin cos y x x =+在点(,1)π-处的切线方程为( ) A. 10x y π---= B. 2210x y π---= C. 2210x y π+-+= D. 10x y π+-+=11. 已知(0,)2πα∈,2sin 2cos21αα=+,则sin α=( )A.15D.512.设F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,0为坐标原点,以OF 为直径的圆与圆222x y a +=交于,P Q 两点,若PQ OF =,则C 的离心率为:A.2B.3C.2D.5 二、填空题13. 若变量,x y 满足约束条件23603020x y x y y +-≥⎧⎪+-≤⎨⎪-≤⎩则3z x y =-的最大值是 .14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为 .15. ABC ∆的内角,,A B C 的对边分别为,,a b c .已知sin cos 0b A a B +=,则B = . 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)三、解答题17.如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥. (1)证明:BE ⊥平面11EB C(2)若1AE AE =,3AB =,求四棱锥11E BB C C -的体积.18.已知{}n a 是各项均为正数的等比数列,162,2231+==a a a . (1)求{}n a 的通项公式:(2)设n n a b 2log =,求数列{}n b 的前n 项和.19. 某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[)0.20,0-[)0,0.20[)0.20,0.40 [)0.40,0.60 [)0.60,0.80企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 748.602≈.20. 已知12,F F 是椭圆C :22221(0,0)x y a b a b+=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF ∆的面积等于16,求b 的值和a 的取值范围.21. 已知函数()(1)ln 1=---f x x x x .证明: (1)()f x 存在唯一的极值点;(2)()0=f x 有且仅有两个实根,且两个实根互为倒数.四、选做题(2选1)22.在极坐标系中,O 为极点,点00(,)M ρθ0(0)ρ>在曲线:=4sin C ρθ上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当03πθ=时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 23.[选修4-5:不等式选讲]已知 ()|||2|()f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集: (2)若(,1)x ∈-∞时,()0f x <,求a 得取值范围.2019年普通高等学校招生全国统一考试(全国II 卷 )文科数学答 案1. 答案:C 解析:{}1-|>=x x A ,{}2|<=x x B ,∴)(2,1-=⋂B A .2. 答案:D 解析:因为(2)12z i i i =+=-+,所以12z i =--. 3. 答案:A 解答:由题意知(1,1)-=-a b ,所以2-=a b .4. 答案:B 解答:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B ,则恰好有两只测量过的有6种,所以其概率为35.5.答案:A 解答:根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果. 6. 答案:D 解答:当0<x 时,0->x ,()1--=-xf x e ,又()f x 为奇函数,有()()1-=--=-+xf x f x e .7. 答案:B解析:根据面面平行的判定定理易得答案. 8.答案:A 解答:由题意可知32442T πππ=-=即T=π,所以=2ω. 9.答案:D 解析:抛物线)0(22>=p px y 的焦点是)0,2(p,椭圆1322=+p y p x 的焦点是)0,2(p ±, ∴p p22=,∴8=p . 10. 答案:C 解析:因为2cos sin y x x '=-,所以曲线2sin cos y x x =+在点(,1)π-处的切线斜率为2-, 故曲线2sin cos y x x =+在点(,1)π-处的切线方程为2210x y π+-+=. 11. 答案:B 解答:(0,)2πα∈,22sin 2cos 214sin cos 2cos ααααα=+⇒=,则12sin cos tan 2ααα=⇒=,所以cos α==,所以sin α==. 12. 答案:A解析:设F 点坐标为)0,2c (,则以OF 为直径的圆的方程为2222)2⎪⎭⎫⎝⎛=+-c y c x (-----①,圆的方程222a y x =+-----②,则①-②,化简得到c a x 2=,代入②式,求得caby ±=,则设P 点坐标为),2c ab c a (,Q 点坐标为),2c ab c a -(,故cab PQ 2=,又OF PQ =,则,2c cab=化简得到2222b a c ab +==,b a =∴,故2222==+==aaa b a a c e .故选A. 二、填空题 13. 答案:9 解答:根据不等式组约束条件可知目标函数3z x y =-在()3,0处取得最大值为9. 14.答案:0.98 解答:平均正点率的估计值0.97100.98200.99100.9840⨯+⨯+⨯==.15.答案:34π 解析:根据正弦定理可得sin sin sin cos 0B A A B +=,即()sin sin cos 0A B B +=,显然sin 0A ≠,所以sin cos 0B B +=,故34B π=.16.答案:1 解析:由图2结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解. 三、解答题 17.答案: (1)看解析 (2)看解析 解答:(1)证明:因为11B C C ⊥面11A B BA ,BE ⊥面11A B BA∴11B C BE ⊥ 又1111C E B C C ⋂=,∴BE ⊥平面11EB C ;(2)设12AA a =则 229BE a =+,22118+a C E =,22194C B a =+ 因为22211=C B BE C E + ∴3a =,∴11111h 3E BB C C BB C C V S -=1363=183=⨯⨯⨯ 18.答案: (1)122-=n n a ; (2)2n解答:(1)已知162,2231+==a a a ,故162121+=q a q a ,求得4=q 或2-=q ,又0>q ,故4=q ,则12111242---=⋅==n n n n q a a .(2)把n a 代入n b ,求得12-=n b n ,故数列{}n b 的前n 项和为22)]12(1[n nn =-+.19. 答案: 详见解析 解答:(1)这类企业中产值增长率不低于40%的企业比例是14721100100+=, 这类企业中产值负增长的企业比例是2100. (2)这类企业产值增长率的平均数是()0.1020.10240.30530.50140.7071000.30-⨯+⨯+⨯+⨯+⨯÷=⎡⎤⎣⎦这类企业产值增长率的方差是()()()()()222220.100.3020.100.30240.300.30530.500.30140.700.3071000.0296⎡⎤--⨯+-⨯+-⨯+-⨯+-⨯÷=⎣⎦所以这类企业产值增长率的标准差是28.6020.172040.17100==⨯=≈. 20. 答案: 详见解析 解答:(1)若2POF ∆为等边三角形,则P 的坐标为,22c ⎛⎫± ⎪ ⎪⎝⎭,代入方程22221x y a b +=,可得22223144c c a b+=,解得24e =±1e =. (2)由题意可得122PF PF a +=,因为12PF PF ⊥,所以222124PF PF c +=, 所以()22121224PF PF PF PF c +-⋅=,所以222122444PF PF a c b ⋅=-=,所以2122PF PF b ⋅=,所以122121162PF F S PF PF b ∆=⋅==,解得4b =. 因为()212124PF PF PF PF +≥⋅,即()21224a PF PF ≥⋅,即212a PF PF ≥⋅,所以232a ≥,所以a ≥21. 答案:见解析解答:(1)1()ln (0)'=->f x x x x ,设1()ln =-g x x x ,211()0'=+>g x x x则()g x 在(0,)+∞上递增,(1)10=-<g ,11(2)ln 2ln 022=->=g , 所以存在唯一0(1,2)∈x ,使得00()()0'==f x g x ,当00<<x x 时,0()()0<=g x g x ,当0>x x 时,0()()0>=g x g x ,所以()f x 在0(0,)x 上递减,在0(,)+∞x 上递增,所以()f x 存在唯一的极值点.(2)由(1)知存在唯一0(1,2)∈x ,使得0()0'=f x ,即001ln =x x , 00000000011()(1)ln 1(1)1()0=---=---=-+<f x x x x x x x x x , 22221113()(1)(2)110=----=->f e e e e,2222()2(1)130=---=->f e e e e , 所以函数()f x 在0(0,)x 上,0(,)+∞x 上分别有一个零点.设12()()0==f x f x ,(1)20=-<f ,则1021<<<x x x ,有1111111(1)ln 10ln 1+---=⇒=-x x x x x x , 2222221(1)ln 10ln 1+---=⇒=-x x x x x x , 设1()ln 1+=--x h x x x ,当0,1<≠x x 时,恒有1()()0+=h x h x, 则12()()0+=h x h x 时,有121=x x .22.答案:(1)0ρ=l 的极坐标方程:sin()26πρθ+=;(2)P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 解析:(1)当03πθ=时,00=4sin 4sin 3πρθ==以O 为原点,极轴为x轴建立直角坐标系,在直角坐标系中有M ,(4,0)A,OM k =,则直线l的斜率3k =-,由点斜式可得直线l:(4)3y x =--,化成极坐标方程为sin()26πρθ+=;(2)∵l OM ⊥∴2OPA π∠=,则P 点的轨迹为以OA 为直径的圆,此时圆的直角坐标方程为22(2)4x y -+=,化成极坐标方程为=4cos ρθ,又P 在线段OM 上,由4sin 4cos ρθρθ=⎧⎨=⎩可得4πθ=,∴P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 23.答案(1)看解析(2)看解析解答:(1)当1a =时,22242(2),()12(1)22(12),242(1).x x x f x x x x x x x x x x ⎧-+≥⎪=-+--=-<<⎨⎪-+-≤⎩所以不等式()0f x <等价于224202x x x ⎧-+<⎨≥⎩或22012x x -<⎧⎨<<⎩或224201x x x ⎧-+-<⎨≤⎩解得不等式的解集为{}2x x <。
2019届普通高等学校招生全国统一考试数学练习卷(解析版)
2019届普通高等学校招生全国统一考试数学练习卷文科数学本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}=( )2.(-A.-1-IB.-1+IC.1+ID.1-i3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A. B. C. D.4.已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为( )A.y=±xB.y=±xC.y=±xD.y=±x5.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是( )A.p∧qB. p∧qC.p∧qD.p∧q6.设首项为1,公比为的等比数列{a n}的前n项和为S n,则( )A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n7.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( )A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]8.O为坐标原点,F为抛物线C:y2=4的焦点,P为C上一点,若|PF|=4,则△POF的面积为( )A.2B.2C.2D.49.函数f(x)=(1-cos x)sin x在[-π,π]的图象大致为( )10.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos 2A=0,a=7,c=6,则b=( )A.10B.9C.8D.511.某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π12.已知函数f(x)=-,,( ,.若|f(x |≥ax,则a的取值范围是( )A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t= .14.设x,y满足约束条件,--,则z=2x-y的最大值为.15.已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.16.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ= .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=-5.(Ⅰ 求{a n}的通项公式;(Ⅱ 求数列-的前n项和.18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A 药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(Ⅰ 分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ 根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ 证明:AB⊥A1C;(Ⅱ 若AB=CB=2,A1C=,求三棱柱ABC-A1B1C1的体积.20.(本小题满分12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0, f(0))处的切线方程为y=4x+4.(Ⅰ 求a,b的值;(Ⅱ 讨论f(x)的单调性,并求f(x)的极大值.21.(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(Ⅰ 求C的方程;(Ⅱ l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.请考生从第22、23、24题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(Ⅰ 证明:DB=DC;(Ⅱ 设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(Ⅰ 把C1的参数方程化为极坐标方程;(Ⅱ 求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(Ⅰ 当a=-2时,求不等式f(x)<g(x)的解集;(Ⅱ 设a>-1,且当x∈-,时, f(x ≤g(x ,求a的取值范围.答案一、选择题1.A ∵B={x|x=n2,n∈A}={1,4,9,16},∴A∩B={1,4},故选A.2.B(-=-=((-=-=-1+i,故选B.3.B 从1,2,3,4中任取2个不同的数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种不同的结果,取出的2个数之差的绝对值为2的有(1,3),(2,4)2种结果,概率为,故选B.4.C 由双曲线的离心率e==可知,=,而双曲线-=1(a>0,b>0)的渐近线方程为y=±x,故选C.5.B 对于命题p,由于x=-1时,2-1=>=3-1,所以是假命题,故p是真命题;对于命题q,设f(x)=x3+x2-1,由于f(0)=-1<0, f(1)=1>0,所以f(x)=0在区间(0,1)上有解,即存在x∈R,x3=1-x2,故命题q是真命题.综上, ∧q是真命题,故选B.6.D 因为a1=1,公比q=,所以a n=-,S n=(--=3-=3-2-=3-2a n,故选D.7.A 由框图可知s=,-,-,,即求分段函数的值域.当-1≤t<1时,-3≤s<3;当1≤t≤3时,s=4t-t2=-(t-2)2+4,所以3≤s≤4.综上,s∈[-3,4],故选A.8.C 如图,设点P的坐标为(x0,y0),由|PF|=x0+得x0=3,代入抛物线方程得,=4×3=24, 所以|y0|=2,所以S△POF=|OF||y0|=××2=2故选C.9.C 因为f(-x)=[1-cos(-x)]sin(-x)=-(1-cos x ·sin x=-f(x),所以函数f(x)为奇函数,图象关于原点对称,排除选项B;当x∈(0,π)时,1-cos x>0,sin x>0,所以f(x)>0,排除选项A;又函数f(x)的导函数f '(x =sin x·sin x+(1-cos x ·cos x,所以f '(0)=0,排除D.故选C.评析本题考查对函数图象的识辨能力,考查综合运用所学知识的意识,体现了数形结合的思想方法;难点是判断选项C中f '(0)=0.10.D 由23cos2A+cos 2A=0得25cos2A=1,因为A为锐角,所以cos A=.又由a2=b2+c2-2bccos A得49=b2+36-b,整理得5b2-12b-65=0, 解得b=-(舍)或b=5,故选D.11.A 由所给三视图可知该几何体是一个组合体,下方是底面为半圆的柱体,底面半圆的半径为2,高为4;上方为长、宽、高分别为4、2、2的长方体.所以该几何体的体积为π×22×4+4×2×2=16+8π,故选A.评析本题考查识图能力和空间想象能力以及体积的计算;能正确得出几何体的形状是解题关键.12.D |f(x)|=-,, ( ,,其图象如图.由对数函数图象的变化趋势可知,要使ax≤|f(x |,则a≤0,且ax≤x2-2x(x≤0 ,即a≥x-2对x≤0恒成立,所以a≥-2.综上,-2≤a≤0,故选D.二、填空题13.答案 2解析b·c=b·[ta+(1-t b]=ta·b+(1-t)b2=t|a||b|cos 60°+(1-t)|b|2=+1-t=1-.由b·c=0,得1-=0,所以t=2.14.答案 3解析可行域为平行四边形ABCD及其内部(如图),由z=2x-y,得y=2x-z.-z的几何意义是直线y=2x-z在y轴上的截距,要使z最大,则-z最小,所以当直线y=2x-z过点A(3,3)时,z最大,最大值为2×3-3=3.15.答案解析平面α截球O所得截面为圆面,圆心为H,设球O的半径为R,则由AH∶HB=1∶2得OH=R,由圆H的面积为π,得圆H的半径为1,所以+12=R2,得出R2=,所以球O的表面积S=4πR2=4π×=π.16.答案-解析f(x)=sin x-2cos x=sin(x-φ),其中cos φ=,sin φ=,当x-φ=2kπ+时,f(x)取得最大值,此时x=2kπ++φ,即θ=2kπ++φ,cos θ=cos=-sin φ=-.评析本题考查三角函数的最值问题,考查了运算求解能力;熟练运用三角函数的有关公式是解题关键.三、解答题17.解析(Ⅰ 设{a n}的公差为d,则S n=na1+(- d.由已知可得,-.解得a1=1,d=-1.故{a n}的通项公式为a n=2-n.(Ⅱ 由(Ⅰ 知-=(- (-=---,从而数列-的前n项和为------=-.评析本题考查等差数列的通项公式及前n项和公式,考查了裂项求和的方法,考查了运算求解能力与方程思想.18.解析(Ⅰ 设A药观测数据的平均数为,B药观测数据的平均数为,由观测结果可得=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3. 2+3.5)=2.3,=(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2. 7+3.2)=1.6.由以上计算结果可得>,因此可看出A药的疗效更好.(Ⅱ 由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎2,3上,而B药疗效的试验结果有的叶集中在茎0,1上,由此可看出A药的疗效更好.评析本题考查数据的平均数和茎叶图,考查数据的分析处理能力和应用意识.19.解析(Ⅰ 取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C.(Ⅱ 由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1=.又A1C=则A1C2=OC2+O,故OA1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC-A1B1C1的高.又△ABC的面积S△ABC=,故三棱柱ABC-A1B1C1的体积V=S△ABC×OA1=3.评析本题主要考查直线与平面垂直的判定与性质、线线、线面的位置关系以及体积计算等基础知识,考查空间想象能力和推理论证能力.20.解析(Ⅰ f '(x =e x(ax+a+b)-2x-4.由已知得f(0)=4, f '(0)=4.故b=4,a+b=8.从而a=4,b=4.(Ⅱ 由(Ⅰ 知f(x)=4e x(x+1)-x2-4x,f '(x)=4e x(x+2)-2x-4=4(x+2)-.令f '(x)=0,得x=-ln 2或x=-2.从而当x∈(-∞,-2 ∪(-ln 2,+∞ 时, f '(x)>0;当x∈(-2,-ln 2)时, f '(x)<0.故f(x)在(-∞,-2),(-ln 2,+∞ 上单调递增,在(-2,-ln 2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).评析本题考查导数的运算及几何意义、利用导数研究函数的单调性和极值等基础知识,考查了运算求解能力.21.解析由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3. 设圆P的圆心为P(x,y),半径为R.(Ⅰ 因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M、N为左、右焦点,2为长半轴长,为短半轴长的椭圆(左顶点除外),其方程为+=1(x≠-2).(Ⅱ 对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.所以当圆P的半径最长时,其方程为(x-2)2+y2=4.若l的倾斜角为90°,则l与y轴重合,可得|AB|=2.若l的倾斜角不为90°,由r1≠R知l不平行于x轴,设l与x轴的交点为Q,则||=,可求得Q(-4,0),||所以可设l:y=k(x+4).由l与圆M相切得=1,解得k=±.当k=时,将y=x+代入+=1,整理得7x2+8x-8=0,解得x1,2=-.所以|AB|=|x2-x1|=.当k=-时,由图形的对称性可知|AB|=.综上,|AB|=2或|AB|=.评析本题考查了求轨迹方程的方法、椭圆的定义和标准方程,考查了直线与圆、椭圆的位置关系及弦长计算等基础知识,考查了运算求解能力和推理论证能力,考查了数形结合思想和分类讨论思想.22.解析(Ⅰ 连结DE,交BC于点G.由弦切角定理得∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,所以BE=CE.又因为DB⊥BE,所以DE为直径,所以∠DCE=90°,由勾股定理可得DB=DC.(Ⅱ 由(Ⅰ 知∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=.设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于.23.解析(Ⅰ 将,消去参数t,化为普通方程为(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将,代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (Ⅱ C2的普通方程为x2+y2-2y=0.由--, -,解得,或,.所以C1与C2交点的极坐标分别为,,,.24.解析(Ⅰ 当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3,则y=-,, --,, -,.其图象如图所示.从图象可知,当且仅当x∈(0,2 时,y<0. 所以原不等式的解集是{x|0<x<2}. (Ⅱ 当x∈-,时, f(x)=1+a.不等式f(x ≤g(x 化为1+a≤x+3.所以x≥a-2对x∈-,都成立.故-≥a-2,即a≤.从而a的取值范围是-,.。
2019年高考数学试题及答案word版
2019年高考数学试题及答案word版一、选择题(本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是正确的。
)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为多少?A. 0B. 2C. 5D. 32. 已知等差数列{an}的首项a1=1,公差d=3,求该数列的第5项a5。
A. 13B. 16C. 19D. 223. 计算三角函数值:sin(π/6) + cos(π/3)。
A. 1B. √3/2C. √2D. 24. 已知圆C的方程为(x-2)^2 + (y+1)^2 = 9,求圆C的半径。
A. 1B. 2C. 3D. 45. 若直线l的方程为y=2x+3,且点P(1,2)在直线l上,则直线l的斜率是多少?A. 1/2B. 2C. 3D. 46. 已知复数z=3+4i,求|z|的值。
A. 5B. √7C. √13D. √257. 计算定积分∫(0到1) (x^2 - 2x + 1) dx。
A. 0B. 1/3C. 1D. 2/38. 已知向量a=(2, -1),b=(1, 3),求向量a与向量b的数量积。
A. 1B. 3C. 5D. 7二、填空题(本题共4小题,每小题4分,共16分。
)9. 若函数f(x)=x^3-6x^2+11x-6,求f'(x)。
________________。
10. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,且双曲线C的渐近线方程为y=±(b/a)x,求双曲线C的离心率e。
________________。
11. 计算二项式展开式(1+x)^5的第3项。
________________。
12. 已知抛物线y=x^2-4x+4,求抛物线的顶点坐标。
________________。
三、解答题(本题共3小题,共52分。
解答应写出文字说明、证明过程或演算步骤。
)13. (本题满分12分)已知函数f(x)=x^3-3x^2+2,求证f(x)在区间[1,2]上单调递增。
2019年普通高等学校招生全国统一考试(数学)文及答案
2019年普通高等学校招生全国统一考试(数学)文及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 (A )1,1- (B )2.2- (C )1 (D )1-(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (A )21 (B )2 (C )4 (D )41 (5)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (6)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(7)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(A )1- (B )1 (C )5 (D )5-(8)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (9)10<<<<a y x ,则有(A )0)(log <xy a (B )1)(log 0<<xy a (C )2)(log 1<<xy a (D )2)(log >xy a (10)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (11)设)4,0(πθ∈,则二次曲线122=-θθtg y ctg x 的离心率取值范围(A ))21,0( (B ))22,21( (C ))2,22( (D )),2(+∞ (12)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)据新华社2002年3月12日电,1985年到2000年间。
2019年高考数学试题(附答案)
2019年高考数学试题(附答案)2019年高考数学试题是许多学生备战高考的重要参考资料。
在这份试题中,涵盖了数学的各个方面,包括代数、几何、概率与统计等。
这些试题不仅考察了学生对数学知识的掌握程度,也考察了他们的逻辑思维能力和解决问题的能力。
下面我们将对2019年高考数学试题进行详细分析,并附上相应的答案,希望能对广大学生有所帮助。
一、选择题部分。
1. 已知集合$A=\{x | -1\leq x\leq 3\}$,$B=\{x | 2\leq x\leq 4\}$,则$A\cap B$的元素个数为()。
A. 0B. 1C. 2D. 3。
解析,$A\cap B$表示集合A和集合B的交集,即同时属于A和B的元素组成的集合。
根据题意可知,$A\cap B=\{x | 2\leq x\leq 3\}$,所以$A\cap B$的元素个数为1,故选B。
2. 曲线$y=\ln x$和直线$y=x-2$的交点坐标为()。
A. (1, -1)B. (1, 1)C. (2, 0)D. (2, 1)。
解析,曲线$y=\ln x$和直线$y=x-2$的交点坐标即为满足方程$\ln x=x-2$的点的坐标。
通过计算可得,当x=2时,$\ln 2=2-2=0$,所以交点坐标为(2, 0),故选C。
3. 在$\triangle ABC$中,已知$\angle A=30^\circ$,$\angle B=45^\circ$,$AB=4$,则$AC$的长度为()。
A. $2\sqrt{2}$B. $2\sqrt{3}$C. $3\sqrt{2}$D. $4\sqrt{2}$。
解析,根据正弦定理可知,$\frac{AB}{\sin B}=\frac{AC}{\sin A}$,代入已知数据可得$AC=\frac{4\sin 30^\circ}{\sin 45^\circ}=2\sqrt{3}$,故选B。
4. 设随机变量X的概率密度函数为$f(x)=\begin{cases} kx^2 & 0<x<1 \\ 0 & others \end{cases}$,则k的值为()。
2019年浙江高考数学文理合卷绝对精彩(含答案)
2019 年6 月浙江高考文理合卷数学选择题部分(共40 分)一、选择题:本大题共10 小题,每小题 4 分,共40 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U 1,0,1,2,3 ,集合 A 0,1,2 ,B 1,0,1 ,则e U A BA . 1 B.0,1 C.1,2,3 D.1,0,1,3 2.渐近线方程为x y 0的双曲线的离心率是A.22B.1 C. 2D.2x 3y4≥03.若实数x,y 满足约束条件3x y 4≤0,则z=3 x+2 y的最大值是x y 0≥A . 1 B.1 C.10 D.12 4.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体= Sh,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A .158 B.162C.182 D.3245.若a 0,b 0,则“a b≤4”是“ab≤4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数1 1y ,y x a ,且alog ( )( 0 1)的图象可能是x aa 27.设0<a<1,则随机变量X 的分布列是则当 a 在(0,1)内增大时,A .D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大8.设三棱锥V–ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P–AC–B 的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<βx, x 09.已知a,b R,函数 3 2f (x) 1 1x (a1)x ax,x≥3 2点,则.若函数y f (x) ax b恰有3 个零A .a<–1,b<0 B.a<–1,b>0 C.a>–1,b<0 D.a>–1,b>0 10.设a,b∈R,数列{ a n} 满足a1=a,a n+1=a n2+b,b N,则A .当b= 12时,a10>10B.当b=14时,a10>10C.当b=–2 时,a10>10 D.当b=–4 时,a10>10非选择题部分(共110分)二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共36 分。
2019年全国卷(I)数学(理)高考真题(选择题和填空题)详解版
所以 2 因此 2
− 2= − 2=
答案:C
(3)已知 a=log20.2,b=20.2,c=0.20.3,则
1 / 10
晦, 2 = 2 2晦)
(A)a<b<c
(B)a<c<b
(C)c<a<b
(D)b<c<a
考点:考查指数函数、对数函数的基本性质 概念:①幂函数 y = 䁝 䁝 h 且 䁝 ,在区间(0,+ 单调递增。
=
.
综上所述,本题正确答案为 A
答案:A (7)已知非零向量 a,b 满足|a|=2|b|,且(a-b)⊥b,则 a 与 b 的夹角为
(A)
(B)
(C)2
(D)
考点: 考查平面向量的数量积 概念: 平面向量的数量积 ab=|a||b|cos<a,b> 解析:根据题意,(a-b)⊥b
推出(a-b)b=0。 即 ab-|b|2=0 所以|b||b|cos<a,b>-|b|2=0 因为|a|=2|b| 所以 2|b|2cos<a,b>-|b|2=0 所以|b|2(2cos<a,b>-1)=0, 因为 a,b 为非零向量, 所以|b|≠0, 因此 2cos<a,b>-1=0
②指数函数 y = 䁝 (0<a<1),在区间(0,+ 单调递减。 ③指数函数 y = 䁝 (a>1),在区间(0,+ 单调递增。 ④对数函数 y = log䁝 < 䁝 < ,在区间(0,+ 单调递减。 解析:log20.2 的底数为 2,2 大于 1,那么 log20.2< log21=0,即 a<0。 根据指数函数 y = 䁝 (a>1)的单调性可知,1=20<20.2,即 b>1。 根据指数函数 y = 䁝 (0<a<1)的单调性可知,0<0.20.3<0.20=1,即 0<c<1。 由此可知 a<c<b 答案:B
2019年高考真题—普通高等学校统一考试—理科数学(全国卷Ⅲ)—解析版_
2019年高考真题—普通高等学校统一考试—理科数学(全国卷Ⅲ)—解析版_ 2019年普通高等学校招生全国统一考试(全国 III卷)理科数学一.选择题 1、已知集合,则() A. B. B. C. C. D. D. 答案:A 解答:,所以. 2.若,则() A. B. C. D. 答案:D 解答:,. 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A. B.C. D. 答案:C 解答:4.的展开式中的系数为() A. B. C. D. 答案:A 解答:由题意可知含的项为,所以系数为. 5.已知各项均为正数的等比数列的前项和为,且,则() A. B. C. D. 答案:C 解答:设该等比数列的首项,公比,由已知得,,因为且,则可解得,又因为,即可解得,则. 6. 已知曲线在点处的切线方程为,则() A., B., C., D., 答案:D 解析:令,则,,得. ,可得.故选D. 7.函数在的图像大致为() A. B. C. D. 答案:B 解析:∵,∴,∴为奇函数,排除选项C.又∵,根据图像进行判断,可知选项B符合题意. 8.如图,点为正方形的中心,为正三角形,平面平面,是线段的中点,则()A.,且直线,是相交直线B.,且直线,是相交直线C.,且直线,是异面直线D.,且直线,是异面直线答案:B 解析:因为直线,都是平面内的直线,且不平行,即直线,是相交直线,设正方形的边长为,则由题意可得:,根据余弦定理可得:,,所以,故选B. 9.执行右边的程序框图,如果输出为,则输出的值等于() A. B. C.D. 答案:C 解析:第一次循环:;第二次循环:;第三次循环:;第四次循环:;… 第七次循环:,此时循环结束,可得.故选 C. 10. 双曲线:的右焦点为,点为的一条渐近线的点,为坐标原点.若则的面积为() A: B: C: D: 答案: A解析:由双曲线的方程可得一条渐近线方程为;在中过点做垂直因为得到;所以;故选A; 11. 若是定义域为的偶函数,且在单调递减,则() A. B.C. D. 答案:C 解析: 依据题意函数为偶函数且函数在单调递减,则函数在上单调递增;因为;又因为;所以;故选C. 12.设函数,已知在有且仅有个零点,下述四个结论:在有且仅有个极大值点在有且仅有个极小值点在单调递增的取值范围是其中所有正确结论的编号是 A.B. C. D. 答案:D 解析:根据题意,画出草图,由图可知,由题意可得,,解得,所以,解得,故对;令得,∴图像中轴右侧第一个最值点为最大值点,故对;∵,∴在有个或个极小值点,故错;∵,∴,故对. 二.填空题 13.已知,为单位向量,且,若,则 . 答案:解析:∵,∴,∵,∴. 14.记为等差数列的前项和,若,,则 . 答案:解析:设该等差数列的公差为,∵,∴,故,∴. 15.设、为椭圆的两个焦点,为上一点且在第一象限,若为等腰三角形,则的坐标为________. 答案:解析:已知椭圆可知,,,由为上一点且在第一象限,故等腰三角形中,,,,代入可得.故的坐标为. 16.学生到工厂劳动实践,利用D打印技术制作模型。
(精校版)2019年高考理数真题选择题5套专题训练(含答案,可直接打印)
2019年普通高等学校招生全国统一考试1卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A. 22+11()x y += B. 22(1)1x y -+= C. 22(1)1x y +-=D. 22(+1)1y x +=3.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D. b c a <<4.,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11167.已知非零向量a,b满足a=2b,且(a–b)⊥b,则a与b的夹角为A. π6B.π3C.2π3D.5π68.如图是求112122++的程序框图,图中空白框中应填入A. A=12A+B. A=12A+ C. A=112A+D. A=112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A.25n a n =- B.310n a n =- C.228n S n n=- D.2122n S n n =-10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y += D. 22154x y +=11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A. B.C.D.2019年普通高等学校招生全国统一考试2卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限3.已知AB u u u r =(2,3),AC u u u r =(3,t ),BC uuu r =1,则AB BC ⋅u u u r u u u r=A .-3B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │ 7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B 5C .3D .511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D 12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦2019年普通高等学校招生全国统一考试3卷一、选择题:本题共12小题,每小题5分,共60分。
2019年山东数学(理)高考试题(Word版,含答案解析)
高考数学精品复习资料2019.5绝密★启用前普通高等学校招生全国统一考试(山东卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设函数A ,函数y=ln(1-x)的定义域为B,则A B =(A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.(2)已知a R ∈,i 是虚数单位,若,4z a z z =⋅=,则a=(A )1或-1 (B (C ) (D 【答案】A【解析】由,4z a z z =⋅=得234a +=,所以1a =±,故选A.(3)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是 (A ) pq∧ (B )p q⌝∧ (C )p q ⌝∧ (D )p q ⌝⌝∧【答案】B(4)已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6【答案】C【解析】由x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x +y 50=+与x -3=的交点(3,4)-时,2z x y =+最大为3245z =-+⨯=,选C. (5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为(A )160 (B )163 (C )166 (D )170 【答案】C【解析】22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.(6)执行学科#网两次右图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为(A )0,0 (B )1,1 (C )0,1 (D )1,0【答案】D【解析】第一次227,27,3,37,1x b a =<=>= ;第二次229,29,3,39,0x b a =<===,选D. (7)若0a b >>,且1ab =,则下列不等式成立的是 (A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b <+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B【解析】221,01,1,log ()log 1,2aba b a b ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. (8)从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 (A )518 (B )49 (C )59(D )79 【答案】C【解析】125425989C C =⨯ ,选C. (9)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A【答案】A【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.(10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 (A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞(C )()23,⎡+∞⎣(D )([)3,+∞【答案】B二、填空题:本大题共5小题,每小题5分,共25分(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】()1C 3C 3rr r r rr n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =.(12)已知12,e e 是互相垂直的单位向量,若12-e 与12λ+e e 的夹角为60,则实数λ的值是 .【解析】)()221212112122333e e e e e e e e e λλλλ-⋅+=+⋅-⋅-=,()2221233232e e e e e e e -=-=-⋅+=,()22221221e e e e e e e e λλλλ+=+=+⋅+=+∴2cos601λ==+,解得:3λ=. (13)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .【答案】22π+【解析】该几何体的体积为21V 112211242ππ=⨯⨯⨯+⨯⨯=+. (14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】y x =(15)若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+【答案】①④【解析】①()22xxxxe ef x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()33xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3xxe f x e x =⋅,令()3xg x e x =⋅,则()()32232xxxg x e x e x x ex '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴()3x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④()()22x x e f x e x =+,令()()22xg xe x =+,则()()()2222110xxx g xe x e x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.三、解答题:本大题共6小题,共75分。
2019年新课标Ⅲ高考数学理科试题含答案(Word版)
绝密★启用前试题类型:2019年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =-( ) (A)1 (B) -1 (C) i (D)-i(3)已知向量13(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC=( ) (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是( )(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均最高气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= ( ) (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c <<(C )b c a <<(D )c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =( )(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = ( ) (A )31010 (B )1010 (C )1010- (D )31010-(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分(13)若x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。
最新最全2019高考数学(全国卷ⅠⅡⅢ)选考题汇编
2019高考数学全国卷选考题汇编2019年全国卷Ⅰ文22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.23.[选修4−5:不等式选讲](10分)已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.2019年全国卷Ⅰ理22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.23.[选修4—5:不等式选讲](10分)已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.2cos sin 110ρθθ++=2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=2019年全国卷Ⅱ文22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 23.[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.2019年全国卷Ⅱ理22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 23.[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1]x ∈-∞时,()0f x <,求a 的取值范围.2019年全国卷Ⅲ文22.[选修4-4:坐标系与参数方程](10分)如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD . (1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.23.[选修4-5:不等式选讲](10分)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.2019年全国卷Ⅲ理22.[选修4-4:坐标系与参数方程](10分)如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD . (1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.23.[选修4-5:不等式选讲](10分)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.。
2019年普通高等学校招生全国统一考试数学(江苏文理)含答案
2019年普通高等学校招生全国统一考试数学(江苏卷)参考公式:n次独立重复试验恰有k次发生的概率为:()(1)k k n kn nP k C p p-=-一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有..一项..是符合题目要求的。
1.下列函数中,周期为2π的是(D)A.sin2xy=B.sin2y x=C.cos4xy=D.cos4y x=2.已知全集U Z=,2{1,0,1,2},{|}A B x x x=-==,则UA C B为(A)A.{1,2}-B.{1,0}-C.{0,1}D.{1,2}3.在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为20x y-=,则它的离心率为(A)A B C D.24.已知两条直线,m n,两个平面,αβ,给出下面四个命题:(C)①//,m n m nαα⊥⇒⊥②//,,//m n m nαβαβ⊂⊂⇒③//,////m n m n αα⇒ ④//,//,m n m n αβαβ⊥⇒⊥ 其中正确命题的序号是A .①③B .②④C .①④D .②③5.函数()sin ([,0])f x x x x π=∈-的单调递增区间是(D ) A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 6.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31xf x =-,则有(B )A .132()()()323f f f <<B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f <<7.若对于任意实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为(B )A .3B .6C .9D .12 8.设2()lg()1f x a x=+-是奇函数,则使()0f x <的x 的取值范围是(A ) A .(1,0)- B .(0,1) C .(,0)-∞ D .(,0)(1,)-∞+∞9.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为(C ) A .3 B .52 C .2 D .3210.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为(B ) A .2 B .1 C .12 D .14二、填空题:本大题共6小题,每小题5分,共30分。
(完整版)2019年高考文科数学全国2卷含答案
2019年普通高等学校招生全国统一考试(全国II 卷) 文科数学1.设集合{}1-|>=x x A ,{}2|<=x x B ,则=⋂B A ( ) A. ),1(+∞- B. )2,(-∞ C. )2,1(- D. φ2. 设(2)z i i =+,则z = ( ) A. 12i + B. 12i -+ C. 12i - D. 12i --3. 已知向量(2,3)=a , (3,2)=b ,则-=a b ( )B. 2C. D. 504. 生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23 B. 35C. 25D. 155. 在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6. 设()f x 为奇函数,且当0≥x 时,()1=-xf x e ,则当0<x 时,()=f x ( ) A. 1--x e B. 1-+x e C. 1---x e D . 1--+x e7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面8. 若123,44x x ππ==是函数()sin (0)f x x ωω=>两个相邻的极值点,则ω=A .2B. 32C. 1D.129.若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( ) A.2 B.3 C.4 D.810. 曲线2sin cos y x x =+在点(,1)π-处的切线方程为( ) A. 10x y π---= B. 2210x y π---= C. 2210x y π+-+= D. 10x y π+-+=11. 已知(0,)2πα∈,2sin 2cos21αα=+,则sin α=( )A.15D.512.设F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,0为坐标原点,以OF 为直径的圆与圆222x y a +=交于,P Q 两点,若PQ OF =,则C 的离心率为:A.2B.3C.2D.5 二、填空题13. 若变量,x y 满足约束条件23603020x y x y y +-≥⎧⎪+-≤⎨⎪-≤⎩则3z x y =-的最大值是 .14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为 .15. ABC ∆的内角,,A B C 的对边分别为,,a b c .已知sin cos 0b A a B +=,则B = . 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)三、解答题17.如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥. (1)证明:BE ⊥平面11EB C(2)若1AE AE =,3AB =,求四棱锥11E BB C C -的体积.18.已知{}n a 是各项均为正数的等比数列,162,2231+==a a a . (1)求{}n a 的通项公式:(2)设n n a b 2log =,求数列{}n b 的前n 项和.19. 某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[)0.20,0-[)0,0.20[)0.20,0.40 [)0.40,0.60 [)0.60,0.80企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 748.602≈.20. 已知12,F F 是椭圆C :22221(0,0)x y a b a b+=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF ∆的面积等于16,求b 的值和a 的取值范围.21. 已知函数()(1)ln 1=---f x x x x .证明: (1)()f x 存在唯一的极值点;(2)()0=f x 有且仅有两个实根,且两个实根互为倒数.四、选做题(2选1)22.在极坐标系中,O 为极点,点00(,)M ρθ0(0)ρ>在曲线:=4sin C ρθ上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当03πθ=时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 23.[选修4-5:不等式选讲]已知 ()|||2|()f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集: (2)若(,1)x ∈-∞时,()0f x <,求a 得取值范围.2019年普通高等学校招生全国统一考试(全国II 卷 )文科数学答 案1. 答案:C 解析:{}1-|>=x x A ,{}2|<=x x B ,∴)(2,1-=⋂B A .2. 答案:D 解析:因为(2)12z i i i =+=-+,所以12z i =--. 3. 答案:A 解答:由题意知(1,1)-=-a b ,所以2-=a b .4. 答案:B 解答:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B ,则恰好有两只测量过的有6种,所以其概率为35.5.答案:A 解答:根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果. 6. 答案:D 解答:当0<x 时,0->x ,()1--=-xf x e ,又()f x 为奇函数,有()()1-=--=-+xf x f x e .7. 答案:B解析:根据面面平行的判定定理易得答案. 8.答案:A 解答:由题意可知32442T πππ=-=即T=π,所以=2ω. 9.答案:D 解析:抛物线)0(22>=p px y 的焦点是)0,2(p,椭圆1322=+p y p x 的焦点是)0,2(p ±, ∴p p22=,∴8=p . 10. 答案:C 解析:因为2cos sin y x x '=-,所以曲线2sin cos y x x =+在点(,1)π-处的切线斜率为2-, 故曲线2sin cos y x x =+在点(,1)π-处的切线方程为2210x y π+-+=. 11. 答案:B 解答:(0,)2πα∈,22sin 2cos 214sin cos 2cos ααααα=+⇒=,则12sin cos tan 2ααα=⇒=,所以cos α==,所以sin α==. 12. 答案:A解析:设F 点坐标为)0,2c (,则以OF 为直径的圆的方程为2222)2⎪⎭⎫⎝⎛=+-c y c x (-----①,圆的方程222a y x =+-----②,则①-②,化简得到c a x 2=,代入②式,求得caby ±=,则设P 点坐标为),2c ab c a (,Q 点坐标为),2c ab c a -(,故cab PQ 2=,又OF PQ =,则,2c cab=化简得到2222b a c ab +==,b a =∴,故2222==+==aaa b a a c e .故选A. 二、填空题 13. 答案:9 解答:根据不等式组约束条件可知目标函数3z x y =-在()3,0处取得最大值为9. 14.答案:0.98 解答:平均正点率的估计值0.97100.98200.99100.9840⨯+⨯+⨯==.15.答案:34π 解析:根据正弦定理可得sin sin sin cos 0B A A B +=,即()sin sin cos 0A B B +=,显然sin 0A ≠,所以sin cos 0B B +=,故34B π=.16.答案:1 解析:由图2结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解. 三、解答题 17.答案: (1)看解析 (2)看解析 解答:(1)证明:因为11B C C ⊥面11A B BA ,BE ⊥面11A B BA∴11B C BE ⊥ 又1111C E B C C ⋂=,∴BE ⊥平面11EB C ;(2)设12AA a =则 229BE a =+,22118+a C E =,22194C B a =+ 因为22211=C B BE C E + ∴3a =,∴11111h 3E BB C C BB C C V S -=1363=183=⨯⨯⨯ 18.答案: (1)122-=n n a ; (2)2n解答:(1)已知162,2231+==a a a ,故162121+=q a q a ,求得4=q 或2-=q ,又0>q ,故4=q ,则12111242---=⋅==n n n n q a a .(2)把n a 代入n b ,求得12-=n b n ,故数列{}n b 的前n 项和为22)]12(1[n nn =-+.19. 答案: 详见解析 解答:(1)这类企业中产值增长率不低于40%的企业比例是14721100100+=, 这类企业中产值负增长的企业比例是2100. (2)这类企业产值增长率的平均数是()0.1020.10240.30530.50140.7071000.30-⨯+⨯+⨯+⨯+⨯÷=⎡⎤⎣⎦这类企业产值增长率的方差是()()()()()222220.100.3020.100.30240.300.30530.500.30140.700.3071000.0296⎡⎤--⨯+-⨯+-⨯+-⨯+-⨯÷=⎣⎦所以这类企业产值增长率的标准差是28.6020.172040.17100==⨯=≈. 20. 答案: 详见解析 解答:(1)若2POF ∆为等边三角形,则P 的坐标为,22c ⎛⎫± ⎪ ⎪⎝⎭,代入方程22221x y a b +=,可得22223144c c a b+=,解得24e =±1e =. (2)由题意可得122PF PF a +=,因为12PF PF ⊥,所以222124PF PF c +=, 所以()22121224PF PF PF PF c +-⋅=,所以222122444PF PF a c b ⋅=-=,所以2122PF PF b ⋅=,所以122121162PF F S PF PF b ∆=⋅==,解得4b =. 因为()212124PF PF PF PF +≥⋅,即()21224a PF PF ≥⋅,即212a PF PF ≥⋅,所以232a ≥,所以a ≥21. 答案:见解析解答:(1)1()ln (0)'=->f x x x x ,设1()ln =-g x x x ,211()0'=+>g x x x则()g x 在(0,)+∞上递增,(1)10=-<g ,11(2)ln 2ln 022=->=g , 所以存在唯一0(1,2)∈x ,使得00()()0'==f x g x ,当00<<x x 时,0()()0<=g x g x ,当0>x x 时,0()()0>=g x g x ,所以()f x 在0(0,)x 上递减,在0(,)+∞x 上递增,所以()f x 存在唯一的极值点.(2)由(1)知存在唯一0(1,2)∈x ,使得0()0'=f x ,即001ln =x x , 00000000011()(1)ln 1(1)1()0=---=---=-+<f x x x x x x x x x , 22221113()(1)(2)110=----=->f e e e e,2222()2(1)130=---=->f e e e e , 所以函数()f x 在0(0,)x 上,0(,)+∞x 上分别有一个零点.设12()()0==f x f x ,(1)20=-<f ,则1021<<<x x x ,有1111111(1)ln 10ln 1+---=⇒=-x x x x x x , 2222221(1)ln 10ln 1+---=⇒=-x x x x x x , 设1()ln 1+=--x h x x x ,当0,1<≠x x 时,恒有1()()0+=h x h x, 则12()()0+=h x h x 时,有121=x x .22.答案:(1)0ρ=l 的极坐标方程:sin()26πρθ+=;(2)P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 解析:(1)当03πθ=时,00=4sin 4sin 3πρθ==以O 为原点,极轴为x轴建立直角坐标系,在直角坐标系中有M ,(4,0)A,OM k =,则直线l的斜率3k =-,由点斜式可得直线l:(4)3y x =--,化成极坐标方程为sin()26πρθ+=;(2)∵l OM ⊥∴2OPA π∠=,则P 点的轨迹为以OA 为直径的圆,此时圆的直角坐标方程为22(2)4x y -+=,化成极坐标方程为=4cos ρθ,又P 在线段OM 上,由4sin 4cos ρθρθ=⎧⎨=⎩可得4πθ=,∴P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 23.答案(1)看解析(2)看解析解答:(1)当1a =时,22242(2),()12(1)22(12),242(1).x x x f x x x x x x x x x x ⎧-+≥⎪=-+--=-<<⎨⎪-+-≤⎩所以不等式()0f x <等价于224202x x x ⎧-+<⎨≥⎩或22012x x -<⎧⎨<<⎩或224201x x x ⎧-+-<⎨≤⎩解得不等式的解集为{}2x x <。
2019年浙江高考数学文理合卷绝对精彩(含答案)
2019 年6 月浙江高考文理合卷数学选择题部分(共40 分)一、选择题:本大题共10 小题,每小题 4 分,共40 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U 1,0,1,2,3 ,集合A 0,1,2 ,B 1,0,1 ,则e U A BA . 1 B.0,1 C.1,2,3 D.1,0,1,3 2.渐近线方程为x y 0的双曲线的离心率是A.22B.1 C. 2D.2x 3y4≥03.若实数x,y 满足约束条件3x y 4≤0,则z=3 x+2 y的最大值是x y 0≥A . 1 B.1 C.10 D.12 4.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体= S h,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A .158 B.162C.182 D.3245.若a 0,b 0,则“a b≤4”是“ab≤4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数1 1y ,y x a ,且alog ( )( 0 1)的图象可能是x aa 27.设0<a<1,则随机变量X 的分布列是则当a 在(0,1)内增大时,A .D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大8.设三棱锥V–ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P–AC–B 的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<βx, x 09.已知a,b R,函数 3 2f (x) 1 1x (a1)x ax,x≥3 2点,则.若函数y f (x) ax b恰有3 个零A .a<–1,b<0 B.a<–1,b>0 C.a>–1,b<0 D.a>–1,b>0 10.设a,b∈R,数列{ a n} 满足a1=a,a n+1=a n2+b,b N,则A .当b= 12时,a10>10B.当b=14时,a10>10C.当b=–2 时,a10>10 D.当b=–4 时,a10>10非选择题部分(共110分)二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共36 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2019年高考选做题练习数学(文)试卷考试时间:120分钟 满分150分学校:___________姓名:___________班级:___________考号:___________1.在直角坐标系xOy 中,过点P (1,2)的直线l 的参数方程为112322x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 相交于M ,N 两点,求11PM PN+的值. 答案及解析:1.(1)由已知得112322x t y t ⎧-=⎪⎪⎨⎪-=⎪⎩,消去t 得23(1)y x -=-,即3230x y -+-=,所以直线l 的普通方程为3230x y -+-=;┄┄┄2分曲线C :4sin ρθ=得24sin ρρθ=,因为222x y ρ=+,sin y ρθ=,所以224x y y +=, 整理得22(2)4x y +-=,所以曲线C 的直角坐标方程为22(2)4x y +-=;┄┄┄5分(2)解:把直线l 的参数方程112322x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)代入曲线C 的直角坐标方程中得:2213(1)()42t t ++=,即230t t +-=, 设M ,N 两点对应的参数分别为1t ,2t ,则121213t t t t +=-⎧⎨⋅=-⎩,┄┄┄8分所以11PM PN +1212PM PN t t PM PN t t ++==⋅⋅21212121212()4t t t t t t t t t t -+-⋅==⋅⋅133=。
┄┄┄10分 2.已知函数()222f x x x =--+. (1)求不等式()6f x ≥的解集;(2)当x R ∈时,()f x x a ≥-+恒成立,求实数a 的取值范围.答案及解析:2.解:(1)当2x ≤-时,()4f x x =-+,∴()646f x x ≥⇒-+≥2x ⇒≤-,故2x ≤-;当21x -<<时,()3f x x =-,∴()636f x x ≥⇒-≥2x ⇒≤-,故x ∈∅; 当1x ≥时,()4f x x =-,∴()646f x x ≥⇒-≥10x ⇒≥,故10x ≥; 综上可知:()6f x ≥的解集为(,2][10,)-∞+∞U ;┄┄┄5分(2)由(1)知:4,2()3,214,1x x f x x x x x -+≤-⎧⎪=--<<⎨⎪-≥⎩,【解法一】如图所示:作出函数()f x 的图象,由图象知,当1x =时,13a -+≤-,解得:2a ≤-, ∴实数a 的取值范围为(,2]-∞-。
┄┄┄10分【解法二】当2x ≤-时,4x x a -+≥-+恒成立,∴4a ≤, 当21x -<<时,3x x a -≥-+恒成立,∴2a ≤-, 当1x ≥时,4x x a -≥-+恒成立,∴2a ≤-, 综上,实数a 的取值范围为(,2]-∞-。
3.在直角坐标系xOy 中,曲线M 的参数方程为1cos 1sin x r y r αα=+⎧⎨=+⎩(α为参数,0r >),以直角坐标系的原点为极点,以x 轴的正半轴为极轴建立坐标系,圆C 的极坐标方程为8sin ρθ=. (1)求圆C 的直角坐标方程(化为标准方程)及曲线M 的普通方程;(2)若圆C 与曲线M 的公共弦长为8,求r 的值.答案及解析:3.(1)由8sin ρθ=,得28sin ρρθ=,所以2280x y y +-=, 即()22416x y +-=,故曲线C 的直角坐标方程为()22416x y +-=.曲线M 的普通方程为()()22211x y r -+-=(2)联立()()()2222241611x y x y r ⎧+-=⎪⎨-+-=⎪⎩,得2262x y r -=-因为圆C 的直径为8,且圆C 与曲线M 的公共弦长为8, 所以直线2262x y r -=-经过圆C 的圆心()0,4,则2220642,6r r ⨯-⨯=-=, 又0r >所以r =4.(本小题满分10分) 设函数(),f x x a a =-∈R . (1)当5a =时,解不等式()3f x ≤;(2)当1a =时,若x ∃∈R ,使得不等式()()1212f x f x m -+≤-成立,求实数m 的取值范围.答案及解析:4.解(I )当5a =时,原不等式等价于53x -≤,即35328x x -≤-≤⇒≤≤,所以解集为{}28x x ≤≤.…………………………4分(II )当1a =时,()1f x x =-.令()()()12g x f x f x =-+133,,212211,2,233,2,x x x x x x x x ⎧-+≤⎪⎪⎪=-+-=+<<⎨⎪-≥⎪⎪⎩由图象,易知12x =时,()g x 取得最小值32.由题意,知311224m m ≤-⇒≤-, 所以实数m 的取值范围为1(,]4-∞-…………………………………10分5.(本大题10分)在平面直角坐标系xOy 中,直线l的参数方程为1,21x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在以原点O 为极轴,x 轴正半轴为极轴的极坐标系中,圆C 的方程为4cos ρθ=. (1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)若点P 坐标为(1,1),圆C 与直线l 交于A ,B 两点,求PA PB +的值.答案及解析:5.解:(1)消去参数t 可得直线l 的普通方程为: 20x y +-=,极坐标方程即: 24cos ρρθ=,则直角坐标方程为: 224x y x +=, 据此可得圆C 的直角坐标方程为:()2224x y -+=…………(4分)(2)将1,2 1.2x y ⎧⎪⎪=⎨-+⎪⎪⎩=代入()2224x y -+=得:220t +-=得12120,20t t t t +=-<⋅=-<, 则124PA PB t t +=-== …………(10分)6.选修4-5:不等式选讲 已知函数()||2f x x a =--.(1)若1a =,求不等式()|23|0f x x +->;(2)关于x 的不等式()|3|f x x >-有解,求实数a 的取值范围.答案及解析:6.(1)解:当a=1时,原不等式等价于:2321>-+-x x . 当2,24323>>-≥x x x 解得时, 当无解时,,22231>-<<x x当32,2341<>-<x x x 解得时,∴原不等式的解集为:⎭⎬⎫⎩⎨⎧<>322或x x(2)解:()332f x x x a x >-⇔---> 令3)(---=x a x x f ,依题意:max ()2f x > ∵()3()(3)3f x x a x x a x a =---≤---=- ∴3)(max -=a x f∴32a ->,解得5a >或1a <7.[选修4-4:坐标系与参数方程](本题满分10分)在同一直角坐标系中,经过伸缩变换12x x y y⎧'=⎪⎨⎪'=⎩后,曲线C 变为曲线221x y ''+=.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 33πρθ⎛⎫-= ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)过点P (1,0)作l 的垂线交C 于A ,B 两点,点A 在x 轴上方,求11||||PA PB -. 答案及解析:7.(1)将代入得,曲线的方程为由得,因为,代入上式得直线的直角坐标方程为(2)因为直线的倾斜角为,所以其垂线的倾斜角为, 过点的垂线的参数方程为,即(为参数)代入曲线的方程整理得,设两点对应的参数为(由题意知)则,且,所以.8.[选修4-5:不等式选讲](本题满分10分)函数()|2|f x ax =+,不等式()f x a ≤的解集为{|20}x x -≤≤. (1)求a 的值;(2)求证:对任意x R ∈,存在1m >,使得不等式1(2)(2)1f x f x m m -+≥+-成立. 答案及解析:8.(1)由题意知不满足题意, 当时,由得,则,则a=2(2)设,对于任意实数,存在,使得,只需,因为,当时,由,仅当取等号所以原命题成立.9.[选修4-4:坐标系与参数方程] (10分)已知曲线C 的参数方程为22x ty t =⎧⎨=⎩,(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,过极点的两射线l 1、l 2相互垂直,与曲线C 分别相交于A 、B 两点(不同于点O ),且l 1的倾斜角为锐角α.(1)求曲线C 和射线l 2的极坐标方程;(2)求△OAB 的面积的最小值,并求此时α的值.答案及解析:9.解:(1)由曲线C 的参数方程,得普通方程为24y x =, 由cos x ρθ=,sin y ρθ=,得224sin cos ρθρθ=,所以曲线C 的极坐标方程为2cos 4sin ρθθ=,[或24sin cos θρθ=] --------------------------3分2l 的极坐标方程为2πθα=+;----------------------------------------------------------------------5分(2)依题意设(,),(,)2A B A B πραρα+,则由(1)可得24sin cos A αρα=, 同理得24sin()2cos ()2B παρπα+=+,即24cos sin B αρα=,--------------------------------------------------7分 ∴11||||||22OAB A B S OA OB ρρ∆=⋅=⋅228|sin cos |cos sin αααα⋅=⋅ ∵02πα<<∴0απ<<,∴8cos sin OABS αα∆=⋅16sin 2α=16≥, ----------------9分 △OAB 的面积的最小值为16,此时sin 21α=, 得22πα=,∴4πα=. -------------------------------------------------------------------------10分10.[选修4-5:不等式选讲] (10分) 已知函数()|2||2|f x x a x =--+.(1)当2a =时,求不等式()2f x <的解集;(2)当[2,2]x ∈-时,不等式()f x x ≥恒成立,求a 的取值范围.答案及解析:10.解:(1)①当2x <-时,()22(2)62f x x x x =-+++=+<,解得4x <-,-------------------------------------------------------------------------------------------1分 ②当22x -≤<时,()22(2)322f x x x x =-+-+=--<,解得423x -<<,--------------------------------------------------------------------------------------2分 ③当2x ≥时,()22(2)62f x x x x =--+=--<解得2x ≥,---------------------------------------------------------------------------------------------3分上知,不等式()2f x <的解集为4(,4)(,)3-∞--+∞U ;-----------------------------------5分 (2)解法1:当[2,2]x ∈-时,()2(2)(1)2(1)f x x a x a x a =--+=-++-,--------6分 设()()g x f x x =-,则[2,2]x ∀∈-,()(2)2(1)0g x a x a =-++-≥恒成立, 只需(2)0(2)0g g -≥⎧⎨≥⎩,-------------------------------------------------------------------------------------8分即60420a ≥⎧⎨--≥⎩,解得12a ≤---------------------------------------------------------------------10分【解法2:当[2,2]x ∈-时,()2(2)f x x a x =--+,-------------------------------------6分()f x x ≥,即2(2)x a x x --+≥,即(2)2(1)x a x +≤----------------------------------7分①当2x =-时,上式恒成立,a R ∈;------------------------------------------8分 ②当(2,2]x ∈-时,得2(1)2x a x -≤+622x =-++恒成立, 只需min 61(2)22a x ≤-+=-+, 综上知,12a ≤-.----------------------------------------------------------------10分】11.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧+=+=ααsin 2cos 1t y t x (t 为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,圆C 的方程为θρsin 6=. (1)求圆C 的直角坐标方程;(2)若点)2,1(P ,设圆C 与直线l 交于点A ,B ,求||||PB PA +的最小值.答案及解析:11.解:(1)由θρsin 6=得θρρsin 62=,化为直角坐标方程为9)3(22=-+y x (2)将l 的参数方程代入圆C 的直角坐标方程,得07)sin (cos 22=--+t t αα (*) 由028)cos (sin 42>+-=∆αα,故可设21,t t 是方程(*)的两根,∴⎩⎨⎧-=⋅-=+7)cos (sin 22121t t t t αα又直线过点)2,1(P ,故结合t 的几何意义得:2122121214)(||||||||||t t t t t t t t PB PA -+=-=+=+722sin 432≥-=α∴||||PB PA +的最小值为72.12.已知函数()212f x x x =++-. (I)求f (x )的最小值m ;(II)若a ,b ,c 均为正实数,且满足a b c m ++=,求证:2223b c aa b c++≥. 答案及解析:12.I)当1x <-时,()()()()21233,f x x x x =-+--=-∈+∞当12x -≤<时,()()()[)21243,6f x x x x =+--=+∈, 当2x ≥时,()()()[)212=36,f x x x x =++-∈+∞ 综上,()f x 的最小值3m =(II) 证明: a b c 、、均为正实数,且满足a b c m ++=,∵222222()b c a b c a a b c a b c a b c a b c ⎛⎫⎛⎫⎛⎫+++++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22()a b c ≥=++ ( 当且仅当1a b c ===时,取“=”)∴222b c a a b c a b c ++≥++,即2223b c aa b c++≥ 13.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的方程为cos sin x y αα=⎧⎨=⎩(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为=2cos ρθ. (Ⅰ)求C 1、C 2交点的直角坐标;(Ⅱ)设点A 的极坐标为3π⎛⎫⎪⎝⎭4,,点B 是曲线C 2上的点,求△AOB 面积的最大值.答案及解析:13.(Ⅰ)221:1C x y +=,2:=2cos C ρθ,∴2=2cos ρρθ,∴222x y x +=.联立方程组得222212x y x y x ⎧+=⎪⎨+=⎪⎩,解得111 2x y ⎧=⎪⎪⎨⎪=⎪⎩,221 2x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴所求交点的坐标为12⎛ ⎝⎭,1 2⎛ ⎝⎭,.………………………5分 (Ⅱ)设()B ρθ,,则=2cos ρθ,∴AOB ∆的面积11sin 4sin 4cos sin 2233S OA OB AOB ππρθθθ⎛⎫⎛⎫=⋅⋅⋅∠=⋅-=- ⎪ ⎪⎝⎭⎝⎭2cos 26πθ⎛⎫=+ ⎪⎝⎭∴当2312πθ=时,max 2S =. ………………………10分14.已知函数()|2||1|f x x a x =-+-,a R ∈.(1)若不等式()2|1|f x x ≤--有解,求实数a 的取值范围; (2)当2a <时,函数f (x )的最小值为3,求实数a 的值.答案及解析:14.(1)由题()2|1|f x x ≤--,即为|||1|12ax x -+-≤.而由绝对值的几何意义知|||1||1|22a a x x -+-≥-,当且仅当()(1)02ax x --<时取“=” …………………2分由不等式()2|1|f x x ≤--有解,∴min ()|1|12a f x =-≤,即1112a -≤-≤,得022a≤≤. 所以实数a 的取值范围[0,4]. …………………5分 (2)函数()|2||1|f x x a x =-+-的零点为2a 和1,由12a<知2a <,所以有 31,2()1,1231,1a x a x a f x x a x x a x ⎧-++≤⎪⎪⎪=-+<≤⎨⎪-->⎪⎪⎩………………7分画出图形如右图,由图可知()f x 在(,)2a -∞单调递减,在(,)2a +∞单调递增(从解析式得到单调性也可),故min()()1322a af x f ==-+=,即42a =-<,符合题意,即4a =-.……………………………………………………………………………………………… 10分15.选修4-4:坐标系与参数方程在直角坐标系中,曲线C 1:221x y +=经过伸缩变换'2'x xy y=⎧⎨=⎩后得到曲线C 2.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2sin ρθ=-. (Ⅰ)求出曲线C 2、C 3的参数方程;(Ⅱ)若P 、Q 分别是曲线C 2、C 3上的动点,求PQ 的最大值.答案及解析:15.(Ⅰ)曲线1C :221x y +=经过伸缩变换'2'x x y y=⎧⎨=⎩,可得曲线2C 的方程为2214x y +=, ∴其参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数);曲线3C 的极坐标方程为2sin ρθ=-,即22sin ρρθ=-,∴曲线3C 的直角坐标方程为222x y y +=-,即()2211x y ++=,∴其参数方程为cos 1sin x y ββ=⎧⎨=-+⎩(β为参数).(Ⅱ)设()2cos ,sin P αα,则P 到曲线3C 的圆心()0,1-的距离()224cos sin 1d αα=++23sin 2sin 5αα=-++21163sin 33α⎛⎫=--+ ⎪⎝⎭∵[]sin 1,1α∈-,∴当1sin 3α=时,max 33d =.∴max max PQ d r =+3433133=+=.16.已知|12||1|2)(-++=x x x f . (I)解不等式()>(1)f x f ; (II)若不等式n m x f 11)(+≥(m >0,n >0)对任意的R x ∈都成立,证明:34≥+n m . 答案及解析:16.(Ⅰ)()(1)f x f >就是21215x x ++->.(1)当12x >时,5)12()1(2>-++x x ,得1x >. (2)当112x -≤≤时,()()21215x x +-->,得35>,不成立. ………2分 (3)当1x <-时,()()21215x x -+-->,得32x <-. 综上可知,不等式()(1)f x f >的解集是()312⎛⎫-∞-+∞ ⎪⎝⎭U ,,.………5分 (Ⅱ)因为()()2121222122213x x x x x x ++-=++-≥+--=,所以113m n+≤. ………7分 因为0m >,0n >时,111m n mn +≥123mn ≤23mn ≥. 所以423m n mn +≥. ………10分 17.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为3cos 3x y αα=⎧⎪⎨=⎪⎩(α是参数).以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为cos()13πρθ+=.(1)求l 的直角坐标方程和C 的普通方程;(2)l 与C 相交于A ,B 两点,设点P 为C 上异于A ,B 的一点,当△P AB 面积最大时,求点P 到l 的距离.答案及解析:17.解:(1)因为直线l 的极坐标方程为cos()13πρθ+=,所以1(cos )122ρθθ-=, 所以直线l的直角坐标方程为20x -=.曲线C的参数方程为3cos x y αα=⎧⎪⎨=⎪⎩,(α是参数),所以曲线C 的普通方程为22193x y+=. (2)直线:20l x -=与曲线22:193x yC +=相交于A B 、两点,所以||AB 为定值. 要使PAB ∆的面积最大,只需点P 到直线l 的距离d 最大.设点(3cos )P αα为曲线C 上任意一点.则点P 到直线l 的距离|3cos 3sin 2|2d αα--=|)2|42πα+-=, 当cos()14πα+=-时,d取最大值为2||122-=+. 所以当PAB ∆面积最大时,点P 到l的距离为1+18.已知函数()2f x x a x =-++. (Ⅰ)当1a =时,解不等式()4f x ≥;(Ⅱ)若不等式()3f x x ≤+的解集包含[0,1],求实数a 的取值范围.答案及解析:18.解:(Ⅰ)1a =时,()4f x ≥2214x x <-⎧⇔⎨--≥⎩或2134x -≤≤⎧⎨≥⎩或1214x x >⎧⎨+≥⎩,52x ≤-或x φ∈或32x ≥,解集为53(,][,)22-∞-+∞U .(Ⅱ)由已知()3f x x ≤+在[0,1]上恒成立, ∵20x +>,30x +>, ∴1x a -≤在[0,1]上恒成立,∵y x a =-的图象在(,)a -∞上递减,在(,)a +∞上递增,∴01110211a a a a ⎧-≤-≤≤⎧⎪⇒⎨⎨≤≤-≤⎩⎪⎩,∴a 的取值范围是[0,1]. 19.已知曲线C 1的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin 4cos ρθθ=. (1)求C 1的普通方程和C 2的直角坐标方程;(2)若过点(1,0)F 的直线l 与C 1交于A ,B 两点,与C 2交于M ,N 两点,求||||||||FA FB FM FN 的取值范围.答案及解析:19.(1)曲线1C 的普通方程为2212x y +=,曲线2C 的直角坐标方程为 24y x =;(5分)(2)设直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(t 为参数)又直线l 与曲线2C :24y x =存在两个交点,因此sin 0α≠.联立直线l 与曲线1C :2212x y +=可得22(1sin )2cos 10t t αα++-= 则1221||||||1sin FA FB t t α⋅==+ 联立直线l 与曲线2C :24y x =可得22sin 4cos 40t t αα--=则3424||||||sin FM FN t t α⋅==即222221||||1sin 1111sin (0,]41||||41sin 481sin sin FA FB FM FN ααααα⋅+==⋅=⋅∈⋅++. (10分) 20.已知函数()2,.f x x a x a R =-++∈ (1)当1a =时,解不等式() 4.f x ≥;(2)若[]0,1x ∈时,不等式()3f x x ≤+成立,求实数a 的取值范围。