模糊综合评判
模糊评判

模糊综合评判一:解决的实际问题:在实际工作中,对一个事物的评价或评估,常常涉及多个因素或多个指标,这时就要求根据这多个因素对事物作出综合评价,而不能只从某一因素的情况去评价事物,这就是综合评判。
模糊综合评判的基本思想是利用模糊线性变换原理和最大隶属度原则,考虑与被评价事物相关的各个因素,对其作出合理的综合评价模糊综合评判决策是对受多种因素影响的事物作出全面评价的一种十分有效的多因素决策方法。
二:模型与求解方法:设U ={u1, u2, … , u n}为n种因素(或指标),V ={v1, v2, … ,V}为m种评判(或等级).m由于各种因素所处地位不同,作用也不一样,可用权重A = (a1, a2, … , an )来描述,它是因素集U 的一个模糊子集.对于每一个因素u,单独作出的一个评判f (i u),可看i作是U到V 的一个模糊映射f ,由f 可诱导出U 到V 的一个模糊关系R f ,由R f可诱导出U 到V 的一个模糊线性变换TR(A)= A °R = B,它是评判集V 的一个模糊子集,即为综合评判.(U, V, R )构成模糊综合评判决策模型, U, V, R是此模型的三个要素.模糊综合评判决策的方法与步骤是:⑴ 建立因素集U ={u 1, u 2, … , u n }与决断集V ={1V , 2V , … , m V }.⑵ 建立模糊综合评判矩阵.对于每一个因素i u ,先建立单因素评判:(r i 1, r i 2, … , r im )即ij r (0≤ij r ≤1)表示j V 对因素i u 所作的评判,这样就得到单因素评判矩阵()ij n m R r ⨯=⑶ 几种常见没模糊综合评判模型.根据各因素权重A =(a 1, a 2, … , a n )综合评判: B = A ⊕R = (b 1, b 2, … , b m )是V 上的一个模糊子集,根据运算⊕的不同定义,可得到不同的模型.模型Ⅰ:M (∧,∨)——主因素决定型{(),1}j i ij b a r i n=∨∧≤≤1,2,...,j m = 由于综合评判的结果j b 的值仅由i a 与ij r 1,2,...,i n =中的某一个确定(先取小,后取大运算),着眼点是考虑主要因素,其他因素对结果影响不大,这种运算有时出现决策结果不易分辨的情况. 模型Ⅱ:M ( · , ∨)——主因素突出型{(),1}j i ij b a r i n=∨∧≤≤ 1,2,...,j m = M ( · , ∨)与模型M (∧,∨) 较接近, 区别在于用i a ij r 代替了M (∧,∨) 中的i a ∧ij r 。
模糊综合评判法(原理)

05
多因素综合评判
根据权重和隶属度,对所有因素进行加权平均,得出 最终的综合评判结果。
02
模糊集合与隶属函数
模糊集合的概念
模糊集合
在经典集合论中,一个对象要么完全 属于某个集合,要么完全不属于该集 合。但在模糊集合中,一个对象可以 部分地属于某个集合。
模糊集合的表示
通常用大括号 {} 表示一个集合,在括 号内用小括号 () 括起来的元素表示该 集合中的成员。例如,A = {(x, y) | y = x^2} 表示一个曲线集合。
隶属函数的定义与分类
隶属函数
用于描述模糊集合中元素属于该集合 的程度。它是一个函数,输入为一个 元素,输出为一个介于0和1之间的实 数,表示该元素属于该集合的隶属度。
分类
根据不同的分类标准,隶属函数可以 分为不同的类型。例如,按照形状可 以分为三角形、梯形、高斯型等;按 照参数化可以分为非参数化、半参数 化、参数化等。
模糊综合评判法(原理)
目
CONTENCT
录
• 模糊综合评判法概述 • 模糊集合与隶属函数 • 模糊矩阵的运算与模糊关系 • 模糊综合评判的步骤与实例 • 模糊综合评判法的改进与发展
01
模糊综合评判法概述
定义与特点
定义
模糊综合评判法是一种基于模糊数学和模糊逻辑的决策方法,用 于解决具有模糊性和不确定性问题的评价和决策。
模糊关系的扩展
将一个普通关系扩展为模糊关系,以便在模糊逻辑中使用。
模糊关系的传递性
模糊关系的传递性定义
如果对于任意三个模糊集合A、B和C,有A∩B=A∩C且A∪B=A∪C,则称A与 B的交集和并集分别等于A与C的交集和并集,即A与B的传递性。
模糊关系传递性的性质
模糊综合评价法

模糊综合评价法原理模糊综合评价法是一种基于模糊数学的综合评价方法,它应用模糊关系综合的原理,将一些界限不清、难以量化的因素量化,进行综合评价。
这种综合评价方法根据模糊数学的隶属度理论,将定性评价转化为定量评价,即利用模糊数学对受多种因素制约的事物或对象进行总体评价。
它具有结果明确、系统性强的特点,能解决模糊、难以量化的问题,适用于解决各种不确定性问题。
其特点是评价结果不是绝对肯定或否定的,而是用一个模糊集来表示。
模糊综合评价通常由目标层和指标层组成。
通过指标层与评价集之间的模糊关系矩阵(即隶属度矩阵),可以得到目标层对评价集的隶属度向量,从而得到目标层的综合评价结果。
隶属度和隶属度矩阵是模糊综合评价的关键概念。
计算步骤1、确定评价对象的因素集设U={u1,u2,...,um}为刻画被评价对象的m种评价因素(评价指标),其中:m是评价因素的个数,由具体的指标体系所决定。
2、确定评价对象的评语集设V={v1,v2,...,vn},是评价者对被评价对象可能做出的各种总的评价结果组成的评语等级的集合,一般划分为3-5个等级。
3、确定评价因素的权重向量设A=(a1,a2,...,am)为权重分配模糊矢量,其中ai表示第i个因素的权重,要求a1+a2+...+am=1,A反映了各因素的重要程度。
在模糊综合评价中,权重会对最终的评价结果产生很大的影响,不同的权重有时会得到完全不同的结论。
现在权重一般是凭经验给的,但很主观。
确定权重的方法有:(1)专家估计法;(2)加权平均法:当专家人数少于30人时,可采用此方法。
先由多位专家独立给出各因素的权重,然后取各因素的平均值作为其权重;(3)频率分布测定的权重法;(4)模糊协调决策方法:贴近度和贴近度选择原则;(5)层次分析法。
4、进行单因素模糊评价,确立模糊关系矩阵R5、综合评价6、对模糊综合评价结果进行定量分析模糊综合评价的结果是被评价对象对各等级模糊子集的隶属度,它一般是一个模糊矢量,而不是一个值,因而他能提供的信息比其它方法更丰富。
模糊综合评价法及例题

指标
很好
好
一般
差
疗效
治愈
显效
好转
无效
住院日
≤15
16~20
21~25
>25
费用(元) ≤1400 1400~1800 1800~2200 >2200
表2 两年病人按医疗质量等级的频数分配表
指标
很好 质量好 等级一般 差
疗效 住院日 费用
01年 02年
01年 02年
01年 02年
160 170
180 200
•模糊概念 秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然 若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线
年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
共同特点:模糊概念的外延不清楚。 模糊概念导致模糊现象 模糊数学就是用数学方法研究模糊现象。
模糊综合评价
▪ 假设评价科研成果,评价指标集合U={学术水 平,社会效益,经济效益}其各因素权重设为
W {0.3,0.3,0.4}
模糊综合评价
▪ 请该领域专家若干位,分别对此项成果每一因素进行单因素 评价(one-way evaluation),例如对学术水平,有50%的 专家认为“很好”,30%的专家认为“好”,20%的专家认为 “一般”,由此得出学术水平的单因素评价结果为
• 术语来源 Fuzzy: 毛绒绒的,边界不清楚的 模糊,不分明,弗齐,弗晰,勿晰
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
(Fuzzy Sets,Information and Control, 8, 338-353 )
topsis-模糊综合评判法

TOPSIS与模糊综合评判法:多属性决策方法比较与选择一、引言在决策分析中,多属性决策问题是一个常见的问题类型。
这些问题涉及多个属性或指标,需要对这些属性进行权重分配和综合评价,以确定最优方案。
TOPSIS和模糊综合评判法是两种常用的多属性决策分析方法。
本文将介绍这两种方法,并通过比较它们的优缺点,为实际应用提供选择依据。
二、TOPSIS 方法TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)是一种多属性决策分析方法,它通过计算每个方案与理想解和负理想解的距离,来评估方案的优劣。
理想解是所有方案中最好的解,负理想解是最差的解。
步骤:1.构建属性权重向量,确定各属性的权重。
2.归一化属性值,将各属性的值转换到同一量纲。
3.计算每个方案与理想解和负理想解的距离。
4.计算每个方案的相对接近度,根据相对接近度的大小,对方案进行排序。
优点:1.可以处理不同的属性类型,包括效益型、成本型和区间型。
2.可以考虑属性的不同权重。
3.易于理解和计算。
缺点:1.对数据分布敏感,如果数据分布不均匀,可能导致评价结果失真。
2.对属性值的小幅变化敏感,可能导致评价结果不稳定。
三、模糊综合评判法模糊综合评判法是一种基于模糊逻辑的多属性决策分析方法。
它通过模糊集合和模糊规则来描述属性之间的模糊关系,从而对方案进行综合评价。
步骤:1.确定属性集合和方案集合。
2.确定属性之间的模糊关系,建立模糊矩阵。
3.确定属性权重向量,确定各属性的权重。
4.进行模糊运算,得到每个方案的隶属度和优先度。
5.根据隶属度和优先度对方案进行排序。
优点:1.可以处理不确定性和模糊性。
2.可以考虑属性的不同权重。
3.可以结合专家的经验和知识。
缺点:1.对模糊规则的描述需要较高的专业知识水平。
2.计算复杂度高,需要较高的计算成本。
3.对数据分布的稳定性要求较高。
四、比较与选择通过对TOPSIS和模糊综合评判法的介绍和比较,我们可以发现它们各有优缺点。
模糊综合评判

n
数.
4. 主因素突出型: M (∨, T ) 设
A = (a1 , a2 ,L , an ) ∈ [0,1]n
n
是正规化权向量,对
n
∀ ( x1 , x2 ,L , xn ) ∈ [0,1]
x1 |→ f ( x1 ) = x2 |→ f ( x2 ) = 1 , y1 1 0.4 0.9 0.5 + + + , y1 y2 y3 y4
0.5 0.7 , x3 |→ f ( x3 ) = + y1 y3
则 f 是从 X 到 Y 的模糊映射.
二、 性质. 为了方便与直观,我们只给出有 限论域情形下模糊映射 f 与模糊关系
n i =1
∀ ( x1 , x2 ,L , xn ) ∈ [0,1]
,令 f ∑ ( x1 , x2 ,L , xn ) = ∑ ai xi ,称 f ∑ 为
加权平均模型模糊综合函数, ai 是第 i 个因素在 综合评判中所占的比重
2. 几何平均型: 设 A = (a1 , a2 ,L , an ) ∈ [0,1]n 是归一化权向量, 对 ∀ ( x1 , x2 ,L , xn ) ∈ [0,1]n , 令
则
TR : F ( X ) → F (Y ), A |→ TR ( A) = A o R = B = (b1 , b2 ,L , bm ) ∈ F (Y ) ,
(ai ∧ rij ) ( j = 1, 2,L , m) , 并 TR 称是由模糊关系 其中 b j = i∨ =1
n
诱导出的.
模糊综合评价法讲解

B1=(0.46,0.18,0.12,0.12,0.12) B2=(0.17,0.17,0.42,0.12,0.12) 若规定评价“好”“较好”要占50%以上才可晋升, 则此教师晋升为教学型教授,不可晋升为科研型教
是由一个指标实际值来刻画,因此从这个角度讲,
模糊综合评价要求更多的信息),ri 称为单因素评
价矩阵,可以看作是因素集U和评价集V之间的一种 模糊关系,即影响因素与评价对象之间的“合理关
系”。
在确定隶属关系时,通常是由专家或与评价问题 相关的专业人员依据评判等级对评价对象进行打分
,然后统计打分结果,然后可以根据绝对值减数法
1.80 1.93 0.87 1.12 1.21 0.87 0.89 2.52 0.81 0.82 1.01
A=(0.2,0.3,0.5)
专家评价结果表
由上表,可得甲、乙、丙三个项目各自 的评价矩阵P、Q、R:
0.7 0.2 0.1 P 0.1 0.2 0.7
0.3 0.6 0.1
0.3 0.6 0.1 Q 1 0 0
0.7 0.3 0
0.1 0.4 0.5 R 1 0 0
0.1 0.3 0.6
例3:“晋升”的数学模型,以高校教师晋 升教授为例
因素集:
U={政治表现及工作态度,教学水平,科 研水平,外语水平};
评判集:
V={好,较好,一般,较差,差};
(1)建立模糊综合评判矩阵
当学科评审组的每个成员对评判的对象进 行评价,假定学科评审组由7人组成,用打分 或投票的方法表明各自的评价
模糊综合评价法

~ 1 2 n
i
i 1
在 A 与 R 求出之后,则综合评判为 b V a r , j 1, 2 , , m 记 B b , b , , b ,它是V上的一个模糊子集,其中
n
~
j
~
i 1
i
ij
1
2
m
B A R
~ ~ ~
m
如果评判结果 b
j 1
j
1
,应将它归一划。
关键点:建立单因素评判矩阵R 和确定权重分配 A ,一 般采用的是模糊统计实验或专家评分方法求出。
~
~
THE END
~
r12 r22 rn 2
r1 m r2 m rnm
称 R 为单因素评判矩阵,于是(U,V,R)构成了一个综 合评判模型或称综合评判空间。 ④进行综合评判。由于对U中各因素有不同的侧重,需要 对每个不同的因素赋予不同的权重,它可以表示为U上 的一个模糊子集 A a , a , , a ,并且规定 a 1 。
模糊综合评价法
张小君
模糊综合评价法
模糊综合评价数学模型分为一级模型和多级模型两类。 一级模型进行模糊综合评价,一般可归为以下几个步骤: ①建立评判的因素集 U u , u , , u 。因素就是对象的各种属 性或性能,在不同场合也称为 参数指标或质量指标, 根据这些因素给对象评价。 ②建立评判集 V v , v , , v 。如工业产品,评判集就是等级 的集合。 ③建立单因素评判,即建立一个从U到F(V)的模糊映射。
1 2 n 1 2 m
f : U F V , u i U
~Leabharlann u i f u i ~
模糊综合评判法原理课件

我们称{Ui}是U的一个划分(或剖分),Ui称为类(或块).
有甲、乙、丙三项科研成果,现要从中评选出优秀项目。 三个科研成果的有关情况表
设评价指标集合: U={科技水平,实现可能性,经济效益}
1965年,美国伯克利加利福尼亚大学电机工程与计算机科 学系教授、自动控制专家L.A. Zadeh(扎德) 发表了文 章《模糊集》(Fuzzy Sets,Information and Control, 8, 338-353 ),第一次成功的运用精确的数学方法描述了 模糊概念,从而宣告了模糊数学的诞生.
2、确定评价对象的评语集.
设 出的V=各{v种1,v总2,的…评,价vn结},果是组评成价的者评对语被等评级价的对集象合可.能做 其 评价中结:v果j代数表.一第般j个划评分价为结3~果5个,等j=级1,.2,…,n. n为总的
评判集、评价集、决断集、评语集、等级集实为同一涵义. 每一个评价等级可对应一个模糊子集. 什么是模糊子集? 论域上的模糊集合称为模糊子集. 经典集合的指示函数扩展为模糊集合的隶属函数.
评语集合: V={高,中,低}
3、确定评价因素的权重向量 设 ai表A=示(a第1,ia个2,…因,素am的)为权权重重,要(权求数ai)>分0配,Σ模a糊i=1矢.量,其中 A反映了各因素的重要程度. 在进行模糊综合评价时,权重对最终的评价结果会产
生很大的影响,不同的权重有时会得到完全不同的结 论. 现在通常是凭经验给出权重,但带有主观性. 权重是以某种数量形式对比、权衡被评价事物总体中 诸因素相对重要程度的量值.
综合评价法(层次分析法)概述
模糊综合评价

2 模糊综合评价在对许多事物进行客观评判时,其评判因素往往很多,我们不能只根据某一个指标的好坏就作出判断,而应该依据多种因素进行综合评判,如技术方案的选择、经济发展的比较等.模糊综合评判可有效地对受多种因素影响的事物作出全面评价.2.1 理论介绍模糊综合评判通常包括以下三个方面:设与被评价事物相关的因素有n 个,记为12{,,,}n U u u u =,称之为因素集。
又设所有可能出现的评语有 m 个,记为12{,,,}m V v v v =,称之为评判集。
由于各种因素所处地位不同,作用也不一样,通常考虑用权重来衡量,记为 12{,,,}n A a a a =。
1.评判步骤进行模糊综合评判通常按以下步骤进行: (1)确定因素集12{,,,}n U u u u =。
(2)确定评判集12{,,,}m V v v v =。
(3)进行单因素评判得12{,,,}i i i im r r r r =。
(4)构造综合评判矩阵:111212122212m m n n nm r r r r r r R r r r ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ (5)综合评判:对于权重12{,,,}n A a a a =,计算B A R =,并根据最大隶属度原则作出评判。
2.算子的定义在进行综合评判时,根据算子 的不同定义,可以得到不同的模型。
1)模型I :(,)M ∧∨——主因素决定型 运算法则为max{(),1,2,,}j i ij b a r i n =∧=(1,2,,)j m = 。
该模型评判结果只取决于在总评判中起主要作用的那个因素,其余因素均不影响评判结果,比较适用于单项评判最优就能认为综合评判最优的情形。
2)模型II (,)M ∨:——主因素突出型运算法则为max{(),1,2,,}j i ij b a r i n ==(1,2,,)j m =。
该模型与模型I比较接近,但比模型I 更精细些,不仅突出了主要因素,也兼顾了其他因素,比较适用于模型I 失效,即不可区别而需要加细时的情形。
模糊综合层次评判法

模糊综合层次评判法(FAHP)FAHP评价法是一种将模糊综合评判法(Fuzzy Comprehensive Evaluation,FCE)和层次分析法(Analytic Hierarchy Process,AHP)相结合的评价方法,在体系评价、效能评估,系统优化等方面有着广泛的应用,是一种定性与定量相结合的评价模型,一般是先用层析分析法确定因素集,然后用模糊综合评判确定评判效果。
模糊法是在层次分析法之上,两者相互融合,对评价有着很好的可靠性。
模糊数学的相关理论研究1965年,美国加利福尼亚大学控制论专家L.A.Zadeh教授发表了《模糊集合》一文,这标志着模糊数学的诞生。
模糊数学是研究和处理模糊性现象的一种数学方法。
模糊性基本概念模糊性是事物类属的不确定性,是对象资格程度的渐变性。
例如,对于一座山,有人可以认为是高山,但可能有人觉得它并不高。
事物的这种不清晰类属的特性就是模糊性,而这类事物我们通常称为模糊事物。
模糊事物在类属问题上不能做出“是”或“不是”,“属于”或“不属于”,“存在”或“不存在”等的是非断言,只能区别程度和等级。
模糊集合概念论域X上的模糊集合A定义是:A={(x,A(x))|x∈X}或者A={(x,μA(x))|x∈X}其中A(x)或μA(x)称为隶属函数,它满足A:X→M,M称为隶属空间上式表示模糊集合A是论域X到隶属空间的一个映射。
隶属函数A(x)用于刻画元素x对模糊集合A的隶属程度,通常称为隶属度。
模糊集合A的每一个元素(x, A(x))都能明确的表现出x的隶属等级。
A(x)的值越大,x的隶属度就越高。
例如,当隶属空间是(0,1)时,若A(x)=1,则说明x完全属于A;而若A(x)=0时,说明x不属于A;而A(x)值介于0与1之间时,说明隶属度也介于属于与不属于之间——模糊的。
隶属函数的构造与经典集合可由其特征函数所确定一样,模糊集合A也能由其隶属函数所确定。
在解决实际问题时,往往首先遇到的问题是确定隶属函数。
第4章:模糊综合评判(高级运筹学-中南大学 徐选华)

③ 确定 B:进行综合评判,采用算子 M(⊙,),可将结果归一化
结论:对该商品,顾客表示“很受欢迎”的比重为 41.5%; 顾客表示“较受欢迎”的比重为 32%; 顾客表示“不大受欢迎”的比重为 20.5%; 顾客表示“不受欢迎”的比重为 6%;
3
例4-2 企管人员管理能力素质综合评判,从行政组织能力、企管水准、科技知识、知人善任意识 四个方面评判企管人员管理能力素质。 取评判因素集为 X = {行政组织能力、企管水准、科技知识、知人善任意识} , 取评语集为 Y = { 很好、较好、一般、较差、很差 } , 试就这四个因素对该企管人员管理能力素质作出综合评判。
③ 确定 B:进行综合评判,采用算子 M(⊙,),并将结果归一化
综合这四个因素,认为对该企管人员管理能力“很好”的比重为 41%,“较好”的比重4 为 25%,“一般”的比重为 19%,“较差”的比重为 3%。
例4-3 对教师教学能力综合评判,从清楚易懂、教材熟练、生动有趣、板书整齐四个方面评判 教师教学能力。 取评判因素集为 X = {清楚易懂、教材熟练、生动有趣、板书整齐} , 取评语集为 Y = { 很好、较好、一般、不好 } , 试就这四个因素对该教师教学能力作出综合评判。
解:① 确定 R:进行单因素评判 组成一个100人的评比小组,到甲、乙、丙三个商店对“清洁卫生”作单因素评判,结果是: 有80人认为甲商店“清洁卫生”好, 有60人认为乙商店“清洁卫生”好, 有40人认为丙商店“清洁卫生”好, 于是得:A清=( 0.8,0.6,0.4 ) 同理有:A礼=( 0.5,0.6,0.7 ) A秤=( 0.7,0.9,0.6 ) A商=( 0.9,0.4,0.3 )
模糊综合评价

2 模糊综合评价在对许多事物进行客观评判时,其评判因素往往很多,我们不能只根据某一个指标的好坏就作出判断,而应该依据多种因素进行综合评判,如技术方案的选择、经济发展的比较等.模糊综合评判可有效地对受多种因素影响的事物作出全面评价.理论介绍模糊综合评判通常包括以下三个方面:设与被评价事物相关的因素有n 个,记为12{,,,}n U u u u =,称之为因素集;又设所有可能出现的评语有 m 个,记为12{,,,}m V v v v =,称之为评判集;由于各种因素所处地位不同,作用也不一样,通常考虑用权重来衡量,记为 12{,,,}n A a a a =;1.评判步骤进行模糊综合评判通常按以下步骤进行:1确定因素集12{,,,}n U u u u =; 2确定评判集12{,,,}m V v v v =;3进行单因素评判得12{,,,}i i i im r r r r =; 4构造综合评判矩阵:5综合评判:对于权重12{,,,}n A a a a =,计算B A R =,并根据最大隶属度原则作出评判;2.算子的定义 在进行综合评判时,根据算子 的不同定义,可以得到不同的模型;1模型I :(,)M ∧∨——主因素决定型运算法则为max{(),1,2,,}j i ij b a r i n =∧=(1,2,,)j m = ;该模型评判结果只取决于在总评判中起主要作用的那个因素,其余因素均不影响评判结果,比较适用于单项评判最优就能认为综合评判最优的情形;2模型II (,)M ∨:——主因素突出型运算法则为max{(),1,2,,}j i ij b a r i n ==(1,2,,)j m =;该模型与模型I 比较接近,但比模型I 更精细些,不仅突出了主要因素,也兼顾了其他因素,比较适用于模型I 失效,即不可区别而需要加细时的情形;3模型III:(,)M +——加权平均型运算法则为1n j i ij i b a r ==∑(1,2,,)j m =;该模型依权重大小对所有因素均衡兼顾,比较适用于要求总和最大的情形;4模型IV:(,)M ∧⊕——取小上界和型运算法则为1min 1,()n j i ij i b a r =⎧⎫=∧⎨⎬⎩⎭∑(1,2,,)j m =;使用该模型时,需要注意的是:各个i a 不能取得偏大,否则可能出现j b 均等于1的情形;各个i a 也不能取得太小,否则可能出现j b 均等于各个i a 之和的情形,这将使单因素评判的有关信息丢失;5模型V:(,)M ∧+——均衡平均型 运算法则为10()n ij j i i r b a r ==∧∑(1,2,,)j m =,其中01nkj k r r ==∑;该模型适用于综合评判矩阵R 中的元素偏大或偏小时的情景;案例分析例1 考虑一个服装评判的问题,为此建立因素集1234{,,,}U u u u u =,其中1u 表示花色,2u 表示式样,3u 表示耐穿程度,4u 表示价格;建立评判集1234{,,,}V v v v v =,其中1v 表示很欢迎,2v 表示较欢迎,3v 表示不太欢迎,4v 表示不欢迎;进行单因素评判的结果如下:11(0.2,0.5,0.2,0.1)u r =,22(0.7,0.2,0.1,0)u r = 33(0,0.4,0.5,0.1)u r =,44(0.2,0.3,0.5,0)u r =设有两类顾客,他们根据自己的喜好对各因素所分配的权重分别为1(0.1,0.2,0.3,0.4)A=,2(0.4,0.35,0.15,0.1)A=试分析这两类顾客对此服装的喜好程度;分析由单因素评判构造综合评判矩阵:用模型(,)M∧∨计算综合评判为根据最大隶属度原则知,第一类顾客对此服装不太欢迎,第二类顾客对此服装则比较欢迎;程序源码:function Example 1A1= ;A2= ;R= ;0;0 ;0;fuzzy_zhpj1,A1,Rfuzzy_zhpj1,A2,Rend%%function B=fuzzy_zhpjmodel,A,R %模糊综合评判B=;m,s1=sizeA;s2,n=sizeR;if s1~=s2disp'A的列不等于R的行';elseif model==1 %主因素决定型for i=1:mfor j=1:nBi,j=0;for k=1:s1x=0;if Ai,k<Rk,jx=Ai,k;elsex=Rk,j;endif Bi,j<xBi,j=x;endendendendelseif model==2 %主因素突出型for i=1:mfor j=1:nBi,j=0;for k=1:s1x=Ai,kRk,j;if Bi,j<xBi,j=x;endendendendelseif model==3 %加权平均型for i=1:mfor j=1:nBi,j=0;for k=1:s1Bi,j=Bi,j+Ai,kRk,j;endendendelseif model==4 %取小上界和型for i=1:mfor j=1:nBi,j=0;for k=1:s1x=0;x=minAi,k,Rk,j;Bi,j=Bi,j+x;endBi,j=minBi,j,1;endendelseif model==5 %均衡平均型 C=;C=sumR;for j=1:nfor i=1:s2Ri,j=Ri,j/Cj;endendfor i=1:mfor j=1:nBi,j=0;for k=1:s1x=0;x=minAi,k,Rk,j; Bi,j=Bi,j+x;endendendelsedisp'模型赋值不当';endendend程序输出结果如下:ans=ans=例 2 某校规定,在对一位教师的评价中,若“好”与“较好”占50%以上,可晋升为教授;教授分教学型教授和科研型教授,在评价指标上给出不同的权重,分别为1(0.2,0.5,0.1,0.2)A=,2(0.2,0.1,0.5,0.2)A=;学科评议组由7人组成,对该教师的评价见表1,请判别该教师能否晋升,可晋升为哪一级教授;表1 对该教师的评价好较好一般较差差政治表现 4 2 1 0 0教学水平 6 1 0 0 0科研能力0 0 5 1 1外语水平 2 2 1 1 1分析将评议组7人对每一项的投票按百分比转化为成隶属度得综合评判矩阵:按模型(,)M∧∨针对俩个权重分别计算得由于要计算百分比,需要将上述评判结果进一步归一化为如下:显然,对第一类权重“好”与“较好”占50%以上,故该教师可晋升为教学型教授,程序与例1相同;输入及结果:%输入评价指标权重矩阵和综合评判矩阵A1= ;A2= ;R= 0 0;0 0 0;0 0;fuzzy_zhpj1,A1,Rfuzzy_zhpj1,A2,R程序输出结果如下:ans=ans=例3 某产粮区进行耕作制度改革,制定了甲、已、丙三个方案见表2,以表3作为评价指标,5个因素权重定为(0.2,0.1,0.15,0.3,0.25),请确定应该选择哪一个方案;表2 三个方案方案亩产量kg/亩产品质量亩用工量亩纯收入/元生态影响甲 3 55 72 5乙529 2 38 105 3丙412 1 32 85 2表3 5个评价标准分数亩产量产品质量亩用工量亩纯收入生态影响5 550~600 1 <20 >130 14500~550220~30110~13023450~500330~4090~11032400~450440~5070~9041350~400550~6050~7050<3506>60<506分析根据评价标准建立各指标的隶属函数如下;亩产量的隶属函数:产品质量的隶属函数:亩用工量的隶属函数:亩纯收入的隶属函数:对生态影响的隶属函数:将表2三个方案中数据带入相应隶属函数算出隶属度,从而得到综合评判距阵:根据所给权重按加权平均型计算得根据最大隶属度原则,最大,所对应的是乙方案,故应选择乙方案;程序同例1.输入及结果:%输入评价指标权重矩阵和综合评判距阵A= ;R= ;1;;;;fuzzy_zhpj3,A,R %调用综合评判函数程序运行结果如下:ans=例4表4是大气污染物评价标准;今测得某日某地以上污染物日均浓度为,,,,,,各污染物权重为,,,,,,试判别其污染等级;表4 大气污染物评价标准 单位2/mg m污染物Ⅰ级 Ⅱ级 Ⅲ级 Ⅳ级分析 由于大气中各污染物含量均是越少大气质量越高,可构造各污染物含量对四个等级的隶属函数如下:对Ⅰ级的隶属函数:对Ⅱ级的隶属函数:对Ⅲ级的隶属函数:对Ⅳ级的隶属函数:其中1,2,3,4,5,6i 表示6种污染物,如24r 表示第二种污染物的含量i x 对Ⅳ级的隶属度,而,,,a b c d 依次表示评价标准中各污染物含量;对污染物2SO ,其含量0.07i x =,计算其对各等级的隶属度如下:因0.050.070.15<<,故因0.070.15<,故130r =,因0.070.25<,故140r =;同理可计算其他污染物含量对各等级的隶属度,从而得综合评判距阵:结合权重,选择加权平均型进行计算得()0.252,0.478,0.27,0B A R ==,根据最大隶属度原则,最大,故当日大气质量为Ⅱ级;程序同例1输入及其结果:A= ;R= 0 0;0 0;0 0;0 0;0 0;0 0;fuzzy_zhpj3,A,R程序运行结果如下:ans=方法评论模糊综合评价经常用来处理一类选择和排序问题;应用的关键在于模糊综合评价矩阵的建立,它是由单因素评判向量所构成的,简单的情形可按类似于百分比的方式得到,稍复杂一点的情形需要构造隶属函数来进行转化,此时,要注意评判指标的属性,合理选择隶属函数;进行综合评判时,要根据问题的实际情况,选择恰当的模型来进行计算;另外,关于权重,前面的例题都是直接给出的,而实际当中是不会有的;当然,评判者可以自行设定,但若能用到一些数学方法,如层次分析法,将定性和定量相结合,则会显得更加具有说服力;。
模糊综合评判

模糊综合评判法1.算法原理模糊综合评判方法是指当一个事物受多个要素的作用时,对其进行的一种多要素综合评价方法。
有些要素的范围没有清晰的界限,而模糊综合评判法能够根据最大隶属度原则将定性指标转换为定量指标,从而对受多个要素影响的事物作出综合评价。
模糊综合评判方法是模糊数学理论在实际生活中的应用,对于因素众多、无法量化、等级划分没有清晰界限等一类问题的决策,模糊综合评判利用最大隶属度原则,柔性划分各个因素的隶属等级,解决人们主观难以确定的模糊界限问题。
模糊综合评判包括单层模糊综合评判和多层模糊综合评判。
影响因素较多时,为避免权重过于微小掩盖该因素的作用,可以根据问题的特征将影响因素分层,先求出一层内部的评判结论,再根据得到的N个一层结论再次求解,此过程为多层次模糊综合评判。
首先确定被评价对象的因素集合评价集;再分别确定各个因素的权重及它们的隶属度矢量,获得模糊评判矩阵;最后把模糊评判矩阵与因素的权矢量进行模糊运算并进行归一化,得到模糊综合评价结果。
2.算法过程具体过程:将评价指标看成是由多种因素组成的模糊集合,再设定这些因素所能选取的评审等级,组成评语的模糊集合,分别求出各单一因素对各个评审等级的归属程度(称为模糊矩阵),然后根据各个因素在评价指标中的权重分配,通过计算,求出评价的定量解值。
分为以下六个步骤。
2.1确定评价对象的因素集合设U={u1,u2,•…u m}为刻画被评价对象的m种评价指标,m是评价指标个数。
按评价指标的属性将评价指标分为若干类,把每一类都视为单一评价因素,称之为第一级评价因素。
第一级评价因素可以设置下属的第二级评价因素,第二级评价因素可以设置下属的第三级评价因素,依此类推:U = U1 UU2 U-UU s其中,U j= u.i,u i2,…,u.m,U j q =①,任意i 牛 j,i,j = 12…,S。
U j是U的一个划分,U i称为类。
2.2确定评价对象的评语集设V= v1,v2,…,v n,是评价者对被评价对象可能做出的各种总的评价结果组成的评语等级的集合。
模糊综合评价法

模糊综合评价法是一种基于模糊数学的综合评标方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
由于地质环境与地质灾害系统的复杂性,地质环境与地质灾害评价需要研究的变量关系较多且错综复杂,其中既有确定的可循的变化规律,又有不确定的随机变化规律,人们对地质环境的认识也是既有精确的一面,也有模糊的一面。
用绝对的“非此即彼”有时不能准确地描述地质环境中的客观现实,经常存在着“亦此亦彼”的模糊现象,其刻划与描述也多用自然语言来表达,如某一斜坡地段的工程岩组为软“弱岩体” ,该地段岩体稳定性“较差”等等。
自然语言最大的特点是它的模糊性。
从逻辑上讲,模糊现象不能用 1 真(是)或 0 假(否)二值逻辑来刻划,而是需要一种用区间 [0, 1]的多值(或连续值)逻辑来描述。
可见,运用模糊理论解决地质环境与地质灾害危险性评价问题,是模拟人脑某些思维方式,提高认识地质体的一种有效方法。
因此,地质环境质量与地质灾害危险性评价中引入了模糊综合评判方法是客观事物的需要 ,也是主观认识能力的发展。
模糊综合评判方法是应用模糊关系合成的特性,从多个指标对被评价事物隶属等级状况进行综合性评判的一种方法,它把被评价事物的变化区间作出划分,又对事物属于各个等级的程度作出分析,这样就使得对事物的描述更加深入和客观,故而模糊综合评判方法既有别于常规的多指标评价方法 ,又有别于打分法。
(1)模糊综合评判数学模型设 U={ u1,u2, …,u m}为评价因素集,V={v1,v2, …v n}为危险性等级集。
评价因素论域和危险性等级论域之间的模糊关系用矩阵 R 来表示:式中, r ij = η(u i,v j)(0≤r ij ≤1) ,表示就因素 u i 而言被评为 v j 的隶属度;矩阵中第 i 行R i =(r i1,r i2, …,r in)为第 i 个评价因素 u i 的单因素评判,它是 V 上的模糊子集。
模糊综合评价法原理及案例分析

二2、、在模物糊流综中合心评选价址综法中的的合模应型用评和步价骤 是指通过一定的数学模型将多个评价指标值 “合成”为一个整体性的综合评价值.
导论
常见的综合评定方法分为两类:
(1)综合评定法:直接评分法(专家打分综合法)、总分法、加权 综合评定法、AHP+模糊综合评判、模糊神经网络评价法、待定 系数法及分类法.
评价,即对受到多种因素制约的事物或对象做出一个总体的评价。 评价、评判、评语、评定、评议、评估实为同一涵义.
一、模糊综合评价法的思想和原理
模糊数学的产生:1965年, 伯克利加利福 尼亚大学电机工程与计算机科学系教授、自 动控制专家L.A. Zadeh(扎德) 发表了文 章《模糊集》(Fuzzy Sets,Information and Control, 8, 338-353 ),第一次成功 滴运用精确的数学方法描述了模糊概念,从 而宣告了模糊数学的诞生.他所引进的模糊 集(边界不明显的类)提供了一种分析复杂 系统的新方法.因发展模糊集理论的先驱性 工作而获电气与电子工程师学会(IEEE)的教 育勋章。
其特点在于评判逐对象进行,对被评价对象有唯一的评价值,
不受被评价对象所处对象集合的影响.
综合评价的目的是要从对象集中选出优胜对象,因此,最后要
将所有对象的评价结果进行排序.
评判的意思是指按照给定的条件对事物的优劣、好坏进行评比、
判别.
综合的意思是指评判条件包含多个因素或多个指标.
综合评判就是要对受多个因素影响的事物做出全面评价.
如果说关肇直院士(及后来的蒲保明院士和 李国平院士)是我国模糊集合论研究的倡导 者及推动者,那么汪培庄便是我国模糊集合 论研究的先驱者或开拓者之一.刘应明(川大)
模糊综合评价

= 0.1709 0.24775 0.2529 0.19405 0.1344
上述结果B即为对于该学校教学情况总体水平的综 合评判结果,根据最大隶属度原则得出的结论是 该学校的教学水平“一般”。
总结
本文结合高校教学评估标准,并根据学校 教学评估的特点,为高校教学评估提供了 一个较为细化的指标体系和量化方法。利 用模糊综合评判不仅考虑了影响高校教学 评估的绝大多数影响因素,而且将每一个 影响因素尽可能的细化,使评价的可行性 增强,也使评价的结果尽可能的客观。
m
如果评判结果 b j 1
j 1
就对其结果进行归一化处理。
综合评判向量B=(b1, b2, …, bm )是一个模糊向量, 考虑到实际的评判结果总是清晰地,所以还需要 对所得的向量进行集化(或清晰化),以确定综 合评判的级别。通常采用最大隶属度原则作出综 合评价结果。
并且根据运算 的不同定义可以得到以下不同模 型:
它与模型 M(,)相近,但比模型M(,)精细些, 不仅突出了主要因素,也兼顾了其他因素。此模型适用
于模型 M(,)失效(不可区别),需要“加细”的情况。
模型Ⅲ M (,)-加权平均型
n
bj (ai rij ) ( j 1,2,,m);
i 1
该模型依权重的大小对所有因素均衡兼顾,比较
i 1
称U {U1,U2 ,,Uk }为第一级因素集。
(2)设评判集V {v1,v2 ,,vm },先对第二级因素集
Ui
{u1( i
)
,
u2( i
)
,,
u(i ni
)
}
的ni 个因素进行单因素评判,得单因素评判矩阵
r1(1i ) r1(2i ) r1(mi )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•模糊矩阵及运算与性质
模糊矩阵间的关系及并、交、余运算
模糊矩阵的合成设A=(a),B=(b)都是模糊矩阵,定义
模糊方阵的幂
模糊综合评判法及其应用步骤
二、进行单因素评判,建立模糊关系矩阵:以教师授课质量评估为例:
X={教材熟练程度,逻辑性,启发性,趣味性,模糊关系矩阵的数据来源是十分重要的.许多情况三.确定评价因素集的权向量,
四.选择合适的算子,计算得出模糊评判结果向
综合评价的模糊算子常用的有下面几种:
模型1的评价结果只考虑了主要因素,忽略了其他
教师授课质量的模糊综合评价的结果向量为:B
模糊综合评判法的优点:
模糊综合评判法的缺点:故障诊断的模糊综合评判方法
基于模糊综合评判的轴向柱塞泵故障诊断
(1)
1)各症状的隶属度2)故障与症状的关系系数
0, 0.2, 0.4, 0.6, 0.8, 1.0代表症状隶属度,如表1所示。
测得某一状态下
评价系统多级模糊综合评判
模糊综合评判向量为
基于模糊综合评判液压起重系统故障诊断
阀处于右路时,高压液压油经油滤
①、泵②、单向阀③、电液换向阀
④、平衡阀⑤、进人伸缩臂液压缸
⑥无无杆腔,活塞杆一级一级伸出,
起重臂伸出,吊运重物;液压缸另一
腔的液压油沿回油路,经顺序阀⑦、
电液换向阀④回油箱;⑧、⑨为溢流
阀,主要用于调整压力.
故障:起重吊力不足
原因(征兆、主因素):压力不足,
油液污染,使用期长,流量不足
压力不足可由泵泄露,阀芯卡死,阀芯
阀座磨损,阀类密封泄漏,密封损
坏或封而不严造成(子因素)。
流量不足可由配合间隙增大,各处泄
漏增大造成(子因素)
9.2.4 液压起重设备故障诊断综合评判
1. 确立评判指标集X.
主因素集
X={压力不足,油液污染,使用期长,流量不足};
子因素集:
压力不足={泵泄露,阀芯卡死,阀芯阀座磨损,阀类密封泄漏,密封损坏或封而不严}
流量不足={配合间隙增大,各处泄漏增大};
压力不足油液污染流量不足
使用期长
2.进行单因素评判,建立模糊关系矩阵:
(2)
(3) 确定权重分配,得出综合评判结果:根据层次分析法确定权重分配为
同理可得
根据层次分析法确定四个主因素的权重分配为
3. 确定四个主因素的权重分配, 得到综合评判结果.。