幅频特性和相频特性实验报告
自动控制频率特性测试实验报告
自动控制频率特性测试实验报告1. 引言在现代自动控制系统中,频率特性是一个重要的参数,对于系统的稳定性和性能起着决定性的作用。
频率特性测试实验旨在评估自动控制系统的频率响应,并分析系统在不同频率下的性能。
本实验报告将介绍自动控制频率特性测试实验的目的、实验器材、实验步骤和实验结果分析。
2. 实验目的本实验的主要目的是通过频率响应测试,评估自动控制系统的频率特性以及系统在不同频率下的性能。
具体目标包括:1.测试系统的幅频特性,即系统的增益与频率之间的关系;2.测试系统的相频特性,即系统的相移与频率之间的关系;3.分析系统的频率特性对系统的稳定性和性能的影响。
3. 实验器材本实验所需的器材包括:•信号发生器:用于产生不同频率的输入信号;•可变增益放大器:用于控制输入信号的幅度;•相位巡迥器:用于调节输入信号的相位;•示波器:用于观测输入信号和输出信号;•自动控制系统:接受输入信号并提供相应的控制输出。
4. 实验步骤4.1 准备工作1.确保实验器材连接正确,信号发生器连接到自动控制系统的输入端,示波器连接到自动控制系统的输出端。
2.将可变增益放大器和相位巡迥器分别接入信号发生器的输出端,用于调节输入信号的幅度和相位。
4.2 测试幅频特性1.设置信号发生器的频率为起始频率,将幅度设置为合适的值。
2.将相位巡迥器的相位设置为零,确保输入信号的相位与输出信号相位一致。
3.记录输入信号和输出信号的幅度,并计算增益。
4.逐渐增加信号发生器的频率,重复步骤3,直到达到结束频率。
4.3 测试相频特性1.设置信号发生器的频率为起始频率,将幅度和相位设置为合适的值。
2.记录输入信号和输出信号的相位差,并计算相移。
3.逐渐增加信号发生器的频率,重复步骤2,直到达到结束频率。
4.4 结果记录与分析1.将实验得到的数据记录下来,包括输入信号频率、幅度、输出信号频率、幅度、相位差等。
2.绘制幅频特性曲线图,分析系统的增益随频率变化的规律。
实验十二--幅频特性和相频特性
实验十二--幅频特性和相频特性实验十二 幅频特性和相频特性一、实验目的:研究RC串、并联电路的频率特性。
二、实验原理及电路图 1、实验原理电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H j ω表示。
当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性。
即:()21U H j U ω=&&1)低通电路RCU &2U &10.707()H j ω0ωω图1-1 低通滤波电路 图1-2 低通滤波电路幅频特性简单的RC 滤波电路如图4.3.1所示。
当输入为1U &,输出为2U &时,构成的是低通滤波电路。
因为:112111U U U j C j RC R j C ωωω=⨯=++&&&所以:()()()2111U H j H j U j RC ωωϕωω===∠+&&()()21H j RC ωω=+()H j ω是幅频特性,低通电路的幅频特性如图4.3.2所示,在1RC ω=时,()120.707H j ω==,即210.707U U =,通常2U &降低到10.707U &时的角频率称为截止频率,记为0ω。
2)高通电路CR1&U 2&Uωω00.7071()H j ω图2-1 高通滤波电路 图2-2 高通滤波电路的幅频特性12111U j RC U R U j RC R j C ωωω=⨯=⨯+⎛⎫+ ⎪⎝⎭&&&所以:()()()211U j RC H j H j U jRC ωωωϕω===∠+&&其中()H j ω传输特性的幅频特性。
电路的截止频率01RC ω= 高通电路的幅频特性如4.3.4所示 当0ωω<<时,即低频时()1H j RC ωω=<<当0ωω>>时,即高频时,()1H j ω=。
实验十二 幅频特性和相频特性
实验十二 幅频特性和相频特性一、实验目的:研究RC串、并联电路的频率特性。
二、实验原理及电路图 1、实验原理电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H j ω表示。
当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性。
即:()21U H j U ω=1)低通电路U 2图1-1 低通滤波电路 图1-2 低通滤波电路幅频特性 简单的RC 滤波电路如图4.3.1所示。
当输入为1U ,输出为2U 时,构成的是低通滤波电路。
因为:112111U U U j C j RCR j Cωωω=⨯=++所以:()()()2111U H j H j U j RC ωωϕωω===∠+()H j ω=()H j ω是幅频特性,低通电路的幅频特性如图4.3.2所示,在1RCω=时,()0.707H j ω==,即210.707U U =,通常2U 降低到10.707U 时的角频率称为截止频率,记为0ω。
2)高通电路2图2-1 高通滤波电路 图2-2 高通滤波电路的幅频特性12111U j RCU R U j RCR j C ωωω=⨯=⨯+⎛⎫+ ⎪⎝⎭所以:()()()211U j RC H j H j U jRC ωωωϕω===∠+其中()H j ω传输特性的幅频特性。
电路的截止频率01RC ω= 高通电路的幅频特性如4.3.4所示 当0ωω<<时,即低频时()1H j RC ωω=<<当0ωω>>时,即高频时,()1H j ω=。
3)研究RC 串、并联电路的频率特性:Aff 31图15-2f0ϕ︒90︒-90iu ou +--+RR CC图 15-1)1j(31)j (ioRC RC UUN ωωω-+==其中幅频特性为:22io)1(31)(RC RC U U A ωωω-+==相频特性为:31arctg)(o RCRC i ωωϕϕωϕ--=-=幅频特性和相频特性曲线如图15-2所示,幅频特性呈带通特性。
频率特性实验报告
一、实验目的1. 理解频率特性的基本概念和测量方法。
2. 掌握使用Bode图和尼奎斯特图分析系统频率特性的方法。
3. 了解频率特性在系统设计和稳定性分析中的应用。
二、实验原理频率特性描述了系统对正弦输入信号的响应,通常用幅频特性和相频特性来表示。
幅频特性表示输出信号幅度与输入信号幅度之间的关系,相频特性表示输出信号相位与输入信号相位之间的关系。
频率特性的测量通常通过以下步骤进行:1. 使用正弦信号发生器产生不同频率的正弦信号。
2. 将信号输入被测系统,并测量输出信号的幅度和相位。
3. 根据测量数据绘制幅频特性和相频特性曲线。
三、实验设备1. 正弦信号发生器2. 示波器3. 信号分析仪4. 被测系统(如电路、控制系统等)四、实验步骤1. 准备实验设备,确保各设备连接正确。
2. 设置正弦信号发生器,产生一系列不同频率的正弦信号。
3. 将正弦信号输入被测系统,并使用示波器或信号分析仪测量输出信号的幅度和相位。
4. 记录不同频率下的幅度和相位数据。
5. 使用绘图软件绘制幅频特性和相频特性曲线。
五、实验结果与分析1. 幅频特性分析通过绘制幅频特性曲线,可以观察到系统对不同频率信号的衰减程度。
一般来说,低频信号的衰减较小,高频信号的衰减较大。
根据幅频特性,可以判断系统的带宽和稳定性。
2. 相频特性分析通过绘制相频特性曲线,可以观察到系统对不同频率信号的相位延迟。
相频特性曲线通常呈现出滞后或超前特性。
根据相频特性,可以判断系统的相位裕度和增益裕度。
3. 系统稳定性分析根据幅频特性和相频特性,可以判断系统的稳定性。
如果系统的相位裕度和增益裕度都大于零,则系统是稳定的。
否则,系统可能是不稳定的。
六、实验结论通过本次实验,我们成功地测量了被测系统的频率特性,并分析了其幅频特性和相频特性。
实验结果表明,被测系统在低频段表现出较小的衰减,而在高频段表现出较大的衰减。
相频特性曲线显示出系统在低频段滞后,在高频段超前。
根据频率特性分析,可以得出被测系统是稳定的。
实验十二幅频特性和相频特性
实验十二 幅频特性和相频特性一、实验目的:研究RC串、并联电路的频率特性; 二、实验原理及电路图 1、实验原理电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H j ω表示;当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性;即:()21U H j U ω=1低通电路U 2图1-1 低通滤波电路 图1-2 低通滤波电路幅频特性 简单的RC 滤波电路如图4.3.1所示;当输入为1U ,输出为2U 时,构成的是低通滤波电路;因为:112111U U U j C j RCR j Cωωω=⨯=++所以:()()()2111U H j H j U j RC ωωϕωω===∠+()H j ω=()H j ω是幅频特性,低通电路的幅频特性如图4.3.2所示,在1RCω=时,()0.707H j ω==,即210.707U U =,通常2U 降低到10.707U 时的角频率称为截止频率,记为0ω; 2高通电路2图2-1 高通滤波电路 图2-2 高通滤波电路的幅频特性12111U j RCU R U j RCR j C ωωω=⨯=⨯+⎛⎫+ ⎪⎝⎭所以:()()()211U j RC H j H j U jRC ωωωϕω===∠+其中()H j ω传输特性的幅频特性;电路的截止频率01RC ω= 高通电路的幅频特性如4.3.4所示 当0ωω<<时,即低频时()1H j RC ωω=<<当0ωω>>时,即高频时,()1H j ω=;3)研究RC 串、并联电路的频率特性:Aff 31图15-2f0ϕ︒90︒-90iu ou +--+RR CC图 15-1)1j(31)j (ioRC RC UUN ωωω-+==其中幅频特性为:22io)1(31)(RC RC U U A ωωω-+==相频特性为:31arctg)(o RCRC i ωωϕϕωϕ--=-=幅频特性和相频特性曲线如图15-2所示,幅频特性呈带通特性; 当角频率RC 1=ω时,31)(=ωA ,︒=0)(ωϕ,uO 与uI 同相,即电路发生谐振,谐振频率RC f π210=;也就是说,当信号频率为f0时,RC串、并联电路的输出电压uO 与输入电压ui 同相,其大小是输入电压的三分之一,这一特性称为RC串、并联电路的选频特性,该电路又称为文氏电桥; 2、电路图图1低通电路图2高通电路图3RC并联三、实验环境:面包板SYB—130、两个1kΩ电阻、两个0.1uF的电容、函数信号发生器、Tek示波器;四、实验步骤:1在面包板上将电路搭建如图1所示;2在100Hz和10000Hz间选10组数据,测量不同频率下的输出电压的Vpp和输入与输出间的相位,并记录数据;3保存当f=1.59155kHz是的波形图;4在面包板上分别将电路搭建如图2,3所示,并重复2、3操作;五、实验数据及分析kHz RC f 59155.1210==π,4010*1=ω1、一阶RC 低通网络: 当210.707U U =时谐振频率f/k Hz 0.100 1.000 1.300 1.500 1.59155 U2的Vpp/V 5.04 4.08 3.68 3.44 3.28 相位差ϕ/度-6.150-34.20 -41.58 -45.00 -46.65 谐振频率f/k Hz 1.700 2.000 5.000 8.000 10.000 U2的Vpp/V 3.20 2.88 1.52 1.04 0.880 相位差ϕ/度-48.41-52.96-69.92-74.12-75.14分析:在实验误差允许范围内,电压的幅值和相位都随着频率的增大而减小;2、一阶RC高通网络:U U=时当210.707谐振频率f/k Hz 0.100 1.000 1.300 1.500 1.59155 U2的Vpp/V 0.40 2.92 3.40 3.64 3.76相位差ϕ/度87.23 53.01 46.93 43.32 41.45谐振频率f/k Hz 1.700 2.000 5.000 8.000 10.000 U2的Vpp/V 3.80 4.00 4.64 4.80 4.90相位差 /度38.19 34.81 15.92 9.954 8.292分析:在实验误差允许范围内,电压的幅值都随着频率的增大而增大,相位随着频率的增大而减小;3、RC并联:谐振频率0.100 1.000 1.300 1.500 1.59155 1.700 f/k HzU2的Vpp/V 0.352 1.64 1.68 1.68 1.68 1.68 相位差ϕ/度79.02 14.62 5.389 0.000 -0.579 -3.7592.000 2.5003.0004.500 6.000谐振频率f/k HzU2的Vpp/V 1.66 1.58 1.42 1.28 1.08相位差ϕ/度-10.23 -17.34 -32.13 -38.51 -48.88分析:在实验误差允许范围内,相位随着频率的增大而减小;当f<f0时,电压的幅值都随着频率的增大而增大;当f>f0时,电压的幅值都随着频率的增大而减小;六、实验总结通过这次实验我理解和掌握低通、高通网络的特性,熟悉文氏电桥电路的结构特点及选频特性;。
系统频率测试实验报告(3篇)
第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。
2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。
3. 分析测试结果,确定系统的主要频率成分和频率响应特性。
二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。
幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。
频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。
三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。
五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。
这些峰值和谷值可能对应系统中的谐振频率或截止频率。
通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。
2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。
相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。
通过分析相位特性,可以了解系统的相位稳定性。
六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。
2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。
3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。
频率特性实验报告心得
一、实验背景随着科学技术的不断发展,电子设备在各个领域的应用越来越广泛。
频率特性作为电子设备的重要性能指标之一,对于设备的设计、调试和维护具有重要意义。
为了深入了解频率特性,我们开展了频率特性实验,通过实验验证理论知识,提高实践操作能力。
二、实验目的1. 理解频率特性的基本概念和原理;2. 掌握频率特性的测试方法;3. 分析频率特性对电子设备性能的影响;4. 培养实际操作能力,提高综合素质。
三、实验原理频率特性是指电子设备对输入信号的频率响应能力。
频率特性通常用幅频特性、相频特性和群延迟特性来描述。
幅频特性表示设备在不同频率下输出信号的幅度变化;相频特性表示设备在不同频率下输出信号的相位变化;群延迟特性表示设备在不同频率下输出信号的延迟时间。
四、实验过程1. 实验准备:首先,了解实验原理和仪器设备,熟悉实验步骤和注意事项。
实验仪器包括信号发生器、示波器、频谱分析仪等。
2. 实验步骤:(1)搭建实验电路,连接信号发生器、示波器和频谱分析仪;(2)调整信号发生器,输出不同频率的正弦波信号;(3)观察示波器显示的输出信号,记录幅度、相位和延迟时间;(4)利用频谱分析仪分析输出信号的频谱,得到幅频特性和相频特性;(5)重复步骤(2)至(4),获取不同频率下的频率特性数据。
3. 数据处理与分析:将实验数据整理成表格,绘制幅频特性曲线、相频特性曲线和群延迟特性曲线。
分析曲线特点,判断频率特性对电子设备性能的影响。
五、实验结果与分析1. 幅频特性曲线:在实验中,我们发现随着频率的增加,输出信号的幅度逐渐减小。
这说明该电子设备在高频段性能较差,可能存在信号衰减现象。
2. 相频特性曲线:实验结果显示,随着频率的增加,输出信号的相位逐渐滞后。
这表明该电子设备在处理高频信号时,存在相位延迟现象。
3. 群延迟特性曲线:从实验数据可以看出,随着频率的增加,输出信号的群延迟逐渐增大。
这说明该电子设备在高频段存在明显的群延迟现象。
幅频特性和相频特性
1.实验题目:幅频特性和相频特性2.实验摘要:•1、在面板板上搭接RLC串联电路•2、研究RLC串联电路的零状态响应和零输入响应。
电路参数:R=10Ω和电位器R=1K、C=0.1uF、L=20mH、电源电压Vpp=2V方波。
•3、用示波器观测输出Uc(t)、输入Ui(t)的波形,记录过阻尼、欠阻尼和临界阻尼波形。
3.实验环境:(1)、电阻一个(51Ω), 电容(0.01uF)电感(20mH)(2)、面包板(3)、电位器(4)、导线若干(5)、台式数字万用表(LINI-T UT805A)(6)、数字函数发生器(RIGOL DG1022U)4.实验原理RLC 串联电路,顾名思义就是将电阻、电感、电容串联起来的电路大体如下图所示:如图,t=0时Uc=0,此时将开关闭合,可得电压方程:本次实验比较重要的一个参数是:2√(L/C)当R<2√(L/C)时,电阻比较小,Uc的变化处在衰减振荡转态,此时称为欠阻尼状态,如下图:当R=2√(L/C)时,称为临界阻尼状态,如下图:当R>2√(L/C)时,电阻R比较大,称为过阻尼状态,Uc无法振荡,如下图:5.实验步骤和数据记录:1)、按下图在电路板上搭接电路2)、用数字函数发生器充当电源,本实验方波周期设为1.7ms,示波器通道一接入输入信号,通道二接收输出信号,通过调节电位器来调整阻值,使电路分别达到欠阻尼、临界阻尼、过阻尼状态3)、从电位器阻值为0开始往上增加电阻,此时处于欠阻尼状态,直至波形合适(大约出现6、7个峰值),采用光标法测量阻尼系数(a=ln(Um1/Um2)/Ta),注意其中周期为两个最高峰之间的时间差,另外注意测量电压时以稳定态的水平线做0V 线,记录,继续增加阻值4)、当波形的振荡只剩下小小一个尖点时,达到了临界阻值状态,记录下此时的电路电阻,继续增加阻值5)、当增加到某个临界点时,波形已经固定并且不会振荡了,此时达到了过阻尼的状态,记录下电路阻值6.实验结果计算和分析1)、欠阻尼状态采用光标法测量:误差分析:1.人工测量问题:由于采用的是光标法测量,人眼的测算总会有误差,况且示波器像素比较低,在调整光标线的时候也存在对不准的问题,还有电阻也存在测量误差2.器件原因:由于理论值的计算是采用器件的标准规格来计算的,实际器件和标值可能有出入,由于当前实验室缺少测量电感的仪器,只能通过测量阻值来确保他的正常工作,因此可能存在误差(2)、临界阻尼状态3)、过阻尼状态电路电阻9.7285kΩ7.实验总结1.本次实验让我了解到了RLC电路,正如老师所说,这三个元器件非常重要,在接下来的实验中也会多次用到,这次实验让我了解他们,特别是相对生疏的电感2.实验的过程中也存在不足,由于个人的粗心大意,示波器输出端接错位,导致波形振荡相当不明显,以后应该更进一步的预习电路图3.本次实验的进步我认为是在预习新知识方面,在实验开始前我查阅了比较多的资料,比如本次实验中极为重要的参数2√(L/C),了解了他的推断式以及在本实验中的作用,在老师讲解时可以比较轻松的明白,实验做起来也比以前有信心。
幅频相频特性测试及 RLC 串联谐振电路实验
幅频相频特性测试及RLC 串联谐振电路实验预习报告一.实验目的1、熟练RC 电路相频、幅频特性的测试方法,根据测量数据画出特性曲线。
2、通过实验掌握串联谐振的条件和特点,测绘RLC 串联谐振曲线。
3、掌握电路参数对谐振特性的影响。
二.实验仪器设备仿真软件平台(Multisim 10);硬件基础电路实验箱。
双踪示波器、直流稳压电源、万用表、直流电流表、电压表。
三.实验原理在交流电路中,电阻值和频率无关;电容具有“通高频、阻低频”的特性;电感具有“通低频,阻高频”的特性。
RLC串联电路具有特殊的幅频特性和相频特性,有选频和滤波作用。
电路频率特性的测量方法有点测法和扫频法。
点测法就是用正弦信号发生器的输出电压作为网络的输入电压,并保持电压幅值不变,依次改变输入电压的频率,用交流毫伏表和示波器逐点测量出输出端的电压值和输出与输入电压的相位差,根据测得的多组数据,画出电路的幅频和相频特性曲线。
测量幅频特性:保持信号源输出电压(即RC 网络输入电压)Ui 恒定,改变频率f,并测量对应的RC 网络输出电压Uo,计算出他们的比值A=Uo/Ui,然后逐点描绘出幅频特性;1.RC串联电路2.RC串并联电路3.RLC串联电路四.实验内容1 、测量R 、L 、C 元件的阻抗频率特性。
参考图5 -5,信号发生器输出的正弦信号并保持幅度不变,频率200H Z 逐渐增至10KH 。
开关S 分别接通三个R 、L 、C 元件,用交流毫伏表测量Ur ,并计算各频率点时R 、X L 与X C 的与之值,记入表中。
注意:在接通C 测试时,信号源的频率应控制在200 ~2500 H Z 之间。
2. 测量RC串联电路频率特性曲线(高通或低通)联接实验线路,取R k,C0.1F,U1V(有效值)。
测量输出电压U2并读取U20.707V时的信号频率fc,用李沙育法测量相位差角,记录数据。
3.测量RC串并联电路频率特性曲线取R1k,C0.1F,U i1 V (有效值)。
幅频特性和相频特性
电路分析实验报告幅频特性和相频特性一、实验摘要电容元件在交流电路中的阻抗会随电源频率的改变而变化。
本实验用电容搭建一个电路,用示波器观察加上一个正弦波之后,该电路幅值和相位随频率变化的规律曲线。
二、实验环境示波器函数信号发生器 0.1μF电容电阻面包板导线三、实验原理电阻作为响应时,可用作高通滤波器电容作为响应时,可用作低通滤波器RC串并联(文氏电桥)电路四、实验步骤在面包板上搭建电路加上4vpp,频率从100赫兹到用示波器观察波形的幅值和位相差,记录相20千赫兹的正弦波应电压是输入电压0.707倍时的波形图将电容作响应加上4vpp,频率从100赫兹到20千赫兹的正弦波,用示波器观察波形的幅值和位相差,记录响应电压是输入电压0.707倍时的相关数据搭建文氏电桥加上4vpp,频率从100赫兹到20千赫兹的正弦波,用示波器观察波形的幅值和位相差,记录响应电压最高时的相关数据五、实验数据1.电阻作响应(高通滤波器)输入信号峰峰值的测量值为3.9v100 200 600 1000 1400 1500 5000 10000 15000 20000 输入频率/HzVpp/v 0.297 0.320 1.61 2.33 2.77 2.85 3.74 3.9 3.9 3.9相位差-85 -79 -66 -55 -48 -45 -19 -10 -8 -6 /°2.由李萨如图形计算得相位差= -49°,直接测量的相移为-48°,误差0.02当频率增大时,响应电压增大,体现出高通当频率增大时,位相差减小2.电容作响应(低通滤波器)100 500 1000 1500 16002000 3000 5000 8000 10000 输入频率/HzVpp/v 4.14 3.94 3.38 2.89 2.81 2.49 1.89 1.29 0.880 0.7204 18 32 43 4651 61 71 77 80相位差/°当频率增大时,响应电压减小,体现出低通当频率增大时,位相差增大3.文氏电桥100 500 1000 1500 2000 4000 5000 10000 15000 20000 输入频率/HzVpp/v 0.273 1.03 1.31 1.35 1.33 1.09 0.98 0.580 0.420 0.340 -80 -41 -15 -1 11 33 43 62 75 80相位差/°在某一频率,响应电压最大随频率增加,位相差先减小再增大六、实验总结在本次实验中了解到了RC串联电路和文氏电桥的幅频特性和相频特性。
波尔共振仪_实验报告
一、实验目的1. 研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。
2. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。
3. 学习用频闪法测定运动物体的某些量,如相位差。
4. 学习系统误差的修正。
二、实验原理物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为策动力。
如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动。
此时,振幅保持恒定,振幅的大小与策动力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。
在受迫振动状态下,系统除了受到策动力的作用外,同时还受到回复力和阻尼力的作用。
所以在稳定状态时物体的位移与策动力变化相位不同,而是存在一个相位差。
当策动力频率与系统的固有频率相同时,系统产生共振,振幅最大,相位差为90。
本实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机构振动中的一些物理现象。
当摆轮受到周期性策动力矩M0cos(ωt)的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为-b其运动方程为md²θ/dt² + bmdθ/dt + kθ= M0cos(ωt)。
三、实验仪器与设备1. 波尔共振仪2. 秒表3. 频闪仪4. 数据采集系统5. 计算机四、实验步骤1. 安装波尔共振仪,调整仪器至水平状态。
2. 设置初始阻尼力矩,启动数据采集系统。
3. 调整策动力矩频率,观察振幅和相位差的变化。
4. 记录不同频率下的振幅和相位差数据。
5. 改变阻尼力矩,重复步骤3和4。
6. 利用频闪法测定运动物体的相位差。
7. 对实验数据进行处理和分析。
五、实验结果与分析1. 随着策动力矩频率的增加,振幅逐渐增大,当频率达到某一值时,振幅达到最大,此时系统产生共振。
随着频率继续增加,振幅逐渐减小。
2. 相位差随着策动力矩频率的增加而增大,当频率达到共振频率时,相位差达到90。
3. 随着阻尼力矩的增加,振幅逐渐减小,共振频率基本不变。
自动控制原理实验报告 (频率特性测试)
自动控制原理实验报告(三)
频率特性测试
一.实验目的
1.了解线性系统频率特性的基本概念。
2.了解和掌握对数幅频曲线和相频曲线(波德图)的构造及绘制方法。
二.实验内容及步骤
被测系统是一阶惯性的模拟电路图见图3-2-1,观测被测系统的幅频特性和相频特性,填入实验报告。
本实验将正弦波发生器(B4)单元的正弦波加于被测系统的输入端,用虚拟示波器观测被测系统的幅频特性和相频特性,了解各种正弦波输入频率的被测系统的幅频特性和相频特性。
图3-2-1 被测系统的模拟电路图
实验步骤:
(1)将函数发生器(B5)单元的正弦波输出作为系统输入。
(2)构造模拟电路。
三.实验记录:
ω
ω=1
ω=1.6
ω=3.2
ω=4.5
ω=6.4
ω=8
ω=9.6
ω=16
实验分析:
实验中,一阶惯性环节的幅频特性)(ωL ,相频特性)(ωϕ随着输入频率的变化而变化。
惯性环节的时间常数T 是表征响应特性的唯一参数,系统时间常数越小,输出相应上升的越快,同时系统的调节时间越小。
利用波尔共振仪研究受迫振动实验报告
利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察摆轮的受迫振动现象,研究其幅频特性和相频特性。
2、学习用频闪法测定相位差,并利用幅频特性曲线和相频特性曲线求阻尼系数。
二、实验仪器波尔共振仪,闪光灯,数字毫秒计,光电门等。
三、实验原理1、受迫振动物体在周期性外力作用下的振动称为受迫振动。
当外力的频率与物体的固有频率接近时,振幅会显著增大,这种现象称为共振。
设受迫振动的运动方程为:$m\frac{d^2x}{dt^2} = kx b\frac{dx}{dt} + F_0\cos\omega t$,其中$m$为物体质量,$k$为弹性系数,$b$为阻尼系数,$F_0$为驱动力的幅值,$\omega$为驱动力的角频率。
方程的解为:$x = A\cos(\omega t +\varphi)$,其中振幅$A$和相位差$\varphi$取决于系统的参数和驱动力的频率。
2、幅频特性和相频特性振幅$A$与驱动力频率$\omega$的关系称为幅频特性,可表示为:$A =\frac{F_0/m}{\sqrt{(\omega_0^2 \omega^2)^2 +4\beta^2\omega^2}}$,其中$\omega_0 =\sqrt{k/m}$为固有频率,$\beta = b/2m$为阻尼系数。
相位差$\varphi$与驱动力频率$\omega$的关系称为相频特性,可表示为:$\varphi =\arctan\frac{2\beta\omega}{\omega_0^2 \omega^2}$。
3、阻尼系数的测定由幅频特性曲线,当$\omega =\omega_0$时,振幅达到最大值$A_{max} = F_0/2m\beta$,由此可求得阻尼系数$\beta$。
四、实验内容与步骤1、调整仪器将波尔共振仪水平放置,调节摆轮的平衡位置,使其能在无阻尼的情况下自由摆动。
调整光电门的位置,使其能准确地测量摆轮的振幅和周期。
滤波器的幅频特性与相频特性的关系分析
滤波器的幅频特性与相频特性的关系分析滤波器是一种常用的电子设备,用于将输入信号中的特定频率成分进行选择性的放大或抑制。
在滤波器的设计和应用过程中,幅频特性和相频特性是两个重要的指标。
本文将探讨滤波器的幅频特性与相频特性之间的关系,并分析它们在滤波器设计中的应用。
一、幅频特性幅频特性是指滤波器在不同频率下的传递函数的模的变化。
在滤波器的幅频特性曲线中,横轴代表输入信号的频率,纵轴代表输出信号的幅值。
根据幅频特性曲线,可以判断滤波器在不同频段的放大或衰减程度。
幅频特性通常由滤波器的增益-频率特性曲线表示。
滤波器的幅频特性可以分为低通、高通、带通和带阻四种类型。
低通滤波器允许低频分量通过,并衰减高频分量;高通滤波器则允许高频分量通过,并衰减低频分量;带通滤波器则将某一频率范围内的信号放大,其他频率信号衰减;带阻滤波器则将某一频率范围内的信号衰减,其他频率信号放大。
二、相频特性相频特性是指滤波器在不同频率下的传递函数的相位的变化。
相频特性曲线描述了输入信号和输出信号之间的相对时间延迟。
相频特性可以直观地反映滤波器对不同频率信号的相位响应。
滤波器的相频特性对于某些应用非常重要。
例如,在音频处理中,相频特性的失真可能导致声音的混叠和不自然的声音效果。
因此,在设计音频滤波器时,需要特别关注相频特性,以确保信号的相位保持一致。
三、幅频特性与相频特性的关系滤波器的幅频特性和相频特性之间存在密切的关系。
一些滤波器设计方法,如巴特沃斯滤波器设计,可以同时优化幅频特性和相频特性。
在某些情况下,滤波器的幅频特性和相频特性可能相互牵制。
例如,当滤波器的幅频特性要求具有非常陡峭的衰减特性时,可能会导致相频特性的失真。
因此,在实际滤波器设计中,需要在幅频特性和相频特性之间进行权衡,并选择最合适的设计方法。
四、幅频特性与相频特性的应用滤波器的幅频特性和相频特性在信号处理和通信系统中有着广泛的应用。
以下是一些常见的应用场景:1. 音频处理:在音频系统中,滤波器常用于去除噪声、修饰音频信号等。
RLC串联电路稳态特性的研究
11
f
(HZ)
T
t
12
- f 曲线图 实验谐振频率 f0实 =__________ 计算的谐振频率 f0理 =__________ 相对误差 E_________
13
f
(HZ)
8
U L实 (V)
U L理 (V)
9
U 相对误差 E
4.电 阻 R =__________ 谐振频率为 f =__________ 表 4 - f 相关数据
f
电 容 C =__________ 电 感 L =__________
(HZ)
电 源 电 压 U =__________
10
T
实验原理:1. RC 串联电路的幅频特性和相频特性 (1) RC 串 联 电 路 如 图 19-1 , 根 据 欧 姆 定 律 , 电 路 的 有 效 电 流 为
I
U
,电路的阻抗为 Z
R2
1
2
,电阻电压为
R2
1
2
C
C
UR
UR
R
2
1 C
2
, 电 阻 电 压 为 UC
U
1 RC2
UR ,
R2 L2
L 端的电压U L
UL ,总电压为U I
R2 L2
R2 L2 ,相位差为 arctan L
R
3. RLC 串联电路的幅频特性
据欧姆定律, RLC 串联电路中,总阻抗为 Z R2 (L 1 )2 ,其交流电压 U 与电流 I 的关系为 C
I
U
L 1
。总电压与相位差 arctan
100HZ~500HZ 之间分别取 10 个值,记下对应的U R 。根据上述数据,在 坐标上作 RC 电路的U R f 曲线。同样做出UC f 特征曲线。
rlc电路研究实验报告
rlc电路研究实验报告RLC电路研究实验报告引言RLC电路是电工学中的一个重要概念,也是电子工程师必须掌握的基础知识之一。
本实验旨在通过实际操作和测量,研究RLC电路的性质和特点,进一步加深对电路理论的理解。
实验目的本次实验的主要目的是研究RLC电路的频率响应、幅频特性和相频特性,以及对电路中的电压、电流等参数进行测量和分析。
实验原理RLC电路由电阻(R)、电感(L)和电容(C)组成,是一种具有阻抗特性的电路。
在交流电路中,电压和电流的变化是周期性的,因此我们需要研究电路在不同频率下的响应。
频率响应是指电路中电压和电流随频率变化的情况。
在RLC电路中,当频率很低时,电容和电感的作用相对较小,电路的阻抗主要由电阻决定。
而当频率很高时,电容和电感的作用逐渐显现,电路的阻抗会发生变化。
幅频特性是指电路中电压和电流的幅值随频率变化的情况。
在RLC电路中,当频率很低或很高时,电路中的电压和电流的幅值会受到电阻、电感和电容的影响,呈现出不同的变化规律。
相频特性是指电路中电压和电流的相位随频率变化的情况。
在RLC电路中,当频率很低或很高时,电路中的电压和电流的相位会受到电阻、电感和电容的影响,呈现出不同的变化规律。
实验步骤1. 准备实验所需材料和仪器,包括电源、电阻、电感、电容、示波器等。
2. 搭建RLC串联电路,注意连接正确。
3. 将示波器连接到电路中,调整示波器的参数,使其能够准确显示电路中的电压和电流。
4. 通过改变电源的频率,测量电路中电压和电流的数值。
5. 记录实验数据,并进行分析和比较。
实验结果与分析通过实验测量得到的数据,我们可以绘制出RLC电路的频率响应曲线、幅频特性曲线和相频特性曲线。
通过分析这些曲线,我们可以得到以下结论:1. 频率响应曲线显示出电路在不同频率下的阻抗变化情况。
当频率较低时,电路的阻抗主要由电阻决定,随着频率的增加,电感和电容的作用逐渐显现,电路的阻抗发生变化。
2. 幅频特性曲线显示出电路中电压和电流的幅值随频率变化的情况。
幅频特性和相频特性
HUNAN UNIVERSIT Y电路实验综合训练报告学生姓名蔡德宏学生学号201408010128专业班级计科1401班指导老师汪原起止时间2015年12月16日一2015年12月19日实验题目 实验十二幅频特性和相频特性实验摘要(关键信息) 实验十二1、 测量 RC 串联电路组成低通滤波器的幅频特性和相频特性(元件参数:R=1K 」,C=0.1uF ,输入信号:Vpp=3V f=100Hz~15KHz 正弦波。
测量10组不同频率下的 Vpp,作幅 频特性曲线和相频特性曲线)。
2、 测量RC 串联电路组成高通滤波器的幅频特性和相频特性(电路参数和要求同上)。
3、 测量RC 串并联(文氏电桥)电路频率特性曲线和相频特性曲线。
实验十三1、 测量R 、C L 阻抗频率特性(电路中用 100 Q 作保护电阻,分别测量 R 、C L 在不 同频率下的 Vpp ,输入信号 Vpp=3V f=100Hz~100KHz 的正弦波,元件参数:R=1K C=0.1uF 、 L=20mH ,取10组数据,作幅频特性曲线。
2、 搭接R 、L 、C 串联电路,通过观测 Ui (t )和UR (t )波形,找出谐振频率。
将电阻换 成电位器,测量不同 Q 值的谐振频率。
三、实验环境(仪器用品)函数信号发生器(DG1022U ,示波器(DSO-X 2012A ),电位器(BOHENG3296-W104 , 3 只电阻(保护100Q ,实验1K Q ),电容器(0.1 讨,电感(20mH ,面包板,Multisim 10.0 (画电路图),导线若干。
四、实验原理和电路1、当在RC 和 RL 及RLC 串联电路中加上交变电源,并不断改变电源频率时,电路的端口电 压U 和电阻U两端电压也随之发生规律性改变。
1) RC 串联电路的稳态特性有以上公式可知,随频率的增加,I, 增加, 减小。
当•■很小时J ,电2源电压主要降落在电容上,此时电容作为响应为低通滤波器;反之,'■ > 0,电压主要将在电阻上,电阻作为响应称为高通滤波器。
幅频特性和相频特性实验报告
HUNAN UNIVERSITY 课程实验报告
题目:幅频特性和相频特性
学生姓名:
学生学号:
专业班级:
完成日期:2014年1月6号
一.实验内容
1、测量RC串联电路频率特性曲线
元件参数:R=1K,C=0.1uF,输入信号:Vpp=5V、
f=100Hz~15K正弦波。
测量10组不同频率下的Vpp,作幅频特性曲线。
2、测量RC串联电路的相频特性曲线
电路参数同上,测量10组不用频率下的相位,作相频特性曲线。
用李莎育图像测相位差。
3、测量RC串并联(文氏电桥)电路频率特性曲线和相频特性
曲线
二.实验器材
1kΩ电阻一个,0.1uf电容一个,函数信号发生器一台,示波
器一台,导线和探头线若干
三.实验目的
(1)研究RC串并联电路对正弦交流信号的稳态响应;
(2)熟练掌握示波器李萨如图形的测量方法,掌握相位差的测量方法;
(3)掌握RC串并联电路以及文氏电桥幅频相频特性特征。
四.实验电路图
100nF
100nF
五.实验数据及波形图
电阻的幅度与峰峰值与频率:
电容的幅度与峰峰值与频率:
串并联电路频率峰峰值与相位差:
当输入电压比输出电压=0.707(√3/2)时,其波形图如下:
1.电阻:
2.电容
3.串并联电路:
六.曲线图
电阻的幅频特性图:
相频特性图:
电容的幅频特性图:
相频特性:
串并联电路相频特性:
幅频特性:
七.实验心得
通过该实验,我掌握了RC电路的相频与幅频特性的基本特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HUNAN UNIVERSITY 课程实验报告
题目:幅频特性和相频特性
学生:
学生学号:
专业班级:
完成日期:2014年1月6号
一.实验容
1、测量RC串联电路频率特性曲线
元件参数:R=1K,C=0.1uF,输入信号:Vpp=5V、f=100Hz~15K 正弦波。
测量10组不同频率下的Vpp,作幅频特性曲线。
2、测量RC串联电路的相频特性曲线
电路参数同上,测量10组不用频率下的相位,作相频特性曲
线。
用莎育图像测相位差。
3、测量RC串并联(文氏电桥)电路频率特性曲线和相频特性曲
线
二.实验器材
1kΩ电阻一个,0.1uf电容一个,函数信号发生器一台,示波
器一台,导线和探头线若干
三.实验目的
(1)研究RC串并联电路对正弦交流信号的稳态响应;
(2)熟练掌握示波器萨如图形的测量方法,掌握相位差的测量方法;
(3)掌握RC串并联电路以及文氏电桥幅频相频特性特征。
四.实验电路图
100nF
100nF
五.实验数据及波形图
电阻的幅度与峰峰值与频率:
电容的幅度与峰峰值与频率:
f/khz 3.1 5.0 9.1 13 15
Vpp/v 2.21 1.47 0.90 0.71 0.58
相位差/度-61.80 -72.21 -78.22 -80.02 -80.12
串并联电路频率峰峰值与相位差:
f/khz 0.1 0.3 0.8 1.5 3
Vpp/v 0.348 0.92 1.54 1.70 1.54
相位差/度-81.88 -59.88 -26.24 -0.527 23.87
f/khz 5 7 10 12 15
Vpp/v 1.22 1.02 0.780 0.7 0.58
相位差/度44.60 54.46 64.32 64.68 69.66
当输入电压比输出电压=0.707(/2)时,其波形图如下:
1.电阻:
2.电容
3.串并联电路:
六.曲线图
电阻的幅频特性图:
相频特性图:
电容的幅频特性图:
相频特性:
串并联电路相频特性:
幅频特性:
七.实验心得
通过该实验,我掌握了RC电路的相频与幅频特性的基本特征。