城市道路设计——之二平面设计
道路平面设计之道路平面线形
2 h
l
y
=
l3 6R lh
−
l7 336 ⋅ R 3lh3
l ―回旋线上任一点到 曲线起点的曲线长度
R―主曲线半径 lh ―缓和曲线长度
坐标原点在ZH、HZ
(4)在圆曲线上任意点的坐标公式
ϕm
=
αm
+
β0
=
90
π
⋅ ( 2lm + lh R
)
x = q + R ⋅sin ϕm
y = ΔR + R(1− cosϕm )
三. 缓和曲线
2、缓和曲线的选择
(1)缓和曲线轨迹特点:由直线驶入圆曲线 转弯时,其轨迹上的任一点的曲率半径与其行 程l(自转弯开始点算起)成反比,此轨迹方程 为回旋曲线方程。因此我国《标准》规定缓和 曲线采用回旋曲线。
三. 缓和曲线
(2)缓和曲线的一般方程式:
ρ ⋅l = C
(2-26)
为了设计方便,使量纲一致,故令A2=C,则
一. 直 线
断背曲线:互相通视的同向曲线间若插以短直 线,容易产生把直线和两端的曲线看成为反向曲 线的错觉,当直线过短时甚至把两个曲线看成是 一个曲线,这种线形破坏了线形的连续性,且容 易造成驾驶操作的失误,通常称为断背曲线。
设计中应尽量避免。
一. 直 线
断背曲线
X 直线的计算
一. 直 线
不设超高最小半径(m) 5500 4000 2500 1500 600 350 150
二. 圆曲线
3、平曲线长度(curve radius)
(1)平曲线最小长度规定
① 从驾驶员操纵方便、行车舒适性以及视觉要求来 看,应对平曲线长度加以限制。
城市道路设计
五、城市道路设计城市道路设计的内容包括:路线设计、交叉口设计、道路附属设施设计、路面设计和交通管理设施设计等五个部分。
其中道路选线、道路横断面组合、道路交叉口选型等都是城市总体规划和详细规划的重要内容。
城市规划工作者必须掌握城市道路设计的基本知识和技能。
(一)城市道路的设计原则1.城市道路的设计必须在城市规划、特别是土地使用规划和道路系统规划的指导下进行。
必要时,可以提出局部修改规划的道路走向、横断面形式、道路红线等建议,经批准后进行设计;2.要求在经济、合理的条件下,考虑道路建设的远近结合、分期发展,避免不符合规划的临时性建设;3.要求满足交通量在一定时期内的发展要求;4.综合考虑道路的平面线形、纵断面线形、横断面布置、道路交叉口、各种道路极限标难。
(二)城市道路的设计步骤1.资料准备进行城市道路附属设施、路面类型,满足行人及各种车辆行驶的技术要求;(1)设计时应同时兼顾道路两侧城市用地、房屋建筑和各种工程管线设施的高程及功能要求,与周围环境协调,创造好的街道景观;(2)合理使用各项技术标准,尽可能采用较高的线形技术标准。
设计需要准备下列资料:①城市规划确定的道路性质和控制性要求资料;②道路沿线的地质资料、水文资料和气象资料;③道路沿线现状地形图,其比例按平面图设计要求;④现状道路交通量资料和规划交通量资料。
2.测设定线(1)先在现状地形图上(或较小比例地形图上)按照规划给定的控制坐标及红线、横断面等,初步确定道路的走向及平面布置;(2)现场测设道路中心线,并按照道路中心线测量原地面的纵断面和横断面。
3.综合进行路基路面设计和道路平面、纵断面和横断面的设计,以及附属设施设计。
4.完成设计文件,包括:·设计说明书;·道路设计资料(现状及设计计算资料);·道路设计图:平面设计图(含横断面)、纵断面设计图、交叉口设计图、道路附属设施设计图(或选用标准图);·施工横断面图及土方平衡表。
城市道路设计第二章PPT课件
施工图设计
根据详细设计要求,绘 制施工图纸,明确各项
施工要求。
城市道路设计的案例分析
案例一
某市商业街改造项目,重点考虑 人行交通和景观设计,提升商业
氛围。
案例二
某市快速路建设项目,强调交通疏 导和土地开发,优化区域交通结构。
案例三
某市地铁接驳道路项目,结合地铁 建设,完善公交和步行系统,提高 交通可达性。
近代城市道路
随着工业革命的发展,城 市规模不断扩大,城市道 路设计开始注重交通效率 和舒适性。
现代城市道路
现代城市道路设计更加注 重环保、可持续发展和人 行道的规划等方面,强调 绿色出行和人性化设计。
02
城市道路设计的基本要素
道路线形设计
直线段设计
直线段是道路的基本组成 部分,设计时应考虑车辆 行驶的安全、舒适和经济 性。
舒适原则
城市道路设计应注重行车的舒 适性,合理控制车速、减少噪 音和振动,提高道路使用的舒 适度。
绿色原则
城市道路设计应注重环保和可 持续发展,采用生态友好的材 料和技术,减少对环境的负面
影响。
城市道路设计的发展历程
01
02
03
古代城市道路
古代城市的道路设计主要 基于实用性和安全性,如 罗马帝国的道路网和中国 的驿道。
交叉口信号灯设计
根据交叉口的交通状况,合理设置信号灯,控制交通流,提高交叉 口的安全性。
道路排水设计
雨水排放设计
通过合理的设计,确保雨水能够及时排放,防止路面积水。
污水排放设计
对于城市道路,应考虑污水的收集和排放,以保护环境。
道路交通设施设计
交通标志标线设计
通过合理的交通标志标线设计,提供 清晰明确的交通信息,指导驾驶者安 全行驶。
城市道路与交通规划2(道路平面设计)
习题一:道路平面设计1、汽车的行驶阻力有那些?汽车行驶的充分必要条件是什么?(8分)答:汽车的行驶阻力:滚动阻力、空气阻力、坡度阻力、弯道阻力和惯性阻力等汽车行驶充分必要条件:F(附着力)≥ T(驱动力)≥ R(总阻力)。
2、什么叫汽车的动力因数,它反映了汽车的什么性能?(12分)答:动力因数:以D表示即:D=(Pt-Rw)/G,在海平面上,满载的情况下,每单位车重克服道路阻力和惯性阻力的能力,表明了汽车爬坡及加减速的能力。
是汽车牵引性能的主要指标,是剩余牵引力(总牵引力减空气阻力)和汽车总重之比。
反映性能:汽车的重要行驶性能。
3、在道路平面设计中,圆曲线半径选取的依据是什么?(6分)答:(1)一般情况下,宜采用极限最小平曲线半径的4至8倍或超高为2%至4%的圆曲线半径;(2)地形条件受限制时,应采用大于或接近《规范》里面圆曲线最小半径的一般值;(3)地形条件特殊,万不得已,方可采用极限最小半径;(4)考虑纵断面,不要在陡坡的地方设计很小的圆曲半径。
4、城市道路平面线形三要素是哪些?(9分)答:直线:曲率K=0、圆曲线:曲率K=常数、缓和曲线:曲率K=变数;曲率K为半径R的倒数。
5、道路平面线性设计的一般原则有哪些?(22)答:(1)应直捷、连续、均衡,并与沿线的地形、地物相适应,与周围环境相协调。
(2)不论转角大小均应敷设平面曲线,并尽量选用较大的圆曲线半径。
当公路转角较小时,应设法调整平面线形,当不得已,而设置小于70的偏角时,则必须设置足够长的曲线。
(3)曲线间应设置足够长度的直线,一-般以不小于6倍设计车速(以km/h 计)的直线长度为宜。
不得以短直线相连形成断臂曲线而影响线形连续和美观,否则应调整线形使之成为一-个单曲线或复曲线,或运用回旋线组合成卵型、复合型及凸型等曲线,改善线形质量。
(4)曲线间应设置足够长的直线,一般以不小于2倍设计车速(以km/ h 计)的直线长度为宜。
否则应调整线形,或运用回旋.线将其组合成S型曲线,改善线形质量。
城市道路平面设计图的内容及绘制方法
城市道路平面设计图的内容及绘制方法城市道路平面设计图的内容及绘制方法?城市道路的导线、中线及路线两侧的地形、地物、水系、植被等的绘制方法与公路一样,不再重复。
下面就城市道路中各种设施的绘制方法作一介绍。
(1)规划红线。
道路红线是道路用地与城市其它用地的分界限,红线之间的宽度也就是城市道路的总宽度,所以当道路的中心线画出以后,则应按城市道路的规划宽度画出道路红线。
如果有远期规划和近期规划,都应画出井注明。
(2)坡口、坡脚线新建道路由于原地面高低起伏必然有填有挖。
填方路段在平面图中应画出路基的坡脚线;挖方路段画出路基的坡口线。
在路基横断面图上,量出坡口或坡脚至中线的距离,点绘在平面图中相应桩号的横断面线上(左、右侧),然后用平滑的曲线分别将坡口点、坡脚点顺序连接,最后画上示坡线(见图3-26)。
路基的坡口与坡脚线在一般公路的平面图中由于比例尺较小不易表达,但在高速公路和一级汽车专用公路中有时也要求绘制。
(3)车道线城市道路的车道线是城市道路平面设计图的重要内容。
在路幅宽度内,有机动车道、非机动车道,在机动车道中还分快车道、慢车道等。
各种车道线的位置、宽度可在横断面布置图中查得,一一画在平面图中。
车道的曲线部分应按设计的圆曲线半径、缓和曲线长度绘制。
各车道之间的分隔带、路缘带等也应绘出。
(4)人行道、人行横道线、交通岛按设计绘制。
(5)地上、地下管线和排水设施各处地上、地下管线的走向和位置、雨水进水口、窨井、排水沟等都应在图中标出。
必要时,需分别另绘排水管线平面图纸。
(6)交叉口平面交叉口、立体交叉口虽然有专门的交叉口设计图,但在平面设计图中也应该按平面图的比例尺画出并详细注明交叉口的各路去向、交叉角度、曲线元素以及路缘石转弯半径。
一张完整的平面设计图,除了清楚而正确地表达上述设计内容外,还可对某些细部设施或构件画出大样图,最后在图中的空白处作一些简要的工程说明。
如工程范围、采用坐标系、引用的水准点位置等。
城市道路设计规范平面与纵断面设计
城市道路设计规范平面与纵断面设计★ ★★一、道路平面位宜应按城市总体规划道路网布设。
二、道路平面线形应与地形.地质、水文等结合.并符合各级道路的技术指标。
三、道路平面设il•应处理好直线与平曲线的衔接.合理地设宜缓和曲线.超纵加宽等。
I川、道路平面设计应根据道路等级合理地设宜交叉口.沿线建筑物出入口.停乍场出入口.分隔帯断口.公共交通停畀站位宜等。
五、平面线形标准需分期实施时.应满足近期使用要求,兼顾远期发展,减少废弃工程。
第5・1. 2条直线、平曲线的布设与连接宜符合下列规定:一.计算行车速度大于或等干6 0 km/h时,直线长度宜满足下列要求:1 •同向曲线间的最小直线长度(m)宜大于或等干计算行车速度(km/h)数值的八倍。
2・反向曲线间的最小直线长度(m)宜大于或等于计算行车速度(km/h)数值的二倍。
Til•算行牟速度小于6 0 km/h.地形条件困难时,直线段长度可不受上述限制,但应满足设宜缓和曲线战小长度的要求。
二汁算行午速度大于或等于4 0 km/h时,半径不同的同向恻曲线连接处应设宜缓和曲线。
受地形限制并符合下述条件之一时,可采用复曲线。
1・小圆半径大于或等于不设缓和曲线的最小恻曲线半径:2・小圆半径小于不设缓和曲线的最小圆曲线半径•但大圆与小闘的内移值之差小于或等于0・lm:3・大圆半径与小圆半径之比值小于或等干1・5。
三、讣算行午速度大于或等于4 0 km/h lit,长直线下坡尽头的平曲线半径应大干或等于不设超高的最小半径。
在难以实施地段.应采取防护措施。
四、讣算行乍速度小于4 0 km/h,且两圆半径都大于不设超商锻小半径,可不设缓和曲线而构成复曲线。
第5・1・3条道路的圆曲线半径应采用大于或等于表5・1・3规定的不设超岛最小半径值。
十受地形条件限制时, 可采用设超岛推荐半径值。
地形条件特别困难时,可采用设超商最小半径值。
圆曲线半径表第5・1・4条平曲线由圆曲线及两端缓和曲线组成。
道路交通道路平面和纵断面设计
四、曲线的超高与加宽
(一)超高
当曲线受地形、地物限制, 选用不设超高的半径十 分困难时,为保证车辆 能以设计车速行驶,可 以在曲线上设置超高。
1、超高横坡度
2、超高缓和段
超高缓和段是由直线段上的双坡横断面过渡到具有完全超高的单坡横断 面的路段。超高缓和段的长度按下式计算:
超高缓和段不宜过短,否则会发生侧向摆动,行车不十分稳定。一般,超高 缓和段的长度最好不小于15~20m。
– 汽车行驶轨迹是一条连续的圆滑曲线,并且轨迹的曲率、曲率 变化率都是连续的。
– 如果汽车前轮转角为α ,汽车前后轴距离为L,则汽车轨迹半 径可近似地用r=L/α 表示。轨迹曲线的半径由r=∞ 变到r=R, 或者由r=R变到r=∞ ,是一条缓和的曲线。
– 缓和曲线可以采用不同形式的曲线,如回旋线(螺旋线)、三 次抛物线、双纽线、多心复曲线等
倒的危险。 一般多以μ=0.15为最大控制数值。
3、运营经济要求
为了减少轮胎和燃料的消耗曲线半径也 不应太小,以免轮胎在牵引力与横 向力共同作用下发生很大的横移偏 转角δ 。
当δ <1˚ 时,相当μ=0.1,燃料额外消耗为
10%~12%;当δ=1.8˚ 时,相当μ=0.16,
燃料额外消耗将达到40%,轮胎消耗速度比 正常速度加快一倍。
• 2),将路中线保持在原有高度位置 上,绕路中线旋转。
(二)加宽
机动车辆在曲线上行驶时,为保证 车辆不侵占相邻车道,要将行车部 分加宽。
e为双车道加宽值
前述公式未考虑行驶车辆摆动幅度在曲线曲线上的变化,即未 考虑车道加宽与行车速度的关系。因此,引用一个经验修正值, 即双车道行车部分的宽度B为:
μ为横向力系数,其意义为单位 车重的横向力。
二级公路平面设计
二级公路平面设计公路平面设计是公路工程技术中的重要环节之一,其设计的质量直接影响着公路的通行安全和舒适性。
在二级公路平面设计中,需要考虑道路线型、横断面、坡度、平曲率半径、超高等因素,充分满足交通需求和安全要求。
本文将从上述几个方面对二级公路平面设计进行详细阐述,以期为相关从业人员提供一定的参考和借鉴。
一、道路线型设计在二级公路平面设计中,道路线型是非常关键的一部分。
道路线型设计的目的是保证车辆行驶的舒适性和安全性,减少转弯和变道时的急转弯和突变现象。
常用的道路线型设计包括直线、圆曲线、缓和曲线和螺旋曲线等。
1.直线道路:直线道路是道路的基本构成形态,其设计要尽可能减少弯曲,使车辆能够直线行驶。
在设计直线道路时,需要考虑水平、垂直曲线段的长度、超高等因素,确保车辆行驶的平稳和舒适。
2.圆曲线道路:圆曲线道路是指在水平方向上的曲线,其半径一般在100m以上。
圆曲线道路的设计可以使车辆在转弯时减少急速转弯的危险,提高行车的安全性和舒适性。
3.缓和曲线道路:缓和曲线是介于直线和圆曲线之间的过渡曲线,可以在车辆转弯时减少过度变化,减少车辆驾驶人员的疲劳程度。
4.螺旋曲线道路:螺旋曲线道路是一种在水平方向上渐进性转弯,其设计可以适用于山区和山地地形,减少车辆在山区道路上的急转弯和陡坡坡道。
以上是常用的道路线型设计,在具体的二级公路平面设计中,需要根据实际情况选择适合的线型形式,以确保车辆行驶安全和舒适。
二、横断面设计横断面设计是指公路在垂直方向上的设计,包括路肩、路堤、路基等部分。
横断面设计的目的是确保路面排水顺畅,保证道路的平整性和舒适性。
常用的横断面设计包括单侧边坡、双侧边坡和护坡等。
1.单侧边坡设计:单侧边坡设计是指在公路一侧设置边坡,另一侧为自然地形或护坡,适用于地形平缓或沿途为悬崖峭壁的道路。
2.双侧边坡设计:双侧边坡设计是指在公路两侧均设置有边坡,适用于地形不平,需要保证路基在牢靠的情况下进行设计。
长安大学道路勘测设计第二章平面设计
一、路线的相关概念
第一节 概 述
道路:一条三维空间的实体,是由路基、路面、桥梁、涵洞、隧道等组成的空间带状构造物。 路线:道路中线的空间位置。 线形:道路中心线的立体形状。 路线平面:路线在水平面上的投影。 路线纵断面:沿中线竖直剖切再行展开的断面(展开是指展开平面、纵坡不变)。 路线横断面:中线上任一点的法向切面。 路线设计:确定路线空间位置和各部分的几何尺寸。
城镇及其近郊道路,或以直线为主体进行规划的地区; 长大桥梁、隧道等构造物路段; 路线交叉点及其附近; 双车道公路提供超车的路段。
地带;
二、直线的运用
三.直线设计及计算
实地定交点: 选线人员根据道路等级和地形条件定出一系列直线,相邻两直线相交得到各个交点(JD1、JD2、…),通过测量交点的距离,确定交点之间的关系;或通过测量交点与导线点的坐标关系,确定交点坐标,再根据相邻交点坐标算出交点偏角和距离。
相邻两曲线之间应有一定长度的直线,这个直线是指前一曲线的终点(HZ或YZ)到后一曲线的起点(ZH或ZY)之间的长度。 同向曲线间的直线最小长度 同向曲线:是指两个转向相同的相邻曲线之间连以直线而形成的平面线形。 断背曲线:同向曲线间连以短的直线。
1
直线的最小长度
2
当直线较短时,在视觉上容易形成直线与两端曲线构成反弯的错觉; 当直线过短甚至把两个曲线看成是一个曲线。
增加驾驶操纵的困难 要求μ<0.3。
三、圆曲线半径及圆曲线长度
(3)增加燃料消耗和轮胎磨损 μ的存在使车辆的燃油消耗和轮胎磨损增加。横向力系数 为μ=0.2时,其燃料消耗 与轮胎磨损 分别比μ=0时多20%和近3倍。 (4)行旅不舒适 当μ超过一定数值时,驾驶者在曲线行驶中驾驶紧张,乘客感到不舒适。 μ <0.1~0.15间,舒适性可以接受。 综上所述对行车的安全、经济与舒适方面的要求,最大横向力系数采用:
第二章 平面设计
12
断背曲线
§2.2 直线
反向曲线间的直线最小长度 当V≥60km/h时,直线≥2V(以km/h计)为宜 当V≤40km/h时,可参照上述规定执行 特别困难四级15 m
注:当直线两端设置有缓和曲线时,也可以直接相连,构成S型曲线。
14
§2.2 直线
四、直线的运用《规范》
直线的运用应同地形、环境的协调相配合。采用直线 线形时,其长度不宜过长。 农田、河渠规整的平坦地区、城镇近郊规划等以直线 条为主体时,宜采用直线线形。 特长、长隧道或结构特殊的桥梁等构造物所处的路段, 以及路线交叉点前后的路段宜采用直线线形。 双车道公路为超车所提供的路段宜采用直线线形。
缓和曲线:设置在直线与圆曲线、圆曲线与圆曲线之间
的一种曲率连续变化的曲线
a 直线与曲线连接效果图 a)不设缓和曲线 b)设缓和曲线
b
31
§2.4 缓和曲线
一、缓和曲线的作用与性质
(一)缓和曲线的作用
曲率连续变化,便于车辆遵循 离心加速度逐渐变化,旅客感觉舒适 超高横坡度及加宽逐渐变化,行车更加平稳 与圆曲线配合,增加线形美观
29
§2.3 汽车行驶的横向稳定性与圆曲线半径 (五)圆曲线的特点
曲线上任一点都在改变方向,顺应地形变化。 曲线上任意一点的曲率半径R=常数,故测设比缓和曲 线简便 小半径曲线视距条件差,容易发生交通事故。 汽车在圆曲线上的行驶要受到离心力;在平曲线上行 驶时要多占路面宽。
30
§2.4 缓和曲线
∵α 很小, α ≈ tan α = ih sin
Gv 2 且F = gR
v2 ∴ X = F − Gih = G − ih gR
X v2 V2 µ= = − ih = − ih G gR 127 R
城市道路与市政工程-城市道路平面设计
缓和曲线的指标(2) ——缓和曲线最小长度
缓和曲线最小长度应满足三方面要求:曲率逐 渐变化,乘客感觉舒适;行车时间不宜太短; 超高过渡宜平缓 。
二、平曲线计算
圆曲线计算(1) —— 曲线要素计算
圆曲线计算(2) —— 主点桩号计算
例题:某单圆曲线,交点桩号为k1+600,转 角α为300,若该曲线外半径取400米,试进行 曲线要素和主点桩号计算。
平面基本线形
平面线形:道路中心线在平面上的投影线。
直线:曲率K=0
圆曲线:曲率K=常数
缓和曲线:曲率K=变数; 道路平面线形由直线、圆曲线和缓和曲线三种组合而成, “平面线形三要素”。
直线
直线适用于地形平坦、视线目标无障碍处。 在平原区,直线作为主要线形要素是适宜的。直 线有测设简单、前进方向明确、路线短捷等优点, 直线路段能提供较好的超车条件。
但直线过长、街道景色单调,往往会出现过 高的车速或司机由于缺乏警觉易疲劳而发生事故。
描述直线的指标
① 最大直线长度 最大直线长度的量化还是一个 需要研究的课题,目前各国有不同的处理方法, 德国和日本规定20V(单位为米,V为计算行车速 度,用公里/小时为单位),美国为180s的行程。 最大直线长度不必太拘泥,最小长度应该保证。
二、缓和曲线长度的计算
(一)按离心加速度变化率计算(舒适性)
Ls=0.036V3/R
(二)按行车时间不宜太短(3s) Ls≥Vt/3.6=0.83V (三)超高过渡应平缓 L=R/9~R
设计道路时,应符合规范中规定的缓和曲线最小长度。
平面线形,过去多采用长直线、短曲线的形式, 一般是首先设置直线,然后用曲线连接。 随着车速的提高及交通量的增长,对于高等级道 路已趋于以曲线为主的设计,即结合地形拟定曲 线,再连以缓和曲线或直线的方法,使路线在满 足行车动力要求的条件和视觉舒顺前提下,增加 了结合地形设置线形的自由,使线形的经济效益 较为显著,并保证行车的高速和安全。
城市道路平面设计的主要内容
城市道路平面设计的主要内容
城市道路平面设计是城市规划中非常重要的一部分,它直接关系到城市交通的畅通和安全。
城市道路平面设计的主要内容包括以下几个方面:
一、道路宽度的设计
道路宽度是城市道路平面设计中最基本的要素之一。
道路宽度的设计应该根据道路的交通量、车速、车道数、人行道宽度等因素来确定。
在城市道路平面设计中,道路宽度的设计应该尽量满足交通需求,同时也要考虑到城市的美观和环保。
二、车道和人行道的设计
车道和人行道是城市道路平面设计中非常重要的部分。
车道的设计应该根据车辆的类型和数量来确定,同时也要考虑到车辆的行驶速度和安全。
人行道的设计应该根据行人的数量和行走速度来确定,同时也要考虑到行人的安全和舒适度。
三、交通标志和标线的设计
交通标志和标线是城市道路平面设计中非常重要的部分。
交通标志的设计应该根据道路的交通流量和车速来确定,同时也要考虑到交通安全和环保。
标线的设计应该根据车道的数量和宽度来确定,同时也要考虑到车辆的行驶速度和安全。
四、交通信号灯的设计
交通信号灯是城市道路平面设计中非常重要的部分。
交通信号灯的设计应该根据道路的交通流量和车速来确定,同时也要考虑到交通安全和环保。
交通信号灯的设计应该尽量满足交通需求,同时也要考虑到城市的美观和环保。
城市道路平面设计是城市规划中非常重要的一部分,它直接关系到城市交通的畅通和安全。
城市道路平面设计的主要内容包括道路宽度的设计、车道和人行道的设计、交通标志和标线的设计、交通信号灯的设计等方面。
在城市道路平面设计中,应该尽量满足交通需求,同时也要考虑到城市的美观和环保。
道路平面设计全套
道路平面设计全套一、道路设计的基本步骤1.道路是三维空间的实体,路线是道路中线的空间位置路线平面:路线在水平方向的投影路线的纵断面:沿道路中线竖直剖切再行展开中线上任意一点法向切面是道路在该点的横断面2、道路设计过程中,先确定平面的线形,再进行纵断面和横断面设计平面线形由直线、圆曲线、缓和曲线三个要素组成3.线性设计公路平面线形设计直线一缓和曲线一圆曲线一缓和曲线一直线城市道路平面线形设计直线一圆曲线一直线4.道路平面线形要素行驶中汽车的导向轮与车身纵轴之间的关系-汽车行驶轨迹角度为零一曲率为零一直线角度为常数一曲率为常数一圆曲线角度为变数一曲率为变数一缓和曲线现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。
二、直线1.优点线形直捷,布设方便,行车视距良好,行车平稳2、缺点不能适应地形变化,不便于避让障碍,直线过长容易使驾驶员产生麻痹而放松警惕,发生行车事故,夜间行车时,对向行车灯光眩目不利安全(一)直线运用1、直线的最大长度在城镇及附近或其它景色有变化的地点,大于20V是可以接受的,在景色单调的地点最好控在在20V以内2.直线的最小长度当V≥60km∕h时,同向曲线的直线最小长度为6V,反向曲线的最小长度不小于2V3、注意的问题长直线或长下坡尽头的平曲线,必须采取设置标志、增加路面抗滑能力等安全措施长直线上坡不宜过长,直线上的纵坡一般应小于3%长直线应与大半径凹曲线配合为宜(二)采用长直线线形应注意的问题1.长直线宜与大半径凹竖曲线组合使用2.避免〃断背曲线〃三.圆曲线1、优点布设方便,能很好地适应地形,避让障碍,与地形配合得当可获得圆滑、舒顺、美观的路线,又能降低工程造价使行车景观不断变化,使驾驶员保持适度的警惕,增加行车安全性,也可起到诱导行车视线的作用2■注意的问题半径不可过小而影响行车安全(一)圆曲线的平面布设1、圆曲线上技术代号JD-交点(转角点)ZY一直圆(圆曲线起点)QZ一曲中(圆曲线中点)YZ一圆直(圆曲线终点)(二)圆曲线的几何要素及主点桩号里程计算1、几何要素2.曲线主点桩号里程计算3.曲线主点桩计算校核(三)圆曲线半径1、汽车在圆曲线路段行驶时会产生离心力F2.曲线半径指标(四)横向力系数μ的取值1.意义横向力系数表示单位车重所受到的横向力(离心力)其值越大对行车越不利2、取值大小的决定因素行车安全:确保行车不产生横向滑移操作方便、行车经济行车平稳、舒适3、取值一般取为控制值(五)公路圆曲线最小半径1.三种平曲线最小半径一般最小半径:通常情况下推荐采用的最小半径值极限最小半径能保证按设计速度行驶的车辆安全行驶的最小半径不设超高最小半径当路线的半径大到一定值时,即使汽车在曲线的外侧时,也能获得足够的安全性和很好的舒适性四.缓和曲线1.定义在直线与圆曲线、圆曲线与圆曲线之间设置的曲率连续变化的曲线2、特点易于适应地形,能很好地与汽车行驶轨迹相适应,使线形连续、美观,但缓和曲线计算、布设较繁琐(一)缓和曲线的性质路线设计符合汽车转弯时的行驶轨迹,插入缓和曲线,使整条曲线的曲率形成一个连续变化的过程。
第2章 道路平面设计_线形
(三)圆曲线半径的确定
④应同前后线形要素相协调,使之构成连续、均衡的曲 线线形;
⑤应同纵面线形相配合,应避免小半径曲线与陡坡相重 叠;
⑥每个弯道半径值的确定,应根据实地的地形、地物、 地质、人工构造物及其它条件的要求,用外距、切线长、 曲线长、曲线上任意点线位、合成纵坡等控制条件反算, 并结合标准综合确定。
的。
(二)设计标准
1.缓和曲线最小长度
(五)圆曲线里程桩的详细设置
(3) 坐标法 。
四 、 缓 和 曲 线
(一) 概述
1.缓和曲线的线形特征 缓和曲线是指在直线与圆曲线之间或者半
径相差较大的两个转向相同圆曲线之间设置 的一种曲率连续变化的曲线。从满足行车要 求来看,缓和曲线具有如下线形特征: 1) 符合行车轨迹 2)线形内部协调、美观 3) 外部协调、经济 4) 测设复杂 5)缓和曲线具有相似性
第二节 道路平面线形
一、路线平面线形的基本概念
二、直线 三、圆曲线 四、缓和曲线
一、路线平面线形的基本概念
1、路线 路线是指道路的中线(弯道上不考虑加宽的影响)
2、路线的平面 道路中线在水平面的投影
3、路线的纵断面 用一个曲面,沿着中线纵向剖切,再展开成的平面
4、道路的横断面 中线各点的法向剖切面
100
80
60
40
30
20
µ 0.05
0.05
0.06
0.06
0.06
0.05
0.05
i 0.06
0.06
0.07
0.08
0.07
0.06
0.06
2)圆曲线最大半径
《公路路线设计规范》规定,圆曲线最大半径
以不超过10000m为宜。
城市道路平面设计
平面线形设计(直线、圆曲线、缓和曲线设计) 弯道设计:弯道加宽、弯道超高 道路绿化的平面布置 桥梁、隧道、平面交叉口、广场等的平面布设,
分隔带、路缘带断口,公交站点的平面布置
一、平面线形分类
平面基本线形
平面线形:道路中心线在平面上的投影线。
直线:曲率K=0 圆曲线:曲率K=常数 缓和曲线:曲率K=变数; 道路平面线形由直线、圆曲线和缓和曲线三种组合而成,
缓和曲线
缓和曲线:它是设置在直线与圆曲线之间或半径 相差较大的两个圆曲线之间的一种曲率连续变化 的曲线。使直线和圆曲线之间过渡平稳,行车舒 适,作为超高、加宽的缓和带。
缓和曲线的指标(1) ——不设缓和曲线的最小圆曲线半径
设计车速大于40km/h时,圆曲线半径大于不 设缓和曲线的最小圆曲线半径时,直线与圆曲 线可直接连接。
设计道路时,应符合规范中规定的缓和曲线最小长度。
平面线形,过去多采用长直线、短曲线的形式, 一般是首先设置直线,然后用曲线连接。
随着车速的提高及交通量的增长,对于高等级道 路已趋于以曲线为主的设计,即结合地形拟定曲 线,再连以缓和曲线或直线的方法,使路线在满 足行车动力要求的条件和视觉舒顺前提下,增加 了结合地形设置线形的自由,使线形的经济效益 较为显著,并保证行车的高速和安全。
缓和曲线的指标(2) ——缓和曲线最小长度
缓和曲线最小长度应满足三方面要求:曲率逐 渐变化,乘客感觉舒适;行车时间不宜太短; 超高过渡宜平缓 。
二、平曲线计算
圆曲线计算(1) —— 曲线要素计算
圆曲线计算(2) —— 主点桩号计算
例题:某单圆曲线,交点桩号为k1+600,转 角α为300,若该曲线外半径取400米,试进行 曲线要素和主点桩号计算。
道路工程概论_2道路平面
2016/3/21
42
公路平曲线加宽
加 加 宽 宽 类 值 (m) 别 汽车轴距加前悬 (m) 1 2 3 5 8 5.2+8.8 平曲线 半径 (m) 250 ~ 200 <200 ~ 150 <150 ~ 100 <100 ~ 70 <70 ~ 50 <50 ~ 30 <30 ~ 25 <25 ~ 20 <20 ~ 15
1.定义:
汽车在曲线路段上行驶时,靠近曲线内侧后轮行 驶的曲线半径最小,靠曲线外侧的前轮行驶的曲线半 径最大。为适应汽车在平曲线上行驶时,后轮轨迹偏 向曲线内侧的需要,在平曲线内侧相应增加的路面、 路基宽度称为曲线加宽(又称弯道加宽)。 2.加宽值 圆曲线上加宽值与平曲线半径、设计车辆的轴距 有关,同时还要考虑弯道上行驶车辆摆动及驾驶员的 操作所需的附加宽度,因此,圆曲线上加宽值由几何 需要的加宽和汽车转弯时摆动加宽两部分组成。
3.不设超高的最小半径
圆曲线半径大于一定数值时,可以不设置超高,而允许设 置等于直线路段路拱的反超高。 从行驶的舒适性考虑,必须把横向力系数控制到最小值。
4.最小半径指标的应用
(1)公路线形设计时应根据沿线地形等情况,尽量选 用较大半径。在不得已情况下方可使用极限最小半径;
(2)当地形条件许可时,应尽量采用大于一般最小半 径的值;
4、超高缓和段 超高设于圆曲线之范围内,两端用过渡段 与直线相连。从直线段的双向横坡渐变到圆曲 线路段具有超高单向横坡的过渡段称为超高缓 和段。 为了行车舒适性和排水,对超高缓和段长 度必须加以规定。通常按控制设超高后行车道 外边缘的渐变率来计算。 双车道公路的超高缓和段长度按下式计 算:
Lc B 'i p
城市道路及交通平面设计及线性规划
V2 127R
ih
平面线形规划设计的内容
平面线规划设计
横向力系数越小,乘客越舒适,燃料消耗与轮胎磨损越少。 表1-4-2、1-4-3.
μ使车辆的燃油消耗和轮胎磨损增加。
横向力系数μ 燃料消耗(%) 轮胎磨损(%)
0
100
100
0.05
105
160
0.10
110
220
0.15
115
300
0.20
120
一、停车视距 1.定义:停车视距是指驾驶人员发现前方有障碍物后,采取制定措施使汽车在障碍物前停下来所需要的 最短距离。 2.停车视距构成:
反应距离
制动距离 停车距离ST
反应距离:当驾驶人员发现前方的阻碍物,经过判断决定采取制动措施的那一瞬间到制动器真正开始 起作用的那一瞬间汽车所行驶的距离。
二、圆曲线半径
根据汽车行驶在曲线上力的平衡式计算曲线半径:
当设超高时 :
R
V2
127( ih )
式中:V——计算行车速度,(km/h);
μ——横向力系数;
ih——道路横陂
平面线规划设计 二、圆曲线半径
X Fcα o G s α sin
Y
X
X F Gi h
Gv gR
2
Gi
h
G(
v2 gR
ih )
道路为了绕避障碍,以使车辆平顺的由前一条直 线路段转向驶入后一条直线路段,一般采用圆曲 线进行连接
圆曲线是平曲线中的主要组成部分。 圆曲线几何元素为:
优点
T
α 易与地形相适应、可循性好、线形美观、易
于测设。
Rtg 2
L π αR 180
α E R(sec 1)
城市道路平面设计规范.doc
第一节平面设计第5.1.1条平面设计应符合下列原则:一、道路平面位置应按城市总体规划道路网布设。
二、道路平面线形应与地形、地质、水文等结合,并符合各级道路的技术指标。
三、道路平面设计应处理好直线与平曲线的衔接,合理地设置缓和曲线、超高、加宽等。
四、道路平面设计应根据道路等级合理地设置交叉口、沿线建筑物出入口、停车场出入口、分隔带断口、公共交通停靠站位置等。
五、平面线形标准需分期实施时,应满足近期使用要求,兼顾远期发展,减少废弃工程。
第5.1.2条直线、平曲线的布设与连接宜符合下列规定:一、计算行车速度大于或等于60km/h时,直线长度宜满足下列要求:1.同向曲线间的最小直线长度(m)宜大于或等于计算行车速度(km/h)数值的六倍。
2.反向曲线间的最小直线长度(m)宜大于或等于计算行车速度(km/h)数值的二倍。
当计算行车速度小于60km/h,地形条件困难时,直线段长度可不受上述限制,但应满足设置缓和曲线最小长度的要求。
二、计算行车速度大于或等于40km/h时,半径不同的同向圆曲线连接处应设置缓和曲线。
受地形限制并符合下述条件之一时,可采用复曲线。
1.小圆半径大于或等于不设缓和曲线的最小圆曲线半径;2.小圆半径小于不设缓和曲线的最小圆曲线半径,但大圆与小圆的内移值之差小于或等于0.1m;3.大圆半径与小圆半径之比值小于或等于1.5。
三、计算行车速度大于或等于40km/h时,长直线下坡尽头的平曲线半径应大于或等于不设超高的最小半径。
在难以实施地段,应采取防护措施。
四、计算行车速度小于40km/h,且两圆半径都大于不设超高最小半径,可不设缓和曲线而构成复曲线。
第5.1.3条道路的圆曲线半径应采用大于或等于表5.1.3规定的不设超高最小半径值。
当受地形条件限制时,可采用设超高推荐半径值。
地形条件特别困难时,可采用设超高最小半径值。
第5.1.4条平曲线由圆曲线及两端缓和曲线组成。
平曲线长度与圆曲线长度应大于或等于表5.1.4-1的规定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 一、设计原则 ➢ 二、设计内容 ➢ 二、设计要点 ➢ 三、纵断面设计方法步骤及注意问题 ➢ 四、纵断面图的绘制 ➢ 五、城市道路纵断面设计要求 ➢ 六、城市锯齿形街沟设计 ➢ 七、土石方计算
一、设计原则
(一)道路纵断面设计应参照城市规划控制标高,并 适应临街建筑物立面布置及沿线范围内地面水的排除。
2.标注高程控制点
控制点是指路线起终点、路线交叉口、桥梁顶面或梁底、沿
线重要建筑物地坪以及依据横断面确定的填挖合理点等,这些 点往往在道路设计之前就因它因素而限定了其标高。
JD5 R= Ls=
JD6 R= Ls=
JD5 R= Ls=
3.试坡:俗称拉坡,在标定全线的各控制点后,即可根据定线
(二)为保证行车安全、舒适,纵坡宜缓顺,起伏不 宜频繁。
返回
上一页 下一页
退出
一、设计原则
(三)山城道路及新辟道路的纵坡设计应综合考虑土 石方工程量平衡和汽车运营经济效益等因素,合理确定 路面设计标高。
(四)对于机动车和非机动车混合行驶的车行道,宜 按非机动车爬坡能力设计道路纵坡。
返回
上一页 下一页
4.道路纵断面设计要妥善处理地下管线覆土的要
求。
返回
上一页 下一页
退出
一、设计原则
(五)纵断面设计应对沿线地形、地物、地质%,困难时可≥0.3%。纵 坡<0.3%时,应设置锯齿形偏沟或采取其他措施以加 强道路的排水。
返回
上一页 下一页
➢(五)关于相邻竖曲线的衔接
反向曲线:相邻反向竖曲线之间,为使增重与减重间和缓过 渡,中间最好插入一段直坡段。若两竖曲线半径接近极限值 时,这段直坡段至少应为计算行车速度的3s行程。当半径比 较大时,亦可直接连接。
§5-1 城市道路纵断面设计
➢ 一、设计原则 ➢ 二、设计内容 ➢ 三、设计要点 ➢ 四、纵断面设计方法步骤及注意问题 ➢ 五、纵断面图的绘制 ➢ 六、城市道路纵断面设计要求 ➢ 七、城市锯齿形街沟设计 ➢ 八、土石方计算
➢(四)关于竖曲线半径的选用
一般情况下:竖曲线应选用较大半径为宜。 坡差小时:应尽量采用大的竖曲线半径。 条件受限制时:可采用一般最小值 特殊困难情况下:方可用极限最小值。 有条件时:宜采用表规定的满足视觉要求的最小半径。
➢(五)关于相邻竖曲线的衔接
同向曲线:相邻两个同向凹形或凸形竖曲线,特别是同向凹 形竖曲线之间,如直坡段不长应合并为单曲线或复曲线,避 免出现断背曲线。
退出
一、设计原则
(五)纵断面设计应对沿线地形、地物、地质、水文、气 候、地下管线和排水要求综合考虑。
1.道路经过水文地质条件不良地段时,应适当提 高路基标高以保证路基稳定。当受规划标高限制时, 应采取稳定路基措施。
2.旧路改建在旧路面上加铺结构层时,不得影响 沿路范围的排水。
返回
上一页 下一页
退出
(四)锯齿形街沟的设计:在道路纵坡<0.3%时,其 街沟的纵向排水能力很差,为此,需要人为调整加大街 沟沟底纵坡——锯齿形街沟设计;
(五)平面及纵断面配合设计。
返回
上一页 下一页
退出
三、纵断面设计要点
➢(一)关于纵坡极限值的运用 根据汽车动力特性和考虑经济等因素制定的极限值,设
计时不可轻易采用,应留有余地。 一般讲,纵坡缓些为好,但为了路面和边沟排水,最小
四、纵断面设计方法步骤及注意问题
(一)纵断面设计方法与步骤
1.准备工作 2、标注高程控制点 3、试坡 4、调整 5、核对 6、定坡 7、竖曲线计算 8、设计高程计算
四、纵断面设计方法步骤及注意问题
(一)纵断面设计方法与步骤
1.准备工作: (1)应收集有关设计资料:
①里程桩号和地面高程; ②平面设计成果; ③沿线地质资料等。
纵坡不应低于0.3%~0.5%。
三、纵断面设计要点
➢(二)关于最短坡长 坡长不宜过短,以不小于计算行车速度9秒的行程为宜。
对连续起伏的路段,坡度应尽量小,坡长和竖曲线应争取到极 限值的一倍或二倍以上,避免锯齿形的纵断面。
三、纵断面设计要点
➢(三)各种地形条件下的纵坡设计 1.平原、微丘区:保证最小填土高度,作包线设计。 2.山岭、重丘区:按纵向填挖平衡设计。
竖曲线型式一般采用二次抛物线。设计内容包括 抛物线参数的确定和竖曲线长度两个方面。
返回
上一页 下一页
退出
二、设计内容
(三)视距验算:纵断面上产生视距不足的情况主要 在小半径的凸形曲线处和设置立交桥的凹形曲线路段, 在这些地方应进行视距验算,避免出现视距不足的情况 发生。
返回
上一页 下一页
退出
二、设计内容
退出
一、设计原则
(六)山城道路应控制道路的平均纵坡。越岭道路 的相对高差为200~500m时,平均纵坡宜取4.5%;相 对高差>4%;任意连续3 000m长路段的平均纵坡不宜 大于4.5%。
返回
上一页 下一页
退出
二、设计内容
(一)纵坡设计:坡度设计和坡长设计;
道路纵坡度的设计包括最大纵坡和最小纵坡两个方 面。《规范》规定城市道路最小纵坡为0.5%,困难地方 为0.3%。
一、设计原则
(五)纵断面设计应对沿线地形、地物、地质、水文、气 候、地下管线和排水要求综合考虑。
3.沿河道路应根据路线位置确定路基标高。位于
河堤顶的路基边缘应高于河道防洪水位0.5m,当岸边
设置挡水设施时,可不受此限制。位于河岸外侧道路
的标高按一般道路考虑,符合规划控制标高,并应根
据情况解决地面水及河堤渗水对路基稳定的影响。
(一)纵断面设计方法与步骤
1.准备工作: (2)点绘地面线,填写有关内容。
JD5 R= Ls=
JD6 R= Ls=
JD5 R= Ls=
四、纵断面设计方法步骤及注意问题
(一)纵断面设计方法与步骤
1.准备工作 2、标注高程控制点 3、试坡 4、调整 5、核对 6、定坡 7、竖曲线计算 8、设计高程计算
机动车道最大纵坡详见表,非机动车最大纵坡 《城市道路设计规范》规定为3.5%。
《城市道路设计规范》分别对机动车道纵坡限制长度 和非机动车道纵坡限制长作了明确规定,详见表。
返回
上一页 下一页
退出
二、设计内容
(二)竖曲线设计:在两条相邻坡度线的交汇处即变 坡点处,设计适当曲率和适当长度的竖向曲线,以缓和 坡的变化,保证行车的平稳和舒适;