九年级数学上册 第一章 特殊平行四边形 1.3 正方形的性质与判定 第1课时 正方形的性质作业课件

合集下载

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》
满足什么条件的菱形是正方形? 定理:有一个角是直角的菱形是正方形.
请证明你的结论,并与同伴交流.
正方形的判定( 随堂练习1)
定理:有一个角是直角的菱形是正方形.
已知:四边形ABCD是菱形,∠A=900. A
D
求证:四边形ABCD是正方形.
证明:
∵四边形ABCD是菱形,∠A=900,
B
C
∴AB=BC,∠C=∠A=900,∠B=1800-∠A=900.
CG=DG=
1
2 CD,DH=AH=
1
AC
2
∴AE=BE2=BF=CF=CG=DG2=HG=AH
∴△AHE≌△BEF≌△CFG≌△DHG
A
E
B
13 2
H
F
D
G
C
∴EF=FG=GH=HE∴四边形EFGH是菱形
∵∠1=∠2=45°∴∠3=90 °
∴四边形EFGH是正方形
(1)以菱形或矩形各边的中点为顶点可以组成一个什 么图形?先猜一猜,再证明.如果以平行四边形各边 的中点为顶点呢?
例1.如图 1-18,在正方形 ABCD
中,E 为 CD 边上一点,F 为 BC 延长线上一点,且 CE = CF.BE
M
与 DF 之间有怎样的关系?请说明
理由.
解:BE = DF,且 BE⊥DF. 理由如下:
(2)延长 BE 交 DF 于点 M. ∵ △BCE ≌ △DCF,∴ ∠ CBE = ∠ CDF. ∵ ∠ DCF = 90°,∴ ∠ CDF + ∠ F = 90°. ∴ ∠ CBE + ∠ F = 90°. ∴ ∠ BMF = 90°.∴ BE⊥DF.
北师大版九年级数学(上)
第一章 特殊平行四边形

1.3正方形的性质与判定第1课时教案

1.3正方形的性质与判定第1课时教案
-正方形的判定方法:如何判定一个四边形是正方形,包括边长相等且角为直角、对角线互相垂直平分且相等两种方法。
举例:通过对比矩形和正方形的性质,强调正方形的特殊性,如正方形的对角线相等,而矩形的对角线不一定相等。
2.教学难点
-理解正方形对角线性质的应用:学生往往难以理解正方形对角线互相垂直平分且相等这一性质的应用,如证明正方形对角线相等时,需要运用到垂直平分线的性质。
(2)正方形的判定:四边相等且四个角为直角的四边形是正方形;对角线互相垂直平分且相等的四边形是正方形。
本节课旨在让学生掌握正方形的性质与判定方法,并能运用所学知识解决实际问题。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.理解与运用:通过学习正方形的定义和性质,使学生能够理解正方形的特点,并运用这些性质解决实际问题,培养几何直观和空间想象能力。
最后,在总结回顾环节,学生对本节课的知识点有了较好的掌握,但仍有个别学生存在疑问。为了确保每位学生都能跟上教学进度,我决定在课后对这部分学生进行个别辅导,帮助他们解决困惑。
2.思维与发展:在教学过程中,引导学生通过观察、分析、归纳等思维活动,发现正方形的性质与判定方法,提高逻辑推理和抽象思维能力。
3.合作与交流:鼓励学生在小组合作中分享观点、讨论问题,培养团队协作能力和交流表达能力,增强几何图形的审美观念。
三、教学难点与重点
1.教学重点
-正方形的定义及其性质:正方形作为特殊的矩形,其定义和性质是本节课的核心内容。重点包括四边相等、四角为直角、对边平行且相等、对角线互相垂直平分且相等等性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正方形的基本概念。正方形是一种四边相等且四个角均为直角的四边形。它在建筑、设计等领域具有广泛的应用。

新北师大版初三上册数学(九年级) 第一章:3、《正方形的判定》课件

新北师大版初三上册数学(九年级) 第一章:3、《正方形的判定》课件
解: ∵ DE∥AC,DF∥AB
∴ 四边形AEDF是平行四边形
(2)当满足什么条件时,四边形AEDF是矩形?
解: ∵ 一个角为直角的平行四边形为矩形∴ ∠BAC90°时,四边形AEDF是矩形
[趁热打铁]
(3)当满足什么条件时,四边形AEDF是菱形? 解:∵ 有一组邻边相等的平行四边形是菱形
∴ 当AD平分∠BAC时,四边形AEDF是菱形
质 对角线
每条对角线平分一组对角
[实践出真知]
做一做:将矩形纸片对折两次,怎样裁剪才能使剪下的三角形 展开后是个正方形?
(1)
(2)
剪口与折痕成 45°角
(3)
(4)
[实践出真知]
问题2:满足怎样条件的矩形是正方形?
矩形
一组邻边相等 或对角线互相垂直
正方形
问题3:满足怎样条件的菱形是正方形?
菱形
亲爱的读者: 2、千世里上之没行有,绝始望于的足处下境。,只20有20对年处7月境1绝2日望星的期人日。二〇二〇年七月十二日2020年7月12日星期日 春去春又回,新桃换旧符。在那桃花盛开的地方,在 3、少成年功易都学永老远难不成会,言一弃寸,光放阴弃不者可永轻远。不。会成09功:01。7.12.202009:017.12.202009:0109:01:457.12.202009:017.12.2020
1.3.2 正方形的判定
[温故而知新]
1.在平行四边形的基础上对矩形、菱形的判定 矩形
平行四边形
菱形
[温故而知新]
2.正方形的定义及性质
正方形 有一个角是直角且一组邻边相等的平行四边形叫做
平行四边形
一个角是直角 且一组邻边相等
正方形

正方形的对边平行且相等

北师版九年级数学 1.3正方形的性质与判定(学习、上课课件)

北师版九年级数学  1.3正方形的性质与判定(学习、上课课件)

知2-练
感悟新知
(2)若OG=1, 求△ CDE 的周长.
知2-练
解:易知OC=OD,DE=CE,
∴点O,点E在CD的垂直平分线上.
∴OE垂直平分CD.∴G是CD的中点.
∵OB=OD,OG=1,∴OG是△BCD的中位线.
∴BC=2OG=2.
∵四边形ABCD为正方形,∴DC=BC=2.
∵△DCE是等边三角形,∴△CDE的周长=3CD=6.
知2-练
2-1. 如图, 四边形ABCD 是正方形,△ DCE 是等边三角 形,AC,BD 交于点O,连接AE 交BD 于点F,连接 OE 交CD 于点G.
感悟新知
(1)求∠ AED 的度数; 解:∵四边形 ABCD 是正方形, ∴∠ADC=90°,AD=CD. ∵△DCE 是等边三角形, ∴∠CDE=60°,CD=DE. ∴∠ADE=90°+60°=150°,AD=DE. ∴∠AED=∠DAE=12×(180°-150°)=15°.
对角
知2-讲
数学表达式
∵四边形ABCD 是正方形, ∴∠ ADC= ∠ DCB= ∠ CBA=∠ BAD =90°
∵四边形ABCD 是正方形, ∴ AC ⊥ BD,AC=BD, OA=OC,OB=OD;AC 平 分∠ DAB 和∠ DCB,BD 平分∠ ADC 和∠ ABC
感悟新知
性质
是轴对称图形, 它有四条对称轴,分 别是两条对角线所在 对 的直线和过每一组对 称 边中点的直线 性 是中心对称图形,对 称中心是两条对角线 的交点
第一章 特殊平行四边形
3 正方形的性质与判定
学习目标
1 课时讲解 正方形的定义
正方形的性质 正方形的判定
2 课时流程 中点四边形

北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)

北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)

北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算. 【知识关系】【知识点梳理】知识点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形. 2.性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形. 3.面积:4.判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形. 角:(4)两组对角分别相等的四边形是平行四边形; (5)任意两组邻角分别互补的四边形是平行四边形. 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形. 知识点诠释:平行线的性质: (1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等. 知识点二、菱形高底平行四边形⨯=S1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形. 3.面积:4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.知识点三、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 知识点诠释:由矩形得直角三角形的性质: (1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 知识点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形2对角线对角线高==底菱形⨯⨯S 宽=长矩形⨯S1、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC 交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.【思路点拨】(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=1 2BC,进而得到EF=12CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得∠ADG=∠G,再证明∠B=∠DCB,∠A=∠DCA,然后再推出∠1=∠DCB=∠B,再由∠A+∠ADG=∠1可得∠A+∠G=∠B.【答案与解析】证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=12BC,∴EF=DF-DE=BC-12CB=12CB,∴DE=EF;(2)∵DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.类型二、菱形2、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型三、矩形3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.【思路点拨】①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;②根据三角形的一个外角等于与它不相邻的两个内角的和推出∠MCD=∠MDC,再根据等角对等边可得MD=MC,然后证明AC=DN,再根据对角线相等的平行四边形是矩形即可得证.【答案与解析】证明:①∵CN∥AB,∴∠DAC=∠NCA,在△A MD和△CMN中,∵DAC NCAMA MCAMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC, ∴MD=MC ,由①知四边形ADCN 是平行四边形, ∴MD=MN =MA =MC , ∴AC=DN ,∴四边形ADCN 是矩形.【总结升华】要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等.4、如图所示,在矩形ABCD 中,AB =6,BC =8.将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处,求EF 的长.【思路点拨】要求EF 的长,可以考虑把EF 放入Rt △AEF 中,由折叠可知CD =CF ,DE =EF ,易得AC =10,所以AF =4,AE =8-EF ,然后在Rt △AEF 中利用勾股定理求出EF 的值.【答案与解析】 解:设EF =x ,由折叠可得:DE =EF =x ,CF =CD =6, 又∵ 在Rt △ADC 中,. ∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解. 举一反三: 【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,,10AC =222(8)4x x -=+222DC FC DF +=解得x =,BF =DE =3.4,则=×3.4×3=5.1. 类型四、正方形5、如图,一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边重合,过E 点作EF ⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由.【思路点拨】AE =EF .根据正方形的性质推出AB =BC ,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB 是以∠B 为直角的等腰直角三角形,得到BH =BE ,∠H=45°,HA =CE ,根据CF 平分∠DCE 推出∠H=∠FCE,根据ASA 证△HAE≌△CEF 即可得到答案. 【答案与解析】 探究:AE =EF证明:∵△BHE 为等腰直角三角形, ∴∠H =∠HEB =45°,BH =BE.又∵CF 平分∠DCE ,四边形ABCD 为正方形, ∴∠FCE =12∠DCE =45°, ∴∠H =∠FCE.由正方形ABCD 知∠B =90°,∠HAE =90°+∠DAE =90°+∠AEB, 而AE ⊥EF ,∴∠FEC =90°+∠AEB , ∴∠HAE =∠FEC.由正方形ABCD 知AB =BC ,∴BH -AB =BE -BC , ∴HA =CE,∴△AHE ≌△ECF (ASA ), ∴AE =EF. 【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三: 【变式】(2015•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 .【答案】 65°。

1.3第1课时正方形的性质-北师大版九年级数学上册习题课件

1.3第1课时正方形的性质-北师大版九年级数学上册习题课件

(2)如图 2,结论不变.DM⊥EM,DM=EM.理由:在图 2 中,延长 EM 交 DA
2.正方的形是延轴对长称图线形,于它的对H称.轴∵有(四边) 形 ABCD 是正方形,四边形 EFGC 是正方形,∴∠ADE=∠
10.【易错题】已知正方形ABCD中,点E为直线BC上一点,若AE=2BE,则∠DAE=__________度.
1.正方形具有而矩形不具有的性质是( )
11.如图,正方形OABC的边OA和OC都在坐标轴上,将正方形OABC绕点O旋转到OA′B′C′,这时点A′的坐标为(2,3),则点B′的坐标为__________.
∴∠FAE+∠AED=90°, 注意:正方形既是特殊的矩形,又是特殊的菱形,即有一组邻边相等的矩形是正方形或有一个角是直角的菱形是正方形.
知识点1 正方形的定义 有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 注意:正方形既是特殊的矩形,又是特殊的菱形,即有一组邻边相等的矩形是 正方形或有一个角是直角的菱形是正方形.
第一章 特殊平行四边形
上一页 返回导航 下一页
数学·九年级(上)·配北师
知识点2 正方形的性质 (1)定理1:正方形的四个角都是直角,四条边都相等. (2) 定 理 2 : 正 方 形 的 对 角 线 相 等 且 互 相 垂 直 平 分 , 每 一 条 对 角 线 平 分 一 组 对 角. (3)对称性:正方形是中心对称图形,对角线的交点是它的对称中心.正方形是 轴对称图形,两条对角线所在的直线,以及过每一组对边中点的直线都是它的对称 轴.
90°,∴∠DAF+∠EAD=90°,即∠EAF=90°,∴EF= AE2+AF2= 2AE=5 2.
第一章 特殊平行四边形
上一页 返回导航 下一页

北师大版九年级上册数学《正方形的性质与判定》特殊平行四边形说课教学复习课件

北师大版九年级上册数学《正方形的性质与判定》特殊平行四边形说课教学复习课件

(x
+
b )2 2a
b2 4ac 4a 2
0
.
移项,得
( x + b )2 b2 4ac . 能直接开方吗?
2a
4a 2
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究 任何一个一元二次方程都可以写成一般形式ax2+bx+c=0(a≠0), 请用配方法解此方程.
(x+
b )2 2a
=
1 2
.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
议一议
(1) 你能解一元二次方程 x2 -2x + 3 = 0 吗?
分析:∵a = 1,b = -2,c = 3, ∴ b2 - 4ac = (-2)2 - 4×1×3= -8 < 0.
你是怎么想 的呢?
根据求根公式的条件知:无法使用求根公式.
正方形判定的两条途径:
(1)
+ 一个直角 对角线相等
先判定菱形
矩形条件
(2)
+ 一组邻边相等 对角线垂直
先判定矩形
菱形条件
正方形 正方形
知识讲解
例1:如图,在矩形ABCD中, BE平分∠ABC , CE平分∠DCB ,
BF∥CE , CF∥BE.
求证:四边形BECF是正方形.
解析:先由两组平行线得出四边形BECF平行四边形; 再由一组邻边相等得出是菱形;最后由一个直角可得 正方形.
随堂练习 2.用公式法解下列方程: (1) 2x2 - 9x + 8 = 0; (3) 16x2 + 8x = 3;
(2) 9x2 + 6x + 1 = 0 ; (4) x(x-3) + 5 = 0 .

1.3正方形的性质与判定(第一课时)课件北师大版九年级数学上册

1.3正方形的性质与判定(第一课时)课件北师大版九年级数学上册
答图
返回目录
数学 九年级上册 BS版
∴△ ABE ≌△ EHF (AAS). ∴ AB = EH , BE = HF . ∴ EH = BC . ∴ BE = CH . ∴ CH = FH . ∴∠ FCH =∠ CFH =45°. ∴∠ ECF =135°.
答图
返回目录
数学 九年级上册 BS版
返回目录
数学 九年级上册 BS版
(2022·恩施)如图,已知四边形 ABCD 是正方形,点 G 为线段 AD 上任意一点, CE ⊥ BG 于点 E , DF ⊥ CE 于点 F . 求证: DF = BE + EF .
返回目录
数学 九年级上册 BS版
【思路导航】先证出△ BCE ≌△ CDF ,即可求得 BE = CF , CE = DF ,最后根据线段的和差、等量代换即可得证.
(1)求证: EF = BE + DF ; (1)证明:如答图,将△ ADF 绕点 A 按顺时针方 向旋转90°,得到△ ABF ', 则∠1=∠2,∠ ABF '=∠ D , AF '= AF , BF '= DF . ∵四边形 ABCD 为正方形,
答图
返回目录
数学 九年级上册 BS版
答图
返回目录
返回目录
数学 九年级上册 BS版
证明:∵四边形 ABCD 是正方形, ∴ BC = CD ,∠ BCD =90°. ∴∠ BCE +∠ DCF =90°. ∵ CE ⊥ BG , DF ⊥ CE , ∴∠ BEC =∠ CFD =90°. ∴∠ BCE +∠ CBE =90°. ∴∠ CBE =∠ DCF .
返回目录
数学 九年级上册 BS版
返回目录
数学 九年级上册 BS版

1.3.正方形的性质与判定(第1课时)

1.3.正方形的性质与判定(第1课时)

1.3.正方形的性质与判定(第1课时)第一章特殊平行四边形3. 正方形的性质与判定(一)教学内容:1.3 正方形的性质与判定(一)教学目标:1、在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,体验数学发现的过程,并得出正确的结论.2、进一步了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,并形成文本信息与图形信息相互转化的能力.3、在观察、操作、推理、归纳等探索过程中,发展合情推理能力,进一步培养自己的说理习惯与能力.同时培养学生勇于探索、团结协作交流的精神。

激发学生学习的积极性与主动性。

教学重点:探索正方形的性质定理.教学难点:掌握正方形的性质的应用方法.教学过程:一、课前准备活动内容:搜集身边的矩形(提前布置)。

以合作小组为单位,开展调查活动:各尽所能收集生活中应用的各种矩形图形。

准备好数学常用的度量工具:直尺、量角器、圆规。

二、情境引入展示学生的成果,包括图片以及实物等各种学生能得到的“图形”。

并让学生利用适当的度量工具,对搜集到的图形素材进行度量或者对素材进行适当的操作,并记录、整理数据。

老师可以给学生一个示范性的数据整理模式(如下表),但不要强求。

选取一些有代表性的小组,对其得到的的数据或是操作得到的结论进行交流。

①引出“有一组邻边相等的矩形叫做正方形”②通过数据的交流自然的回答了“议一议”中的两个问题:(1)正方形是菱形吗?(2)你认为正方形有哪些性质?通过引导学生回顾关于矩形、菱形的性质、“正方形既是矩形又是菱形”得出关于正方形的两个定理“正方形的四个角都是直角四条边都相等”“正方形的对角线互相垂直平分”议一议,让学生解决“正方形有几条对称轴”四、性质应用①引用课本例1:如图1-18,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间又怎样的关系?请说明理由。

②选用课本议一议进行阶段小结“平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流”五、练习提高1.如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有多少个等腰三角形?错误!未找到引用源。

最新北师大版九年级上册数学导学案(全册共)

最新北师大版九年级上册数学导学案(全册共)

最新北师大版九年级上册数学导学案(全册共119页)目录第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质第2课时菱形的判定1.2矩形的性质与判定第1课时矩形的性质第2课时矩形的判定1.3正方形的性质与判定第1课时正方形的性质第2课时正方形的判定第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程第2课时一元二次方程的解及其估算2.2 用配方法求解一元二次方程第1课时用配方法求解简单的一元二次方程第2课时用配方法求解较复杂的一元二次方程2.3 用公式法求解一元二次方程第1课时用公式法求解一元二次方程第2课时利用一元二次方程解决面积问题2.4 用因式分解法求解一元二次方程2.5一元二次方程的根与系数的关系2.6 应用一元二次方程第1课时几何问题及数字问题与一元二次方程第2课时第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率第2课时概率与游戏的综合运用3.2 用频率估计概率第四章图形的相似4.1 成比例线段第1课时线段的比和成比例线段第2课时比例的性质4.2 平行线分线段成比例4.3 相似多边形4.4 探索三角形相似的条件第1课时利用两角判定三角形相似第2课时利用两边及夹角判定三角形相似第3课时利用三边判定三角形相似第4课时黄金分割4.5 相似三角形判定定理的证明4.6 利用相似三角形测高4.7 相似三角形的性质第1课时相似三角形中的对应线段之比第2课时相似三角形的周长和面积之比4.8 图形的位似第1课时位似多边形及其性质第2课时平面直角坐标系中的位似变换第五章投影与视图5.1 投影第1课时投影的概念与中心投影第2课时平行投影与正投影5.2 视图第1课时简单图形的三视图第2课时复杂图形的三视图第六章反比例函数6.1 反比例函数6.2 反比例函数的图象与性质第1课时反比例函数的图象第2课时反比例函数的性质第一章 特殊平行四边形1.1 菱形的性质与判定第1课时 菱形的性质学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。

北师大版九年级上册数学第一章《特殊平行四边形》整章优质课件

北师大版九年级上册数学第一章《特殊平行四边形》整章优质课件
30°
_______.
B
O
A
C
D
6.已知菱形的一条对角线与边长相等,则菱形的
60°、60°、120°、120°
四个内角度数分别为_____________________.
B.104°
C.105°
D.110°
课堂小结
菱形的定义
有一组邻边相等的平行四
边等
菱形的性质
2.对角线互相垂直平分,且
每条对角线平分一组对角.
当堂检测
1.菱形具有而一般平行四边形不具有的性质是 ( C )
A.对角相等
B.对边相等
C.对角线互相垂直
D.对角线相等
2.如图,菱形的两条对角线长分别是6和8,则此菱形的
(1)图中有哪些线段是相等的?哪些角是相
等的?
(2)有哪些特殊的三角形?那些全等三角形?
知识讲解
已知四边形ABCD是菱形
A
7
1 2
相等的线段:AB=CD=AD=BC
8
O
5
OA=OC OB=OD
D
6
3
B
4
C
∠DAB=∠BCD ∠ABC =∠CDA
相等的角:
∠AOB=∠DOC=∠AOD=∠BOC =90°
第一章 特殊平行四边形
北师大版九年级上册数学第一章整章课件
第一章 特殊平行四边形
第一章 特殊平行四边形
1 菱形的性质与判定
第1课时 菱形的定义与性质
学习目标
1.了解菱形的概念及其与平行四边形的关系;
2.探索并证明菱形的性质定理.(重点)
3.应用菱形的性质定理解决相关问题.(难点)
新课导入
新课导入

1.3.1正方形的性质上课课件新版北师大

1.3.1正方形的性质上课课件新版北师大

课堂小结
平行四边形
矩形
正 方 形
菱形
探究问题二
利用正方形的性质进行推理证明
例2 [教材例1变式题] [2013· 济宁] 如图1-3-4①所 示,在正方形ABCD中,E,F分别是边AD,DC上的 点,且AF⊥BE. (1)求证:AF=BE; (2)如图②,在正方形ABCD中,M,N,P,Q分别 是边AB,BC,CD,DA上的点,且MP⊥NQ.MP与 NQ是否相等?并说明理由.
正方形的性质
结论:1.有 一组邻边相等 的矩形是正方形 一个角是直角 的菱形是正方形 对边平行,四边相等 A D O B C
边----
2.有
角---对角线----
4个角都是直角
相等、垂直且互相平分, 每一条对角线平分一组对角
对称性----
既是中心对称图形, 又是轴对称图形
根据图形所具有的性质,在下表相应的空格中打 ”√”
1.在正方形ABCD中,∠ADB= , ∠DAC= ,∠BOC= 。 2.在正方形ABCD中,AB=2㎝,则AC= , BD= , OB= , OD= 。 3.在正方形ABCD中,E是对角线AC上一点,且 AE=AB,则∠EBC的度数是 。
重难互动探究
探究问题一 利用正方形的性质进行计算
例1 [2013· 雅安] 如图1-3-3,正方形ABCD中, 点E,F分别在BC,CD上,△AEF是等边三角形,连 接AC交EF于点G,下列结论:①BE=DF;②∠DAF =15°;③AC垂直平分EF;④BE+DF=EF;⑤ S△CEF=2S△ABE. 其中正确结论有( C ) A.2个 B.3个 C.4个 D.5个
[解析] ∵四边形 ABCD 是正方形, ∴AB=BC=CD=AD, ∠B =∠BCD=∠D=∠BAD=90°. ∵△AEF 为等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠ BAE+∠DAF=30°.在 Rt△ABE 和 Rt△ADF 中,∵AE=AF,AB =AD,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,①正确.由①的证 明过程知∠BAE=∠DAF,且∠BAE+∠DAF=30°,∴∠DAF=15 °,②正确.∵BC=CD,∴BC-BE=CD-DF,即 CE=CF.∵AE =AF,∴AC 垂直平分 EF,③正确.设 EC=x,由勾股定理,得 EF 6+ 2 3+1 2 6 = 2x,CG= x,AG= x,∴AC= x,∴AB= x, 2 2 2 2 3+1 3-1 BE= x-x= x,∴BE+DF= 3x-x≠ 2x,④错误.∵S 2 2 3+1 3-1 x2 x2 1 x2 ,S△ABE= × x· x= ,∴2S△ABE= =S△CEF, △CEF= 2 2 2 2 4 2 ⑤正确.综上所述,正确的有 4 个,故选 C.

北师版九年级数学上册作业课件 第一章 特殊平行四边形 正方形的性质与判定 第1课时 正方形的性质

北师版九年级数学上册作业课件 第一章 特殊平行四边形 正方形的性质与判定 第1课时 正方形的性质

5.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的 点E处,则∠CME=_4_5_°__.
6.如图,在正方形ABCD中,以AB为边在正方形内作等边△ABE, 连接DE,CE,则∠CED的度数为1_5_0_°___.
7.(2020·自贡)如图,在正方形ABCD中,点E在BC边的延长线上,点F在 CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.
解:在正方形 ABCD 中, AB=BC=CD=AD, ∵CE=DF, ∴BE=CF, 在△AEB 和△BFC 中,
A∠BA=BBEC=,∠BCF, BE=CF,
∴△AEB≌△BFC(SAS), ∴AE=BF
8.如图,在正方形ABCD中,AF=BE,AE与DF相交于点O. (1)求证:△DAF≌△ABE; (2)求∠AOD的度数.
(2)过点O作OH⊥AD于点H,∵正方形的边长为4, ∴OH=HA=2,∵E为OM的中点,∴HM=4, 则OM=2 5 ,∴MN= 2 OM=2 10
14.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴 上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线 OB2为边作正方形OB2B3C3,以此类推……则正方形OB2019B2020C2020的顶点 B2020的坐标是_(_-__2_10_1_0,__0_)___.
9.如图,正方形 ABCD 的边长为 1,点 E,F 分别是对角线 AC 上的两点, EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为 G,I,H,J. 则图中阴影部分的面积等于( B )
A.1 B.12
C.13
D.14
10.(2020·广东)如图,在正方形 ABCD 中,AB=3,点 E,F 分别在边 AB, CD 上,∠EFD=60°.若将四边形 EBCF 沿 EF 折叠,点 B 恰好落在 AD 边上, 则 BE 的长度为(D )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档