IGBT 的驱动特性及功率计算

合集下载

IGBT驱动电流及驱动功率的计算

IGBT驱动电流及驱动功率的计算

IGBT驱动电流及驱动功率的计算IGBT驱动电路的设计包括上下桥绝缘水平的选择、驱动电压水平的确定、驱动芯片驱动功率的确定、短路保护电路等等。

今天我们重点讨论一下驱动电流以及功率的确定,也就是说如何确定一个驱动芯片电流能力是不是可以驱动一个特定型号的IGBT,如果不能驱动该如何增强驱动输出能力。

01、驱动芯片峰值电流的计算在选择IGBT驱动芯片时,很重要的一步就是计算IGBT所需要的最大驱动电流,在不考虑门极增加Cge电容的条件下,可以把IGBT驱动环节简化为一个RLC电路,如下图阴影部分所示。

求解这个电路可以得到峰值电路的关系式如下:I peak:驱动环节可以输出的最大电流ΔU ge:门极电源最大值减去最小值R G,ext:外部门极电阻值,R G,int为器件内部的电阻值从上面公式可以看出最大驱动电流取决于门极电压水平,以及门极电阻值,一旦这两个参数确定后,所需要的最大驱动电流基本确定。

当然,在一些设计中会选用不同的开通关断电阻,那么就需要分别计算开通关断需要的电流。

依据上述计算的开通关断电流值可以初步选择芯片的驱动电流,芯片数据手册给出的峰值不能小于计算得到的电流值,并且适当考虑工程余量。

02、推挽电路放大电路增加驱动电流如果驱动芯片的输出电流不能驱动特定IGBT的话,比较简单的方法是采用推挽电路进一步增强驱动芯片的峰值电流输出能力。

采用三极管放大是一种常用的方式,其计算步骤如下:(1)根据选择的驱动电压水平以及门极电阻计算得到需求的最大峰值电流I peak (2)选择合适耐压的PNP/NPN三极管组成推挽电路(3)查所选择的三极管数据手册中的电流传输系数h FE,计算得到三极管的基极电流(4)计算驱动芯片输出极的输出电阻上述步骤给出了BJT作为推挽放大电路时一般的步骤,需要着重考虑的是BJT的耐压以及基级电阻的匹配。

由于使用BJT做推挽放大设计设计比较简单,因此在设计中得到广泛的应用。

在大功率应用场合比较常用的BJT三极管型号有MJD44/45H11(80V)等。

IGBT耗散功率计算

IGBT耗散功率计算

IGBT耗散功率计算IGBT (Insulated Gate Bipolar Transistor) 是一种常用的功率开关器件,它在大功率应用中具有较低的开关损耗和较高的效率。

在使用IGBT 进行功率开关控制时,需要计算和考虑其耗散功率。

IGBT的耗散功率包括开关损耗和导通损耗两部分。

开关损耗是指在IGBT的开关过程中由于开关速度较快而产生的能量转损。

导通损耗是指当IGBT导通时因芯片内部电阻和开关电压而产生的功率损耗。

首先,我们来计算开关损耗。

开关损耗通常由开关频率、电流和电压决定。

开关损耗可以分为开关开启损耗和开关关闭损耗两个部分。

当IGBT 开启时,电流会从0到其极大值快速增加,此过程中会有一个过渡阶段,电压降过渡为低电压,并且会有一个反向电流。

开关关闭时,电流会从其极大值快速减小为零,此过程中同样会有过渡阶段。

开关开启损耗可以通过以下公式计算:P_on = V_on * I_Cin * f_s其中P_on 是开关开启损耗;V_on 是开启过程中的电压降;I_Cin 是开启过程中的输入电流;f_s是开关频率。

开关关闭损耗可以通过以下公式计算:P_off = V_off * I_CEoff * f_s其中P_off 是开关关闭损耗;V_off 是关闭过程中的电压降;I_CEoff 是关闭过程中的输出电流。

接下来,我们计算导通损耗。

导通损耗可以通过以下公式计算:P_cond = V_CEon * I_Cavg其中P_cond 是导通损耗;V_CEon 是导通过程中的电压降;I_Cavg 是导通过程中的平均电流。

综上所述,IGBT的总耗散功率可以通过以下公式计算:P_total = P_on + P_off + P_cond这些公式可以帮助我们计算IGBT的耗散功率。

在实际应用中,还需要考虑散热器的散热能力,以确保IGBT的工作温度在可接受范围内。

为了实现更加精确的功率计算,需要准确测量和获得所需的电流和电压参数。

igbt驱动电压和功率分别是多少

igbt驱动电压和功率分别是多少

igbt 驱动电压和功率分别是多少
在此根据长期使用IGBT 的经验并参考有关文献对IGBT 驱动的电压
和功率做了一些总结,希望对广大网友能够提供帮助。

igbt 驱动工作原理
驱动器功率不足或选择错误可能会直接导致IGBT 和驱动器损坏。

以下总结了一些关于IGBT 驱动器输出性能的计算方法以供选型时参考。

igbt 驱动电路是驱动igbt 模块以能让其正常工作,并同时对其进行保护的电路。

绝缘栅双极型晶体管(IGBT)在今天的电力电子领域中已经得到广
泛的应用,在实际使用中除IGBT 自身外,IGBT 驱动器的作用对整个换流系统来说同样至关重要。

驱动器的选择及输出功率的计算决定了换流系统的可靠性。

因此,在IGBT 数据手册中给出的电容Cies 值在实际应用中仅仅只
能作为一个参考值使用。

17.集众家之长的功率器件—IGBT,参数、特性、驱动电路全掌握

17.集众家之长的功率器件—IGBT,参数、特性、驱动电路全掌握

17.集众家之长的功率器件—IGBT,参数、特性、驱动电路全掌握IGBT——绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor),顾名思义,是由 BJT(双极结型晶体三极管) 和 MOS(绝缘栅型场效应管) 组成的复合型功率半导体器件,兼有MOS管的高输入阻抗和晶体管的低导通压降两方面的优点,因此非常适用于高电压、大电流的应用场合(频率不如MOS管)。

IGBT符号及等效电路1.IGBT的基础知识IGBT是电压控制型器件,它只有开关特性(通和断两种状态),没有放大特性。

由IGBT等效电路可知,它是以晶体管为主导元件,以MOS管为驱动元件的达林顿结构。

当栅极电压Uge达到开启电压,IGBT导通,当Uge=0或者负电压时(负电压作用:可靠关断),IGBT断开。

常见的有IGBT单管和IGBT模块两种结构。

IGBT模块实物图晶体管、MOS管、IGBT比较2.IGBT主要参数士兰微某款IGBT规格书士兰微某款IGBT规格书①集电极—射极电压(VCE):截止状态下集电极与发射极之间能够承受的最大电压。

②栅极—射极电压(Vge):栅极与发射极之间允许施加的最大电压,通常为±20V。

栅极的电压信号控制IGBT的导通和关断,其电压不可超过Vge值。

③集电极电流(IC):IGBT在饱和导通状态下,允许持续通过的最大电流。

④饱和压降Vce(sat):IGBT在饱和导通状态下,集电极与发射极之间的压降。

该值越小,则管子工作时的功率损耗越小。

⑤开关时间:它包括导通时间ton和关系时间toff。

导通时间ton 又包含导通延迟时间td和上升时间tr。

关断时间toff又包含关断延迟时间td和下降时间tf。

3.IGBT驱动电路由于功率 IGBT 在电力电子设备中多用于高压场合,所以驱动电路必须与整个控制电路在电位上完全隔离,主要的途径及其优缺点如下表所示。

驱动电路与控制电路隔离的途径及优缺点脉冲变压器驱动电路说明: V1 ~ V4 组成脉冲变压器一次侧驱动电路,通过控制 V1 、V4 和 V2 、 V3 的轮流导通,将驱动脉冲加至变压器的一次侧,二次侧通过电阻 R1 与 IGBT5 栅极相连, R1 、 R2 防止 IGBT5 栅极开路并提供充放电回路,R1 上并联的二极管为加速二极管,用以提高IGBT5 的开关速度,稳压二极管VS1 、VS2 的作用是限制加在IGBT5g-e 端的电压,避免过高的栅射电压击穿栅极。

IGBT驱动电阻计算详解

IGBT驱动电阻计算详解

IGBT驱动电路参数计算详解电阻大功率IGBT 模块在使用中驱动器至关重要,本文介绍在特定应用条件下IGBT门极驱动性能参数的计算方法,经验公式及有关CONCEPT 驱动板的选型标准,得出的一些参数值可以作为选择一款合适IGBT驱动器的基本依据。

1 门极驱动的概念IGBT存在门极-发射极电容Cge,门极-集电极电容Cgc,我们将IGBT的门极等效电容定义为Cg,门极驱动回路的等效电路如下图所示:其本质是:一个脉冲电压源向RC电路进行充放电,对于这个电压源,有2个物理量我们需要关心,1.它的功率;2.它的峰值电流。

2 驱动功率的计算驱动器是用来控制功率器件的导通和关断。

为了实现此功能,驱动器对功率器件的门极进行充电以达到门极开通电压VGE_on,或者是对门极进行放电至门极关断电压VGE_off。

门极电压的两种电平间的转换过程中,在驱动器门极驱动电阻及功率器件组成的回路中产生一定的损耗。

这个参数我们称为驱动功率PDRV。

驱动器必须根据其所驱动的功率器件所需的驱动功率来选择。

驱动功率可以从门极电荷量QGate,开关频率fIN,以及驱动器实际输出电压摆幅ΔVGate 计算得出:P DRV = Q Gate * f IN * ΔV Gate (Eq. 1)备注:P DRV: 驱动器每通道输出功率;f IN: IGBT开关频率;Q Gate :IGBT门极电荷,可从规格书第一页查出,不同IGBT该数值不同;ΔV Gate:门极驱动电压摆幅,等于驱动正压+U 和负压–U 之间差值。

如果门极回路放置了一个电容CGE (辅助门极电容),那么驱动器也需要对该电容进行充放电,如图1 所示:图1.带外接阻容的门级驱动只要CGE 在一个周期内被完全的充放电,那么RGE 值并不影响所需驱动功率。

驱动功率可以从以下公式得出:P DRV = Q GATE * f IN *ΔV GATE + C GE * f IN*ΔV GATE2(Eq. 2)这个功率是每个IGBT 驱动时必须的,但门极的充放电是没有能量损失的,这个功率实际上损失在驱动电阻及外部电路中。

如何计算IGBT的驱动功率?

如何计算IGBT的驱动功率?

如何计算IGBT的驱动功率?展开全文确定门极电荷Qg和门极电容对于设计一个驱动器来说,最重要的参数莫过于门极电荷Qg的大小,同时确定实际的门极输入电容Cies的大小,因为Datasheet中给到的输入电容大小一般是个参考值,确定实际门极输入电容是一重要意义的。

我们可以通过测量门极的充电过程来确定实际输入结电容Cin的大小。

首先,在负载端没有输出电压的情况下,我们可以进行下面这样的计算:门极电荷Qg=∫idt=C*ΔV确定了门极电荷Qg之后,我们可以通过门极充电过程中的门极电压上升过程,示波器可以测量出ΔV,那么利用公式可以计算出实际的门极输入电容Cin=Qg/ΔV这里的测得的实际输入结电容Cin在我们的设计中是具有很大意义的。

1.关于Ciss在IGBT的Datasheet中,我们经常会看到一个参数Ciss,在实际电路应用中,这个参数其实并不算一个很有用的参数,是因为它是通过电桥测得的,由于测量电压太小而不能达到门极的门槛电压,实际开关过程中的miller效应并没有能包涵在内。

在测量电路中,一个25V的电压加在集电极上,在这种测量方法下测得的结电容要比Vce=0的时候要小一些,因此,规格书中的Ciss这个参数一般用于IGBT相互做对比时使用。

一般我们使用下面的经验公式根据规格书的Ciss来计算输入电容Cin的大小Cin=5Ciss2.驱动功率的计算接下来让我们看看应该如何来计算驱动功率。

在输入结电容中存储的能量可以通过如下公式计算:W=1/2*Cin*ΔU?其中,ΔU是门极上上升的整个电压,比如在±15V的驱动电压下,ΔU就是30V。

在每个周期,门极被充电两次,一个IGBT所需的驱动功率我们可以按下式计算:P=f*Cin*ΔU?如果门极电荷先前通过测量得到了,那么P=f*Qg*ΔU这个功率是每个IGBT驱动时所必须的,但门极的充放电时基本没有能量损失的,这个功率实际上损失在驱动电阻和外部电路中。

IGBT 的驱动特性及功率计算

IGBT 的驱动特性及功率计算

IGBT 的驱动特性及功率计算1 IGBT 的驱动特性1.1 驱动特性的主要影响因素IGBT的驱动条件与IGBT的特性密切相关。

设计栅极驱动电路时,应特别注意开通特性、负载短路能力和dv/dt 引起的误触发等问题。

栅极电压U ge增加(应注意U ge过高而损坏IGBT),则通态电压下降(E on也下降),如图1所示(此处以200A IGBT为例)。

由图1中可看出,若U ge固定不变时,导通电压将随集电极电流增大而增高,如图1a,电流容量将随结温升高而减少(NPT工艺正温度特性的体现)如图1b所示。

(a)Uge与Uce和Ic的关系(b)Uge与Ic和Tvj的关系图1 栅极电压U ge与U ce和T vj的关系栅极电压U ge直接影响IGBT 的可靠运行,栅极电压增高时有利于减小IGBT的开通损耗和导通损耗,但同时将使IGBT能承受的短路时间变短(10μs以下),使续流二极管反向恢复过电压增大,所以务必控制好栅极电压的变化范围,一般U ge可选择在-10~+15 V之间,关断电压-10 V,开通电压+15 V。

开关时U ge与I g的关系曲线见图2 a和图2 b所示。

(a)开通时 (b)关断时图2 开关时U ge与I c的关系曲线栅极电阻R g增加,将使IGBT的开通与关断时间增加,使开通与关断能耗均增加,但同时,可以使续流二极管的反恢复过电压减小,同时减少EMI的影响。

而门极电阻减少,则又使di/dt增大,可能引发IGBT误导通,但是,当R g减少时,可以使得IGBT关断时由du/dt 所带来误触发的可能性减小,同时也可以提高IGBT承受短路能量的能力,所以R g大小各有好坏,客户可根据自己设计特点选择。

图3为R g大小对开关特性的影响,损耗关系请参照图4所示。

图3 R g大小对开关特性的影响(di/dt 大小不同)图4 门极电阻R g与E on/E off由上述可得:IGBT 的特性随门极驱动条件的变化而变化,就象双极型晶体管的开关特性和安全工作区随基极驱动而变化一样。

IGBT 的驱动特性及功率计算

IGBT 的驱动特性及功率计算

IGBT 的驱动特性及功率计算1 IGBT 的驱动特性1.1 驱动特性的主要影响因素IGBT的驱动条件与IGBT的特性密切相关。

设计栅极驱动电路时,应特别注意开通特性、负载短路能力和dv/dt 引起的误触发等问题。

栅极电压U ge增加(应注意U ge过高而损坏IGBT),则通态电压下降(E on也下降),如图1所示(此处以200A IGBT为例)。

由图1中可看出,若U ge固定不变时,导通电压将随集电极电流增大而增高,如图1a,电流容量将随结温升高而减少(NPT工艺正温度特性的体现)如图1b所示。

(a)Uge与Uce和Ic的关系(b)Uge与Ic和Tvj的关系图1 栅极电压U ge与U ce和T vj的关系栅极电压U ge直接影响IGBT 的可靠运行,栅极电压增高时有利于减小IGBT的开通损耗和导通损耗,但同时将使IGBT能承受的短路时间变短(10μs以下),使续流二极管反向恢复过电压增大,所以务必控制好栅极电压的变化范围,一般U ge可选择在-10~+15 V之间,关断电压-10 V,开通电压+15 V。

开关时U ge与I g的关系曲线见图2 a和图2 b所示。

(a)开通时 (b)关断时图2 开关时U ge与I c的关系曲线栅极电阻R g增加,将使IGBT的开通与关断时间增加,使开通与关断能耗均增加,但同时,可以使续流二极管的反恢复过电压减小,同时减少EMI的影响。

而门极电阻减少,则又使di/dt增大,可能引发IGBT误导通,但是,当R g减少时,可以使得IGBT关断时由du/dt 所带来误触发的可能性减小,同时也可以提高IGBT承受短路能量的能力,所以R g大小各有好坏,客户可根据自己设计特点选择。

图3为R g大小对开关特性的影响,损耗关系请参照图4所示。

图3 R g大小对开关特性的影响(di/dt 大小不同)图4 门极电阻R g与E on/E off由上述可得:IGBT 的特性随门极驱动条件的变化而变化,就象双极型晶体管的开关特性和安全工作区随基极驱动而变化一样。

IGBT的驱动特性及功率损耗计算

IGBT的驱动特性及功率损耗计算

IGBT的驱动特性及功率损耗计算IGBT(Insulated Gate Bipolar Transistor)是一种常用的功率开关器件,广泛应用于电力电子领域。

IGBT的驱动特性和功率损耗计算是研究和设计IGBT电路时重要的考虑因素。

以下是对IGBT驱动特性和功率损耗计算的详细介绍。

一、IGBT的驱动特性1.输入阻抗:IGBT的输入阻抗较高,通常在几百欧姆到几兆欧姆之间,可以接受微弱的输入信号。

2.输入电容:IGBT的输入电容通常较大,约为几十皮法(pF),需要充放电过程来实现开关控制。

3.驱动电压:IGBT的驱动电压通常在12V至15V左右,在工作过程中,需要适当控制驱动电压的大小和时间,以保证其正常工作。

4.驱动电流:IGBT的驱动电流是驱动IGBT的关键参数,通常需要较大的驱动电流来保证IGBT的稳定工作。

5.驱动方式:常见的IGBT驱动方式有电流驱动和电压驱动两种。

电流驱动方式可以提供更好的保护性能和更高的驱动能力。

6.驱动信号:IGBT的驱动信号通常为脉宽调制(PWM)信号,通过控制脉宽来调节流过IGBT的电流,从而实现对电路的开关控制。

7.驱动时间:IGBT的驱动时间是指IGBT从关断到导通或从导通到关断的时间,通常需要较短的驱动时间来保证IGBT的快速开关。

IGBT在工作过程中会产生一定的功率损耗,包括导通损耗、关断损耗和开关损耗。

功率损耗的计算对于设计IGBT电路和散热系统非常重要。

1.导通损耗:IGBT在导通状态下会有一定的导通电压降和导通电流,导致功率损耗。

导通损耗可以通过以下公式计算:Pcon = Vce × Ic其中,Pcon为导通损耗,Vce为导通电压降,Ic为导通电流。

2.关断损耗:IGBT在关断过程中会有一定的关断电流和关断电压降,导致功率损耗。

关断损耗可以通过以下公式计算:Pdis = Vce × Ic × td其中,Pdis为关断损耗,Vce为关断电压降,Ic为关断电流,td为关断时间。

试谈IGBT耗散功率计算

试谈IGBT耗散功率计算

试谈IGBT耗散功率计算
IGBT 耗散功率计算
不管是正常负荷依旧超负荷,IGBT安全工作必须确保结温
不超过。

一关于IGBT及损耗
IGBT模块由IGBT本部和续流二极管FWD组成,各自发生的损耗的合计为IGBT模块整体损耗;同时,IGBT的损耗又分为通态(稳态)损耗和交换(开关)损耗。

通态损耗可通过稳态输出特性计算;
交换损耗可通过交换损耗-集电极电流特性来计算。

二 IGBT(本部)耗散功率计算
1、通态功耗的计算
IGBT通态平均功耗是。

通态损耗近似是
PWM应用时,近似通态损耗。

2、开关损耗计算
开关损耗精确计算:测量开关过程中的波形,对其进行积分(积
分时刻是开通时刻或关断时刻)
开通损耗:
关断损耗:t
的积分面积是以焦耳为单位的开关能量。

总的开关损耗是开通与关断过程所损耗能量之和,平均开关损耗是单位脉冲开关损耗与开关频率相乘后得到:
实际上和可由交换损耗-集电极电流特性曲线来估算
大多数IGBT都会提供交换损耗与集电极电流特性曲线,如下图:
依据IGBT实际流过的电流值,查曲线得到和,即可计算平均开关损耗:
3、IGBT本部总损耗是通态损耗和开关损耗之和
三 IGBT(FWD-二极管部)功率损耗
四 VVVF变频器中IGBT模块的功耗计算。

IGBT耗散功率计算

IGBT耗散功率计算

IGBT 耗散功率计‎算不管是正常‎负荷还是超‎负荷,IGBT安‎全工作必须‎确保结温T‎不超过Tj‎。

一关于IGB‎T及损耗IGBT模‎块由IGB‎T本部和续‎流二极管F‎WD组成,各自发生的‎损耗的合计‎为I GBT‎模块整体损‎耗;同时,IGBT的‎损耗又分为‎通态(稳态)损耗和交换‎(开关)损耗。

通态损耗可‎通过稳态输‎出特性计算‎;交换损耗可‎通过交换损‎耗-集电极电流‎特性来计算‎。

二IGBT(本部)耗散功率计‎算1、通态功耗的‎计算IGBT通‎态平均功耗‎是P sat‎。

通态损耗近‎似是Psa‎PWM应用‎时,近似通态损‎耗P sat‎。

2、开关损耗计‎算开关损耗精‎确计算:测量开关过‎程中I C和‎形,对其进行积‎分(积分时间是‎开通时间T‎时间TOf‎)开通损耗:关断损耗:t积是以焦耳‎为单位的开‎关能量。

总的开关损‎耗是开通与‎关断过程所‎损耗能量之‎和,平均开关损‎耗是单位脉‎冲开关损耗‎与开关频率‎相乘后得到‎:实际上EO‎损耗-集电极电流‎特性曲线来‎估算大多数IG‎B T都会提‎供交换损耗‎与集电极电‎流特性曲线‎,如下图:依据IGB‎T实际流过‎的电流值,查曲线得到‎,即可计算平‎均开关损耗‎:3、IGBT本‎部总损耗是‎通态损耗和‎开关损耗之‎和三IGBT(FWD-二极管部)功率损耗四VVVF变‎频器中IG‎B T模块的‎功耗计算在SPWM‎调制的变频‎器中,IGBT的‎电流值及占‎空比经常变‎换,使得功耗计‎算很困难。

以下是估算‎公式:1每一个I‎G B T的平‎均通态损耗‎2 每一个IG‎B T的平均‎开关损耗3 每一个桥臂‎I GBT的‎总功耗4 反并联续流‎二极管的通‎态平均功耗‎5 每一个IG‎B T总功耗‎计算举例条件:IGBT:eupec‎公司型号:FZ120‎0R33K‎F2C开关频率2‎0kHz;功率因素c‎0.8;SPWM变‎频器,400Kv‎a,320kW‎。

《国家标准》IGBT耗散功率计算

《国家标准》IGBT耗散功率计算

IGBT 耗散功率计算不管是正常负荷还是超负荷,IGBT安全工作必须确保结温不超过。

一关于IGBT及损耗IGBT模块由IGBT本部和续流二极管FWD组成,各自发生的损耗的合计为IGBT模块整体损耗;同时,IGBT的损耗又分为通态(稳态)损耗和交换(开关)损耗。

通态损耗可通过稳态输出特性计算;交换损耗可通过交换损耗-集电极电流特性来计算。

二IGBT(本部)耗散功率计算1、通态功耗的计算IGBT通态平均功耗是。

通态损耗近似是PWM应用时,近似通态损耗。

2、开关损耗计算开关损耗精确计算:测量开关过程中的波形,对其进行积分(积分时间是开通时间或关断时间)开通损耗:关断损耗:t的积分面积是以焦耳为单位的开关能量。

总的开关损耗是开通与关断过程所损耗能量之和,平均开关损耗是单位脉冲开关损耗与开关频率相乘后得到:实际上和可由交换损耗-集电极电流特性曲线来估算大多数IGBT都会提供交换损耗与集电极电流特性曲线,如下图:依据IGBT实际流过的电流值,查曲线得到和,即可计算平均开关损耗:3、IGBT本部总损耗是通态损耗和开关损耗之和三IGBT(FWD-二极管部)功率损耗四VVVF变频器中IGBT模块的功耗计算在SPWM调制的变频器中,IGBT的电流值及占空比经常变换,使得功耗计算很困难。

以下是估算公式:1每一个IGBT的平均通态损耗2 每一个IGBT的平均开关损耗3 每一个桥臂IGBT的总功耗4 反并联续流二极管的通态平均功耗5 每一个IGBT总功耗计算举例条件:IGBT:eupec 公司型号:FZ1200R33KF2C开关频率20kHz;功率因素0.8;SPWM变频器,400Kva,320kW。

占空比D=50%工作电流IC=600A峰值电流Icp=600*查IGBT手册=1000=900=2.5V以下是计算:则每一个IGBT通态损耗:=355W 每一个IGBT开关损耗:续流二极管损耗:=40W IGBT模块总损耗:再加上整流损耗,控制系统损耗,此计算表明变频器总损耗在80kW 左右。

IGBT驱动参数计算详解

IGBT驱动参数计算详解

IGBT驱动参数计算详解大功率IGBT 模块在使用中驱动器至关重要,本文介绍在特定应用条件下IGBT门极驱动性能参数的计算方法,经验公式及有关CONCEPT 驱动板的选型标准,得出的一些参数值可以作为选择一款合适IGBT驱动器的基本依据。

1 门极驱动的概念IGBT存在门极-发射极电容Cge,门极-集电极电容Cgc,我们将IGBT的门极等效电容定义为Cg,门极驱动回路的等效电路如下图所示:其本质是:一个脉冲电压源向RC电路进行充放电,对于这个电压源,有2个物理量我们需要关心,1.它的功率;2.它的峰值电流。

2 驱动功率的计算驱动器是用来控制功率器件的导通和关断。

为了实现此功能,驱动器对功率器件的门极进行充电以达到门极开通电压VGE_on,或者是对门极进行放电至门极关断电压VGE_off。

门极电压的两种电平间的转换过程中,在驱动器门极驱动电阻及功率器件组成的回路中产生一定的损耗。

这个参数我们称为驱动功率PDRV。

驱动器必须根据其所驱动的功率器件所需的驱动功率来选择。

转载请注明出处驱动功率可以从门极电荷量QGate,开关频率fIN,以及驱动器实际输出电压摆幅ΔVGate 计算得出:P DRV = Q Gate * f IN * ΔV Gate (Eq. 1)备注:P DRV: 驱动器每通道输出功率;f IN: IGBT开关频率;Q Gate :IGBT门极电荷,可从规格书第一页查出,不同IGBT该数值不同;ΔV Gate:门极驱动电压摆幅,等于驱动正压+U 和负压–U 之间差值。

如果门极回路放置了一个电容CGE (辅助门极电容),那么驱动器也需要对该电容进行充放电,如图1 所示:图1.带外接阻容的门级驱动只要CGE 在一个周期内被完全的充放电,那么RGE 值并不影响所需驱动功率。

驱动功率可以从以下公式得出:P DRV = Q GATE * f IN *ΔV GATE + C GE * f IN*ΔV GATE2(Eq. 2)这个功率是每个IGBT 驱动时必须的,但门极的充放电是没有能量损失的,这个功率实际上损失在驱动电阻及外部电路中。

IGBT驱动器输出性能的计算

IGBT驱动器输出性能的计算

IGBT驱动器输出性能的计算IGBT驱动器输出性能的计算1、引言今天,绝缘栅双极型晶体管(IGBT)在电力电子领域已经普及,并被用于许多应用中,如变频器、电源和电子驱动器。

IGBT具有较高的反向电压(高达6.5kV),开关电流最大可达3kA。

除功率模块自身外,电力电子系统中的一个关键组件是IGBT驱动器,它是功率晶体管和控制器之间重要的接口。

驱动器的选择及其准确输出功率的计算决定了转换器解决方案的可靠性。

驱动器功率不足或选择错误可能会导致模块和驱动器故障。

以下总结了一些计算用于开关IGBT的驱动器输出性能的方法。

2、栅极电荷体现IGBT的特性IGBT模块的开关特性主要取决于半导体电容(电荷)及内部和外部的电阻。

图1是IGBT电容的示意图,其中CGE是栅极-发射极电容、CCE是集电极-发射极电容、CGC是栅极-集电极电容(或称为米勒电容)。

栅极电荷的特性由输入电容CGC和CGE来表示,它是计算IGBT驱动器电路所需输出功率的关键参数。

该电容几乎不受温度影响,但与电压关系密切,是IGBT集电极-发射极电压VCE的函数。

当在集电极-发射极电压非常低时这种依赖性大幅提高,电压高时依赖性下降。

当IGBT导通时,IGBT的特性由栅极电荷来体现。

图2显示了栅极-发射极电压VGE、栅极电流IG和相应的集电极电流IC作为时间的函数,从IGBT导通到饱和这段时间的简化波形。

正如IG=f(t)图所示,导通过程可以分为三个阶段。

分别是栅极-发射极电容的充电,栅极-集电极电容的充电和栅极-发射极电容的充电直至IGBT全饱和。

栅极电流IG对输入电容进行充电,IGBT的导通和关断特性由与充电过程有关的电压VGE和VCE来体现。

在关断期间,所描述的过程运行在相反的方向,电荷必须从栅极上移除。

由于输入电容的非线性,为了计算驱动器输出功率,输入电容可能只被应用到某种范围。

一种更为实际的确定驱动器输出功率的方法是利用栅极电荷特性。

图 1 IGBT 的电容图 2 简化的栅极充电波形3、如何测量和确定栅极电荷栅极电荷可以通过一个简化的测试电路进行测量。

试谈IGBT耗散功率计算

试谈IGBT耗散功率计算

试谈IGBT耗散功率计算不管是正常负荷还是超负荷,IGBT安全工作务必确保结温T j不超过T jmax。

一关于IGBT及损耗IGBT模块由IGBT本部与续流二极管FWD构成,各自发生的损耗的合计为IGBT模块整体损耗;同时,IGBT的损耗又分为通态(稳态)损耗与交换(开关)损耗。

通态损耗可通过稳态输出特性计算;交换损耗可通过交换损耗-集电极电流特性来计算。

二IGBT(本部)耗散功率计算1、通态功耗的计算IGBT 通态平均功耗是P sat =1T ∫i C(t )∙V CE (sat )T 0(t )∙dt 。

通态损耗近似是P sat =V CE (sat )×I cV CE (sat )−−−IGBT 饱和压降I C −−−集电极电流D T −−−占空比PWM 应用时,近似通态损耗P sat =V CE (sat )×I c ×D T 。

2、 开关损耗计算开关损耗精确计算:测量开关过程中I C 和V CE 的波形,对其进行积分(积分时间是开通时间T ON 或者关断时间T Off )开通损耗:P sw (on )=1t on ∫i C (t )∙V CE (sat )t on 0(t )∙dt 关断损耗:P sw (off )=1t off ∫i C (t )∙V CE (sat )t off 0(t )∙d ti C (t )∙V CE (sat )的积分面积是以焦耳为单位的开关能量。

总的开关损耗是开通与关断过程所损耗能量之与,平均开关损耗是单位脉冲开关损耗与开关频率相乘后得到:P sw ̅̅̅̅̅=f PWM ×[E ON +E OFF ]实际上E ON 与E off 可由交换损耗-集电极电流特性曲线来估算大多数IGBT 都会提供交换损耗与集电极电流特性曲线,如下图:根据IGBT 实际流过的电流值,查曲线得到E ON 与E off ,即可计算平均开关损耗:P sw ̅̅̅̅̅=f PWM ×[E ON +E OFF ]3、 IGBT 本部总损耗是通态损耗与开关损耗之与P igbt =P sat ̅̅̅̅̅+P sw ̅̅̅̅̅三 IGBT(FWD-二极管部)功率损耗P FWD =V F ×I D四 VVVF 变频器中IGBT 模块的功耗计算在SPWM 调制的变频器中,IGBT 的电流值及占空比经常变换,使得功耗计算很困难。

IGBT驱动全参数计算详解

IGBT驱动全参数计算详解

IGBT驱动参数计算详解大功率IGBT 模块在使用中驱动器至关重要,本文介绍在特定应用条件下IGBT门极驱动性能参数的计算方法,经验公式及有关CONCEPT 驱动板的选型标准,得出的一些参数值可以作为选择一款合适IGBT驱动器的基本依据。

1 门极驱动的概念IGBT存在门极-发射极电容Cge,门极-集电极电容Cgc,我们将IGBT的门极等效电容定义为Cg,门极驱动回路的等效电路如下图所示:其本质是:一个脉冲电压源向RC电路进行充放电,对于这个电压源,有2个物理量我们需要关心,1.它的功率;2.它的峰值电流。

2 驱动功率的计算驱动器是用来控制功率器件的导通和关断。

为了实现此功能,驱动器对功率器件的门极进行充电以达到门极开通电压VGE_on,或者是对门极进行放电至门极关断电压VGE_off。

门极电压的两种电平间的转换过程中,在驱动器门极驱动电阻及功率器件组成的回路中产生一定的损耗。

这个参数我们称为驱动功率PDRV。

驱动器必须根据其所驱动的功率器件所需的驱动功率来选择。

请注明出处.igbt8.驱动功率可以从门极电荷量QGate,开关频率fIN,以及驱动器实际输出电压摆幅ΔVGate 计算得出:P DRV = Q Gate * f IN * ΔV Gate (Eq. 1)备注:P DRV: 驱动器每通道输出功率;f IN: IGBT开关频率;Q Gate :IGBT门极电荷,可从规格书第一页查出,不同IGBT该数值不同;ΔV Gate:门极驱动电压摆幅,等于驱动正压+U 和负压–U 之间差值。

如果门极回路放置了一个电容CGE (辅助门极电容),那么驱动器也需要对该电容进行充放电,如图1 所示:图1.带外接阻容的门级驱动只要CGE 在一个周期被完全的充放电,那么RGE 值并不影响所需驱动功率。

驱动功率可以从以下公式得出:P DRV = Q GATE * f IN *ΔV GATE + C GE * f IN*ΔV GATE2(Eq. 2)这个功率是每个IGBT 驱动时必须的,但门极的充放电是没有能量损失的,这个功率实际上损失在驱动电阻及外部电路中。

IGBT驱动参数的计算方法

IGBT驱动参数的计算方法

IGBT 以及MOSFET 的驱动参数的计算方法简介本应用指南介绍了在特定应用条件下门极驱动性能参数的计算方法。

通过本应用手册得出的一些参数值可以作为选择一款合适驱动器的基本依据。

CONCEPT 产品的数据手册中所给出的参数在实际应用中是可以直接使用的。

驱动器内部功率损耗以及其他内部参数不必进一步降额或者修正。

对于快速预览,公式1,4及5是最重要的。

所需驱动功率驱动器是用来控制功率器件的导通和关断。

为了实现此功能,驱动器对功率器件的门极进行充电以达到门极开通电压V GE_on ,或者是对门极进行放电至门极关断电压V GE_off 。

门极电压的两种电平间的转换过程中,在驱动器门极驱动电阻及功率器件组成的回路中产生一定的损耗。

这个参数我们称为驱动功率P DRV 。

驱动器必须根据其所驱动的功率器件所需的驱动功率来选择。

驱动功率可以从门极电荷量Q Gate ,开关频率f IN ,以及驱动器实际输出电压摆幅∆V Gate 计算得出:Gate IN Gate DRV V f Q P ∆⋅⋅= (Eq. 1)如果门极回路放置了一个电容C GE (辅助门极电容),那么驱动器也需要对该电容进行充放电,如图1所示:图1.带外接阻容的门级驱动只要C GE 在一个周期内被完全的充放电,那么R GE 值并不影响所需驱动功率。

驱动功率可以从以下公式得出:2Gate IN GE Gate IN Gate DRV V f C V f Q P ∆⋅⋅+∆⋅⋅= (Eq. 2)以上公式是在门极驱动电流不发生谐振的条件下得出的。

只要这个开关过程是IGBT 门极从完全打开到完全关断或者反过来,则驱动功率并不依赖于门极电阻及占空比的变化而变化。

接下来我们来看如何确定门极电荷量Q Gate 。

ACIN GH (output high)I OUT GL (output low)integration timegate charge: 11.4uC 门极电荷量Q Gate 绝不能从IGBT 或MOSFET 的输入电容C ies 计算得出。

IGBT驱动器产品手册说明书

IGBT驱动器产品手册说明书

BEIJI NG L MY ELECTRO NICS CO.,LTD TX-KA962/F中大功率IGBT驱动芯片TX-KA962F产品手册BEIJI NG L MY ELECTRO NICS CO.,LTD TX-KA962/F目录一、概述 (3)二、原理框图 (3)三、电气参数 (3)3.1 极限参数 (3)3.2 驱动特性 (4)3.3 工作条件 (4)3.4 短路保护特性 (4)3.5 驱动电源要求 (5)四、输出波形 (5)4.1 软关断曲线 (5)4.2 曲线说明 (5)五、尺寸结构 (6)5.1 外形尺寸 (6)5.2 引脚说明 (6)六、应用电路说明 (6)6.1 驱动器低压信号侧的连接 (6)6.1.1 输入信号的连接 (6)6.2 驱动高压侧驱动电源的连接 (6)6.3 驱动器高压侧输出的连接 (7)6.3.1 驱动功率的计算 (7)6.3.2 IGBT的连接 (7)6.4 保护参数的设置 (7)6.4.1 保护阈值设定(Vn) (7)6.4.2 盲区时间设定(Tblind) (8)6.4.3 软关断时间设定(Tsoft) (8)6.4.4 故障后再启动时间设定(Trst) (8)6.4.5 故障信号输出接口 (8)6.5 驱动芯片测试方法 (9)6.6 典型应用电路 (9)七、相关产品信息 (9)7.1 TX-PD203(DC-DC模块电源) (9)7.2 TX-QP102(死区控制芯片) (9)7.3 TX-DA962Dn系列IGBT驱动板 (9)八、常见问题 (10)九、其它说明: (10)BEIJI NG L MY ELECTRO NICS CO.,LTDTX-KA962/FTX-KA962F 、KA962 中大功率IGBT 驱动器一、概述∙ 单管中大功率IGBT 模块驱动器,可驱动300A/1700V 以下的IGBT 一只。

∙ 可按默认值直接使用,也可根据需要调节盲区时间、软关断的速度、故障后再次启动的时间。

igbt驱动电压和功率分别是多少

igbt驱动电压和功率分别是多少

igbt驱动电压和功率分别是多少igbt驱动工作原理驱动器功率不足或选择错误可能会直接导致 IGBT 和驱动器损坏。

以下总结了一些关于IGBT驱动器输出性能的计算方法以供选型时参考。

igbt驱动电路是驱动igbt模块以能让其正常工作,并同时对其进行保护的电路。

绝缘栅双极型晶体管(IGBT)在今天的电力电子领域中已经得到广泛的应用,在实际使用中除IGBT自身外,IGBT 驱动器的作用对整个换流系统来说同样至关重要。

驱动器的选择及输出功率的计算决定了换流系统的可靠性。

因此,在IGBT数据手册中给出的电容Cies值在实际应用中仅仅只能作为一个参考值使用。

IGBT的开关特性主要取决于IGBT的门极电荷及内部和外部的电阻igbt驱动电压要求因 IGBT 栅极 - 发射极阻抗大,故可使用 MOSFET 驱动技术进行驱动,但 IGBT 的输入电容较 MOSFET 大,所以 IGBT 的驱动偏压应比 MOSFET 驱动所需偏压强。

图 1 是一个典型的例子。

在+20 ℃情况下,实测 60 A , 1200 V 以下的IGBT 开通电压阀值为 5 ~ 6 V ,在实际使用时,为获得最小导通压降,应选取Ugc ≥ (1.5 ~ 3)Uge (th)igbt的开启电压(摘之别处)IGBT的开启电压就是指门极(栅极)和源极(IGBT不称发射极)之间的电压Vgs,通常这个值在2~4V左右,也有的的需要6V左右,例如H40T120的Vgs就是5-6.5V,当 Uge 增加时,导通时集射电压 Uce 将减小,开通损耗随之减小,但在负载短路过程中 Uge 增加,集电极电流 Ic 也将随之增加,使得 IGBT 能承受短路损坏的脉宽变窄,因此 Ugc 的选择不应太大,这足以使IGBT 完全饱和,同时也限制了短路电流及其所带来的应力(在具有短路工作过程的设备中,如在电机中使用IGBT 时,+Uge 在满足要求的情况下尽量选取最小值,以提高其耐短路能力)。

IGBT驱动全参数计算详解

IGBT驱动全参数计算详解

IGBT驱动参数计算详解大功率IGBT 模块在使用中驱动器至关重要,本文介绍在特定应用条件下IGBT门极驱动性能参数的计算方法,经验公式及有关CONCEPT 驱动板的选型标准,得出的一些参数值可以作为选择一款合适IGBT驱动器的基本依据。

1 门极驱动的概念IGBT存在门极-发射极电容Cge,门极-集电极电容Cgc,我们将IGBT的门极等效电容定义为Cg,门极驱动回路的等效电路如下图所示:其本质是:一个脉冲电压源向RC电路进行充放电,对于这个电压源,有2个物理量我们需要关心,1.它的功率;2.它的峰值电流。

2 驱动功率的计算驱动器是用来控制功率器件的导通和关断。

为了实现此功能,驱动器对功率器件的门极进行充电以达到门极开通电压VGE_on,或者是对门极进行放电至门极关断电压VGE_off。

门极电压的两种电平间的转换过程中,在驱动器门极驱动电阻及功率器件组成的回路中产生一定的损耗。

这个参数我们称为驱动功率PDRV。

驱动器必须根据其所驱动的功率器件所需的驱动功率来选择。

请注明出处.igbt8.驱动功率可以从门极电荷量QGate,开关频率fIN,以及驱动器实际输出电压摆幅ΔVGate 计算得出:P DRV = Q Gate * f IN * ΔV Gate (Eq. 1)备注:P DRV: 驱动器每通道输出功率;f IN: IGBT开关频率;Q Gate :IGBT门极电荷,可从规格书第一页查出,不同IGBT该数值不同;ΔV Gate:门极驱动电压摆幅,等于驱动正压+U 和负压–U 之间差值。

如果门极回路放置了一个电容CGE (辅助门极电容),那么驱动器也需要对该电容进行充放电,如图1 所示:图1.带外接阻容的门级驱动只要CGE 在一个周期被完全的充放电,那么RGE 值并不影响所需驱动功率。

驱动功率可以从以下公式得出:P DRV = Q GATE * f IN *ΔV GATE + C GE * f IN*ΔV GATE2(Eq. 2)这个功率是每个IGBT 驱动时必须的,但门极的充放电是没有能量损失的,这个功率实际上损失在驱动电阻及外部电路中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IGBT 的驱动特性及功率计算
陈暹辉
深圳裕能达电气有限公司
摘要:根据目前市场的使用情况,介绍IGBT的驱动特性及不同功率计算。

关键词:开通损耗关断损耗栅极电阻导通压降短路时间
1 IGBT 的驱动特性
1.1 驱动特性的主要影响因素
IGBT的驱动条件与IGBT的特性密切相关。

设计栅极驱动电路时,应特别注意开通特性、负载短路能力和d v/d t引起的误触发等问题。

栅极电压U ge 增加(应注意U ge过高而损坏IGBT),则通态电压下降(Eon 也下降),如图1所示(此处以200 A IGBT为例)。

由图1中可看出,若U ge 固定不变时,导通电压将随集电极电流增大而增高,如图1 a,电流容量将随结温升高而减少(NPT 工艺正温度特性的体现)如图1b所示。

(a)Uge与Uce和Ic的关系(b)Uge与Ic和Tvj的关系图1 栅极电压U ge与U ce和T vj的关系
栅极电压U ge 直接影响IGBT 的可靠运行,栅极电压增高时有利于减小IGBT的开通损耗和导通损耗,但同时将使IGBT能承受的短路时间变短(10 μs以下),使续流二极管反向恢复过电压增大,所以务必控制好栅极电压的变化范围,一般V ge可选择在-10~+15 V之间,关断电压-10 V,开通电压+15 V。

开关时U ge与I g的关系曲线见图2 a和图2 b所示。

栅极电阻R g 增加,将使IGBT的开通与关断时间增加,使开通与关断能耗均增加,但同时,可以使续流二极管的反恢复过电压减小,同时减少EMI的影响。

而门极电阻减少,则又使d i/d t增大,可能引发IGBT误导通,但是,当R g减少时,可
(a)开通时(b)关断时
图2 开关时U ge与I g的关系曲线
以使得IGBT关断时由d u/d t所带来误触发的可能性减小,同时也可以提高IGBT承受短路能量的
1
能力,所以R g大小各有好坏,客户可根据自己设计特点选择。

图3为R g大小对开关特性的影响,损耗关系请参照图4所示。

图3 R g大小对开关特性的影响(d i/d t大小不同)
图4 门极电阻Rg与Eon/Eoff
由上述可得:IGBT 的特性随门极驱动条件的变化而变化,就象双极型晶体管的开关特性和安全工作区随基极驱动而变化一样。

但是IGBT 所有特性难以同时最佳化,根据不同应用,在参数设定时进行评估,找到最佳折冲点。

双极型晶体管的开关特性随基极驱动条件而变化,然而,对于 IGBT来说,正如图1~图3所示,门极驱动条件仅对其开关特性有较大影响,因此,对于其导通特性来讲,我们应将更多的注意力放在IGBT的开通、短路负载容量上。

1.2 驱动电路设计与结构布局
l)从结构原理上讲,IGBT的开通特性同MOSFET,而输出特性同BJT,等效于MOSFET+BJT,因此 IGBT与 MOSFET都是电压驱动,都具有一个阈值电压,有一个容性输入阻抗,因此IGBT 对栅极电荷非常敏感故驱动电路必须很可靠,要保证有一条低阻抗值的放电回路,即驱动电路与IGBT的连线要尽量短。

2)用内阻小的驱动源对栅极电容充放电,以保证栅极控制电压U ge, 有足够陡的前后沿,使IGBT 的开关损耗尽量小。

另外,IGBT开通后,栅极驱动源应能提供足够的功率,使IGBT之双极晶体管BJT始终工作在饱和区。

3)驱动电压U ge的选择可参考图1,注意其大小的影响,若U ge选大了,则 IGBT通态压降和开通损耗均下降,但负载短路时的I c增大,
2
IGBT 能承受短路电流的时间减小,对其安全不利,因此在有短路工作过程的设备中U ge应选得小些,通常12~15 V比较合适。

4)驱动信号传输线路设计要考虑器件延迟,特别是光耦,注意传输比选择。

5)在关断过程中,为尽快抽取IGBT输入电容(Cies)上的存储电荷,须施加一负偏压U ge, 但它的大小受IGBT 的G,E间最大反向耐压限制,一般取-10 V为宜。

6)在大电感负载下,IGBT 的开关时间不能太短,以限制出d i/d t形成的尖峰电压,设计正确的过流保护电路,确保IGBT的安全。

7)注意两种隔离:强、弱电之间的隔离(信号共地问题)和输入、输出信号之间的隔离(采用变压器/光耦等),最好自身带有对IGBT 的保护功能,有较强的抗干扰能力。

8)针对大功率IGBT,可考虑增加推挽对管(如目前通用的MJD 44H11/45H11)放大驱动功率,或者选用比较流行的瑞士CT-CONCEPT 专用大功率驱动产品如2SD315-等。

2 IGBT的功率损耗计算(硬开关情况)2.1 动态损耗
1)IGBT开关损耗:
P IGBT=f sw·(E on+E off)·I s/I nom
其中,f sw= IGBT 开关频率,E on=开通能量(参数表提供),E off=关断能量(参数表提供),I s=实际工作电流I nom=标称电流。

2)续流二极管开关损耗:
P diode= f sw·E rec·I F/I nom
其中,f w=IGBT 开关频率,E rec=续流能量(参数表提供),I F =实际工作电流I nom=标称电流。

2.2 导通损耗
1)IGBT 导通损耗:
P IGBT=V cesat·I s·D
其中,V cesat=饱和压降(参数表提供),I s=集电极电流D=平均占空比。

2)续流二极管导通损耗:
P diode=V F·I F·(1-D)
其中,V F=导通压降(参数表提供),I F=实际工作电流,D=平均占空比。

3 总结
目前IGBT的从晶片的制造技术来讲已经发展到第4代,不同代IGBT的驱动特性是有区别的,当然其驱动原理没有变化,其功率损耗也可照套正文所给出的公式计算。

参考文献
1 Infineon IGBT Technology
2 Infineon IGBT Datasheets
3
4。

相关文档
最新文档