低频信号发生器

合集下载

低频信号发生器测试

低频信号发生器测试

❖ d)在表3中记录测试结果
信号频 10H 100H 1kHz 10kH 100k 200k 1MHz 2MH

zz
z
Hz Hz
z
失真系 数(%)
低频函数信号发生器性能测试
❖ 4)脉冲上升(下降)沿时间测试
❖ a)按照测试工艺,信号源通电,测试仪器通电,预热大约10分 钟;
❖ b)连接信号源与测试仪器;
❖ 概述
❖ EE1641B型 函数信号发生器是一种精密的测试仪器,因其具有连续 信号、扫频信号、函数信号、脉冲信号等多种输出信号和外部测频功 能,故定名为函数信号发生器/计数器。本仪器是电子工程师、电子 实验室、生产线及教学、科研需配备的理想设备。
❖ EE1641B函数信号发生器为 波段式(按十进制分类共分七档)的低 频函数信号发生器,采用大规模单片集成精密函数发生器电路,使得 该机具有很高的可靠性及优良性能/价格比。
❖ 式中 f 为仪器读盘或数字显示的输出信号频率;为实际输出频率。
❖f
3)频率稳定度 指在其他外界条件恒定不变的情况下,在规定时间内 o,信号源输出频率相对于预调值变化的大小。频率稳定度实际上是频
率不稳定度,它表示频率源能够维持恒定频率的能力。对于频率稳定
度的描述往往引入时间概念,如4×10-3/小时,5×10-9/天。
❖ 3)信号源输出波形置“方波”(或脉冲波),幅度5Vp-p,频率 “校准位置,使被测波形占满屏幕的 80%,读取稳态幅度10%~90%(或90%~10%)部分所对应的 时间,按式(4)计算上升(下降)沿时间
t r = L×K
(4)
式中:L—上升(下降)沿部分所占水平刻度;
5 )在规定的预热时间后,调节信号源输出频率,分别在每个波段选取高 、中、低3个频率点进行频率测量,频率误差按式计算。

低频信号发生器设计与实现报告

低频信号发生器设计与实现报告

仪器科学与电气工程学院本科生“六个一”工程之课外实验项目报告低频信号发生器的设计与实现专业:测控技术与仪器姓名:刘雪锋学号:65090215时间:2011年11月一、实验目的:练习基本技能:常用测试仪器使用、电路安装、测试、调试;初步学会查阅电子器件英文说明书;训练基本单元电路设计、调试、测试。

二、实验内容:设计一个低频信号发生器,可输出方波、矩形波、三角波、锯齿波、正弦波。

频率和幅度可调;矩形波占空比可调;锯齿波上升、下降时间可调;根据电路原理图的具体结构,安装单元电路;测输出幅度、频率、失真度、上升沿、下降沿、观察三角波线性度;不得使用8038模块;写出设计与总计报告,说明电路原理、特点、测试结果、结果分析。

三、总体设计方案:(一)总体设计原理框图产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波转换成方波,再由积分电路将方波变成三角波;也可以先由振荡器产生方波,再经积分电路产生三角波,再经过滤波电路产生正弦波等等。

我选用的是前一种方案,上图为总体设计流程。

(二)各部分电路图及其原理1、正弦波产生电路及其原理:正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入反馈电路,并创造条件,使其产生稳定可靠的振荡。

电路接通电源的一瞬间,由于电路中电流从零突变到某一值,它包含着很多的交流谐波,经过选频网络选出频率为f0的信号,一方面由输出端输出,另一方面经正反馈网络传送回到输入端,经放大和选频,这样周而复始,不断地反复,只要反馈信号大于初始信号,震荡就逐渐变强,最后稳定的震荡起来。

我所设计的正弦波震荡电路为RC 串并联式正弦波震荡电路,又被称为文氏桥电路。

这个电路由两部分组成,即放大电路和选频网络,放大电路为由集成运741放所组成的电压串联负反馈放大电路,选频网络兼作正反馈网络,它具有电路简单、易起振、频率可调等特点被大量应用于低频振荡电路,电路图如下所示 :我选用的电阻R和电容C分别为100kΩ的电位器和0.1μf瓷片电容,这样根据在C不变的情况下,改变电位器R的值可以改变电路的震荡频率,但由于两个R的阻值要相等才能震荡出正弦波,所以我在实际焊制电路时两个R采用一个同轴电位器。

低频函数信号发生器讲解学习

低频函数信号发生器讲解学习

浙江大学 蔡忠法
电子系统综合设计
模拟电路的实现方案,是指全部采用模拟电 路的方式,以实现信号产生电路的所有功能。由 于教学安排及课程进度的限制,本实验的信号产 生电路,推荐采用全模拟电路的实现方案。
➢ 模拟电路实现信号产生电路的多种方式
对于信号产生电路的模拟电路实现方案,也 有几种电路方式可供选择。如用正弦波发生器产 生正弦波信号,然后用过零比较器产生方波,再 经过积分电路产生三角波,电路框图如图所示。
vO1 1R R32V2R R32VZ
电子系统综合设计
浙江大学 蔡忠法
若VΘ2>0,则三角波上移; 若VΘ2<0,则三角波下移。
其上幅度为:
1
R2 R3
V2
R2 R3
VZ
其下幅度为:
1
R2 R3
V2
R2 R3
VZ
而三角波的峰峰值为:
VO1(PP)
2 R2 R3
VZ
电子系统综合设计
浙江大学 蔡忠法


这种电路在一定的频率范围内,具有良好 的三角波和方波信号。而正弦波信号的波形质 量,与函数转换电路的形式有关,这将在后面 的单元电路分析中详细介绍。
该电路方式是本实验信号产生部分的推 荐方案。
浙江大学 蔡忠法
电子系统综合设计
根据实验任务中对输出电压、输出电流及 输出功率的要求,原则上在输出级只需采用不 同的负反馈方式便可。即要求电压输出时,采 用电压负反馈;要求电流输出时,采用电流负 反馈。这将在单元电路分析中进行详细介绍。
元 电
路路
元器件
浙江大学 蔡忠法
电子系统综合设计
电子系统设计过程:
方案论证 总体设计 软硬件设计 组装调试 产品定型

低频信号发生器的使用说明

低频信号发生器的使用说明

附录一低频信号发生器的使用说明一.概述AS1033型低频信号发生器采用了中央处理器控制面板的操作方式,具有良好的人机界面。

输出正弦波信号频率从2Hz~2MHz连续可调,输出正弦波信号幅度从0.5mV~5V连续可调,并设有TTL输出方波功能,频率从2Hz~2MHz连续可调,占空比从20%~80%连续可调。

面板显示清晰明了,操作简单方便,输出频率调节可采用频率段调节(轻触开关粗调)和数码开关调节(段内细调)二种,其中数码开关调节又分快调和慢调两种,五位数码管直接显示频率,输出幅度调节采用轻触粗调(20dB、40dB、60dB)和电位器细调(20dB)以内,三位数码管直接显示输出电压有效值或衰减电平。

中央处理器控制整机各部分,并采用了数/模、模/数转换电路,应用数码开关作为频率调节输入。

振荡电路采用压控振荡与稳幅放大相结合,具有良好的稳幅特性。

电路中还加入输出保护、TTL输出、方波占空比可调电路等。

二.技术特性1.频率范围:2Hz~2MHz,共分五个频段第一频段:2Hz~30Hz第二频段:30Hz~450Hz第三频段:450Hz~7kHz第四频段:7kHz~100kHz第五频段:100kHz~2MHz2.正弦波输出特性(1)输出电压幅度(有效值):0.5mV~5V(2)幅频率特性:≤±0.3dB(3)失真度:2Hz~200kHz≤0.1%,200kHz~2MHz,谐波分量≤-46dB3.方波输出特性⑴最大输出电压(空截,中心电平为0):14Vp-p⑵占空比(连续可调):20%~80%⑶逻辑电平输出:TTL电平,上升、下降沿≤25ns4.输出电抗:600Ω5.频率显示准确度:1×10-4±1个字6.正常工作条件⑴环境温度:0~40℃⑵相对湿度:<90%(40℃)⑶大气压:86~106kpa⑷电源电压:220±22V,50±2.5Hz7.消耗功率:<10W三.面板及操作说明1.整机电源开关(POWER)按下此键,接通电源,同时面板上指示灯亮。

信号发生器的使用-电子教案

信号发生器的使用-电子教案

《常用仪器仪表使用》电子教案1.信号发生器的应用信号发生器主要应用于测试电路的参数、调试设备的性能,它产生被测电路所需的测试信号,输出到被测电路或设备输入端,用其他测量仪器观察、测量被测对象的输出,分析并确定被测对象的性能参数,如图2-1所示。

图2-1 信号发生器的应用低频信号发生器产生的信号的频率一般为1Hz~1MHz。

下面以TAG-101低频信号发生器为例,介绍低频信号发生器的使用。

TAG-101可以产生正弦波和矩形波。

2.TAG-101面板介绍TAG-101的面板如图2-2所示。

图2-2 低频信号发生器的面板TAG-1011)电源按钮和电源指示灯按下电源按钮,低频信号发生器开机,电源指示灯点亮。

2)波形选择按钮(WAVE FORM)波形选择按钮用于控制输出的波形。

此按钮按下输出矩形波,弹起输出正弦波,如图2-3所示。

3)幅度调节旋钮(AMPLITUDE)此旋钮调节信号的幅度,顺时针旋转输出信号幅度增加,逆时针旋转输出信号幅度减小,如图2-4所示。

4)幅度衰减度调节旋钮(ATTENUATOR)幅度衰减度调节旋钮共有6挡,分别为0dB、-10dB、-20dB、-30dB、-40dB、-50dB,用来衰减信号幅度。

图2-3 波形选择图2-4 幅度调节旋钮dB是分贝的意思,表示增益和衰减的单位。

其定义为:1dB=20lg(倍数)如果倍数为10,则转换为分贝是20lg(10)=20dB;如果倍数为0.01,则转换为分贝是20lg(0.01)=-40dB。

例如,在音频测试时,需要幅度为500mV的波形,先将幅度衰减度调节旋钮置于0dB,调节旋钮,使输出的幅度为5V,再使用旋钮将信号幅度衰减为原来的0.1倍,即衰减-20dB,将旋钮拨到-20dB挡位即可得到所需的幅度,如图2-5所示。

图2-5 衰减-20dB5)频率基数调节旋钮(FREQUENCY)频率基数调节旋钮刻度盘上的数值为10~100,该旋钮顺时针旋转,输出信号的频率增加,逆时针旋转,信号频率减小。

低频信号发生器的使用说明

低频信号发生器的使用说明

附录一低频信号发生器的使用说明一.概述AS1033型低频信号发生器采用了中央处理器控制面板的操作方式,具有良好的人机界面。

输出正弦波信号频率从2Hz~2MHz连续可调,输出正弦波信号幅度从0.5mV~5V连续可调,并设有TTL输出方波功能,频率从2Hz~2MHz连续可调,占空比从20%~80%连续可调。

面板显示清晰明了,操作简单方便,输出频率调节可采用频率段调节(轻触开关粗调)和数码开关调节(段内细调)二种,其中数码开关调节又分快调和慢调两种,五位数码管直接显示频率,输出幅度调节采用轻触粗调(20dB、40dB、60dB)和电位器细调(20dB)以内,三位数码管直接显示输出电压有效值或衰减电平。

中央处理器控制整机各部分,并采用了数/模、模/数转换电路,应用数码开关作为频率调节输入。

振荡电路采用压控振荡与稳幅放大相结合,具有良好的稳幅特性。

电路中还加入输出保护、TTL输出、方波占空比可调电路等。

二.技术特性1.频率范围:2Hz~2MHz,共分五个频段第一频段:2Hz~30Hz第二频段:30Hz~450Hz第三频段:450Hz~7kHz第四频段:7kHz~100kHz第五频段:100kHz~2MHz2.正弦波输出特性(1)输出电压幅度(有效值):0.5mV~5V(2)幅频率特性:≤±0.3dB(3)失真度:2Hz~200kHz≤0.1%,200kHz~2MHz,谐波分量≤-46dB3.方波输出特性⑴最大输出电压(空截,中心电平为0):14Vp-p⑵占空比(连续可调):20%~80%⑶逻辑电平输出:TTL电平,上升、下降沿≤25ns4.输出电抗:600Ω5.频率显示准确度:1×10-4±1个字6.正常工作条件⑴环境温度:0~40℃⑵相对湿度:<90%(40℃)⑶大气压:86~106kpa⑷电源电压:220±22V,50±2.5Hz7.消耗功率:<10W三.面板及操作说明1.整机电源开关(POWER)按下此键,接通电源,同时面板上指示灯亮。

低频函数信号发生器

低频函数信号发生器

一、设计内容:设计一个低频函数信号发生 器 二、性能与技术指标 1. 同时输出三种波形:方波、三角波、正弦 波 2. 频率范围:10Hz ~10kHz 3 3. 频率稳定度: f f0 10 日

这种电路在一定的频率范围内,具有良好的三 角波和方波信号。而正弦波信号的波形质量,与 函数转换电路的形式有关,这将在后面的单元电 路分析中详细介绍。
滞回比较器又称施密特触发器迟滞比较器。 这种比较器的特点是当输入信号ui逐渐增大或 逐渐减小时,它有两个阈值,且不相等,其 传输特性具有“滞回”曲线的形状。滞回比 较器也有反相输入和同相输入两种方式作三角波使用。使iC 恒定的办法有多种,其实质都是利用恒流源电 路取代图中的R,便可获得较为理想的三角波波 形。
总结
这一次的实验,应该说任务,的确是很难,因为函数信号 发生器这东西真的不是仅仅靠学生一个月左右就能完成的作品,
虽然任务艰巨,但是我们也学到了很多。对于电路,放大器还
有一些其他元件的工作原理都有了很深的理解。我们也自学了 很多软件,ad软件都是自己自学,大家都很努力也都很充实。
虽然最后没有什么实际的成果也没有做出实物,但是毕竟尽了
运算法的转换原理是,把展开成幂级数形
式:
x x x sin x x 3! 5! 7!
由上述关系容易看出,取幂级数的前几项 (根据转换精度的要求),可以通过对线性 (三角波)变化量x的运算来近似表示成 sinx, 但要求三角波的幅度<π/2。
3
5
7

因为我们并没有很准确的能够把所有元器件 都搞齐,所以我们只能把搞出一个大致的电 路板,并不能显示实物。这也是局限所 在。。。
通过之前的原理说明,我们大概知道

低频信号发生器

低频信号发生器

第2章 测量与常用仪表2.4低频信号发生器XD-1型低频信号发生器能输出频率为1Hz~1MHz 的正弦信号。

它有电压输出和功率输出两种,最大输出功率为4W 左右。

功率输出可配接50Ω、75Ω、150Ω、600Ω、5k Ω五种负载,最大衰减量为90dB 。

1.面板上各主要旋钮的作用(1)电压表输入 外加待测电压输入端。

(2)电压测量开关 当开关置于“内”时,电压表直接接到电压输出端,用来测量输出电压;当开关置于“外”时,供测量外电路的输入电压。

(3)阻尼开关 通常置于“快”,当表针摆动较快时,再放到慢的位置,以减少指针的摆动。

(4)电压量程旋钮 根据待测电压的大小,选择合适的量程。

量程分为5V 、15V 、50V 、150V 四档。

(5)频段按键开关与频率细调旋钮 频段开关用于选择所需频段,频段细调旋钮按十进制排列,用于调准所需频率值。

XD-1型低频信号发生器的频率范围在1Hz~1MHz 之间分为6个频段:1~10Hz 、10~100Hz 、100Hz~1kHz 、1~10kHz 、10~100kHz 、100kHz~1MHz 。

(6)负载匹配旋钮 可选择不同阻值的输出阻抗,与负载匹配。

(7)输出衰减旋钮 用于电压输出的衰减,每档衰减10dB 。

注意:在同一1.了解低频信号发生器的面板构成。

2.熟练掌握低频信号发生器的使用方法。

3.在实际应用中理解其使用注意事项。

1. 低频信号发生器的输出频率调节方法。

2. 低频信号发生器的输出电压调节方法。

衰减位置上,电压与功率的衰减分贝数不同,面板上用不同颜色加以区别。

(8)输出细调旋钮用来控制电压输出与功率输出端的大小,与输出衰减钮配合使用,可得到所需的输出值。

(9)功率开关按下此钮时,可获得功率输出。

(10)过载指示与内负载按键过载保护指示灯点亮时,表示功率输出过载。

按下内负载按钮时,表示功率级的内部电阻已接通,以获得较高的输出幅度。

2.使用方法(1)频率选择根据所需的频率,选择相应频段,按下相应的频段按键,然后再利用频率细调的三个旋钮,按照十进制的原则细调到所需的频率。

低频信号发生器设计论文

低频信号发生器设计论文

基于单片机的低频信号发生器设计论文要摘单片机为核心设计了一个低频函数信号发生器。

本文以STC89C52可输出正弦波、方波、信号发生器通过硬件电路和软件程序相结合,波形和三角波、三角波、梯形波,波形的频率在一定范围内可改变.硬件电路和软件频率的改变通过软件控制。

介绍了波形的生成原理、该信号发1440HZ的波形。

部分的设计原理。

本系统可以产生最高频率生器具有体积小、价格低、性能稳定、功能齐全的优点。

;D /A单片机转换; 关键词:低频信号发生器;Abstracta of microcontroller as the core design This paper takes STC89C52 frequency function generator.The signal generator through a combination of hardware circuit and software program.Can output sine wave, square of frequency triangle wave, trapezoidal wave,The wave, triangle wave, and 。

The waveform certain waveform can be changed in a rangethe frequency are changed by software control,This paper introduces design of software part generating principle, hardware circuit and of principlewaveforms,This system can produce the maximum frequency of 1440HZ waveform,The signal generator has the advantages of small volume, low price, stable performance, complete functions.microcomputer low-frequency Keywords: chipsignalgeneratorD /A conversion一、设计选题及任务设计题目:基于单片机的信号发生器的设计与实现.任务与要求:设计一个由单片机控制的信号发生器。

低频信号发生器实训报告

低频信号发生器实训报告

一、实训目的1. 熟悉低频信号发生器的基本原理和结构;2. 掌握低频信号发生器的使用方法和调试技巧;3. 学会使用低频信号发生器进行实验,并分析实验结果;4. 培养学生动手操作能力和实验分析能力。

二、实训内容1. 低频信号发生器的基本原理和结构;2. 低频信号发生器的使用方法;3. 低频信号发生器的调试技巧;4. 使用低频信号发生器进行实验,并分析实验结果。

三、实训设备1. 低频信号发生器一台;2. 示波器一台;3. 数字多用表一台;4. 实验电路板一块;5. 连接线若干。

四、实训步骤1. 观察低频信号发生器的结构,了解其基本组成部分;2. 学习低频信号发生器的工作原理,包括振荡器、放大器、滤波器等;3. 学习低频信号发生器的使用方法,包括如何设置频率、幅度、波形等;4. 学习低频信号发生器的调试技巧,如如何调整频率、幅度、波形等;5. 使用低频信号发生器进行实验,包括:(1)产生正弦波、方波、三角波等基本波形;(2)调整频率、幅度、相位等参数;(3)测量信号波形,分析实验结果;6. 根据实验结果,撰写实训报告。

五、实验结果与分析1. 实验一:产生正弦波、方波、三角波等基本波形实验步骤:(1)打开低频信号发生器,设置频率为1kHz,幅度为1V;(2)观察示波器,调整低频信号发生器的输出波形为正弦波;(3)重复步骤(1)和(2),产生方波、三角波等波形。

实验结果:成功产生正弦波、方波、三角波等基本波形。

2. 实验二:调整频率、幅度、相位等参数实验步骤:(1)打开低频信号发生器,设置频率为1kHz,幅度为1V;(2)调整低频信号发生器的频率、幅度、相位等参数;(3)观察示波器,分析调整结果。

实验结果:成功调整频率、幅度、相位等参数,观察到的波形符合预期。

3. 实验三:测量信号波形,分析实验结果实验步骤:(1)打开低频信号发生器,设置频率为1kHz,幅度为1V;(2)将低频信号发生器的输出信号接入示波器;(3)观察示波器,分析信号波形。

低频信号发生器的工作原理

低频信号发生器的工作原理

低频信号发生器的工作原理低频信号发生器是一种用于产生低频信号的设备,其工作原理主要基于振荡电路的原理。

振荡电路是一种能够产生连续变化的正弦波信号的电路,低频信号发生器就是利用振荡电路来产生低频信号的设备。

低频信号发生器的工作原理可以分为以下几个方面来解释:1. 振荡电路的概念在低频信号发生器中,振荡电路是其核心部件。

振荡电路是一种能够产生周期性变化的电压或电流的电路,其主要由一个放大元件(如三极管、场效应管等)、反馈网络和一个能量储存元件(如电感、电容)组成。

当电压或电流在振荡电路中被反馈并且增强时,能够产生连续变化的正弦波信号。

2. 负反馈原理低频信号发生器的振荡电路采用了负反馈原理。

负反馈是指将一部分输出信号反馈到输入端,以抑制电路中的非线性失真和稳定输出信号的变化。

在低频信号发生器中,通过正确设计反馈网络,能够使得振荡电路产生稳定、纯净的低频正弦波信号。

3. 控制元件低频信号发生器中的振荡电路通常会加入控制元件,如可变电阻、可变电容等。

这些控制元件能够通过调节电阻值或电容值来改变振荡电路的频率、幅度等参数,从而实现对低频信号的精确调节和控制。

4. 输出驱动电路除了振荡电路外,低频信号发生器还需要配备输出驱动电路。

输出驱动电路可以将振荡电路产生的低频信号放大并输出到外部设备,如示波器、扬声器、其他测量设备等。

输出驱动电路通常包括放大器、隔直电路等部分,以保证低频信号的准确输出。

低频信号发生器的工作原理主要是依托振荡电路的原理,并结合负反馈、控制元件和输出驱动电路等部分共同实现对低频信号的产生和输出。

这些原理的相互作用使得低频信号发生器能够产生稳定、精确的低频信号,广泛应用于各种仪器仪表、声音设备、通信设备等领域。

低频信号发生器

低频信号发生器

粗调和细调。 ① 频率选择 粗调和细调。 ② 电压输出 接通内负载。 接通内负载。 用电缆直接从功率输出插口引出。 ③ 功率输出 用电缆直接从功率输出插口引出。应将面板右 侧“内负载”键按下,接通内负载。 内负载”键按下,接通内负载。 ④ 过载保护 入工作状态。 入工作状态。 过载保护指示灯亮, 后熄灭, 过载保护指示灯亮,约5 ~ 6 s后熄灭,表示进 后熄灭 用电缆直接从“电压输出”插口引出。 用电缆直接从“电压输出” 插口引出 。调节 输出衰减开关和输出细调旋钮。应将板右侧“内负载”键按下, 输出衰减开关和输出细调旋钮。应将板右侧“内负载”:监测振荡器输出电压的大小,监测输出功率。 作用:监测振荡器输出电压的大小,监测输出功率。
3.XD1 型低频信号发生器 . XD1 型低频信号发生器产生从 1 Hz ~ 1 MHz 非线性失真很小的正弦波信号,有电压输 出和功率输出两档。 使用方法 XD1 型 低频信号发生器面板装 置如图。
• 频率:5KHZ • 幅度:10 • 衰减:-40
频率:4KHZ 幅度:6 衰减:0
频率:4.2KHZ 频率:600HZ 幅度:3 幅度:4 衰减:0 衰减:-10
• 频率:7.8KHZ 频率:2.4KHZ • 幅度:10 幅度:9 • 衰减:-40 衰减:-30
频率:10KHZ 频率:1.8KHZ 幅度:11 幅度:6 衰减:-40 衰减:-20
测量开关拨向“外测” ⑤ 交流电压表 测量开关拨向“外测”时,它作为一般交流 电压表测量外部电压;当开关拨向“内测” 电压表测量外部电压;当开关拨向“内测”时,它作为信号发生 器输出指示。 器输出指示。
频率:972HZ 频率:6.2KHZ 幅度:8 幅度:6 衰减:-60 衰减:-40 频率:783HZ 频率:851HZ 幅度:4 幅度:5 衰减:-80 衰减:0

低频函数信号发生器

低频函数信号发生器
低频信号发生器低失真的正弦波电压,可用于校验频率继电器, 同步继电器等,也可作为低频变频电源使用。信号发生器采用 数字波形合成技术,通过硬件电路和软件程序相结合,可输出自 定义波形,如正弦波、方波、三角波及其他任意波形。波形的 频率和幅度在一定范围内可任意改变。该信号发生器具有体积 小、价格低、性能稳定、功能齐全的优点
滞回比较器又称施密特触发器迟滞比较器。
这种比较器的特点是当输入信号ui逐渐增大或 逐渐减小时,它有两个阈值,且不相等,其 传输特性具有“滞回”曲线的形状。滞回比 较器也有反相输入和同相输入两种方式。
线性度非常差,显然不能当作三角波使用。使iC
恒定的办法有多种,其实质都是利用恒流源电
路取代图中的R,便可获得较为理想的三角波波
2
R2 R3

VZ
由上可知,当R2/R3的比值调好后,三角波 的峰峰值已经确定,调节VΘ2的大小可使三角波 上下平移。
因此,当由于失调等原因引起三角波零 位偏移(上下不对称)时,可通过改变VΘ2的大 小进行调整。
函数转换是指:把某种函数关系转换成另 一种函数关系,能完成这种转换功能的电子电 路就称为函数转换电路。常用的函数转换电路, 如半波、全波整流电路,就是把正弦波形转换 成半波和全波波形的函数转换电路。本实验需 要讨论的是,把三角电压波形转换成正弦电压 波形的正弦函数转换电路。
3! 5! 7!
由上述关系容易看出,取幂级数的前几项 (根据转换精度的要求),可以通过对线性 (三角波)变化量x的运算来近似表示成 sinx, 但要求三角波的幅度<π/2。
因为我们并没有很准确的能够把所有元器件 都搞齐,所以我们只能把搞出一个大致的电 路板,并不能显示实物。这也是局限所 在。。。
通过之前的原理说明,我们大概知道 了波形的发生电路还有转换电路,所 以根据电路图我们用multisim进行了 仿真,并且运用ad(altium designer)进行了pcb板的制作

低频信号发生器的使用说明

低频信号发生器的使用说明

低频信号发生器的使用说明一、器件介绍二、连接器件1.将发生器的电源线插入电源插座,并确保电压稳定;2.将发生器的输出端口与所需连接的设备的输入端口连接。

通常可通过BNC连接器将信号发生器与外部设备连接。

三、设置参数1.打开电源开关,启动发生器。

在显示屏上将会显示基本参数,如频率、幅度等;2.利用旋钮或按键设置所需的信号频率。

一般情况下,可以通过旋钮一步步地调整频率,也可以通过输入具体数值来直接设置频率;3.设置输出幅度。

通过旋钮或按键可以调整信号的幅度,选择合适的幅度范围,并通过输入具体数值来直接设置幅度值;4.如果需要,还可以设置其他参数,比如波形类型、相位、频率调制等。

四、使用功能1.正弦波:低频信号发生器可以产生各种波形,其中最常用的是正弦波。

可以通过设置频率、幅度来调整正弦波的特点;2.方波:方波是一种平坦的波形,通常用于测试数字电路,可以通过设置频率、幅度来调整方波的特点;3.脉冲波:脉冲波是一种带有高峰值的波形,通常用于测试计时电路等;4.三角波:三角波是一种连续的波形,通常用于测试滤波器频率响应等;5.调频信号:低频信号发生器还可以产生调频(FM)信号,可以通过设置调频范围和调频深度来调整调频信号的特点。

五、注意事项1.在使用低频信号发生器之前,需要确保电源接地良好,以避免电击等意外;2.调节信号幅度时,需要避免过高的输出幅度,以免损坏连接设备;3.当需要连接低频信号发生器与其他设备时,要确保连接器件与线缆质量良好,并避免松动接触导致信号失真;4.在进行精密测量时,可以考虑使用外部校准装置进行校准,以提高测量准确性;5.在长时间使用低频信号发生器时,要注意发生器的散热问题,避免过热。

总结:低频信号发生器是一种功能强大的信号产生仪器,通过设置频率、幅度等参数,可以产生各种波形的信号。

在使用低频信号发生器时,需要连接合适的设备,并注意设置参数和注意事项。

正确使用低频信号发生器,可以实现科研、测试、教学等领域的需求。

低频信号发生器原理

低频信号发生器原理

低频信号发生器的设计摘要:直接数字合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快优点,在雷达及通信等领域有着广泛的应用前景。

文中介绍了一种高性能DDS芯片AD9850的基本原理和工作特点,阐述了如何利用此芯片设计一种频率在0—50kHz内变化、相位正交的信号源,给出了AD9850芯片和MCS51单片机的硬件接口和软件流程。

关键词:直接数字频率合成信号源AD9850芯片概述:随着数字技术的飞速发展,高精度大动态范围数字/模拟(D,A)转换器的出现和广泛应用,用数字控制方法从一个标准参考频率源产生多个频率信号的技术,即直接数字合成(DDS)异军突起。

其主要优点有:(1)频率转换快:DDS频率转换时间短,一般在纳秒级;(2)分辨率高:大多数DDS可提供的频率分辨率在1 Hz 数量级,许多可达0.001 Hz;(3)频率合成范围宽;(4)相位噪声低,信号纯度高;(5)可控制相位:DDS 可方便地控制输出信号的相位,在频率变换时也能保持相位联系;(6)生成的正弦/余弦信号正交特性好等。

因此,利用DDS技术特别容易产生频率快速转换、分辨率高、相位可控的信号,这在电子测量、雷达系统、调频通信、电子对抗等领域具有十分广泛的应用前景。

1. 低频信号发生器的组成图2.7为低频信号发生器组成框图。

它主要包括主振器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表等。

(1)主振器RC文氏桥式振荡器具有输出波形失真小、振幅稳定、频率调节方便和频率可调范围宽等特点,故被普遍应用于低频信号发生器主振器中。

主振器产生与低频信号发生器频率一致的低频正弦信号。

文氏桥式振荡器每个波段的频率覆盖系数(即最高频率与最低频率之比)为10,因此,要覆盖1Hz~1MHz的频率范围,至少需要五个波段。

为了在不分波段的情况下得到很宽的频率覆盖范围,有时采用差频式低频振荡器,图2.8为其组成框图。

假设f2=3.4MHz,f1可调范围为3.3997MHz~5.1MHz,则振荡器输出差频信号频率范围为300Hz (3.4MHz-3.3997MHz)~1.7MHz(5.1 MHz-3.4 MHz)。

信号发生器的分类及解决方案

信号发生器的分类及解决方案

信号发生器的分类及解决方案信号发生器的分类信号发生器也称信号源,是用来产生振荡信号的一种仪器,为使用者供应需要的稳定、可信的参考信号,并且信号的特征参数完全可控。

所谓可控信号特征,紧要是指输出信号的频率、幅度、波形、占空比、调制形式等参数都可以人为地掌控设定。

信号发生器的分类1、正弦信号发生器正弦信号紧要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。

按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调整范围和稳定度分为简易信号发生器(即信号源)、标准信号发生器(输出功率能精准地衰减到—100分贝毫瓦以下)和功率信号发生器(输出功率达数十毫瓦以上);按频率更改的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发生器和频率合成式信号发生器等。

2、低频信号发生器包括音频(200~20000赫)和视频(1赫~10兆赫)范围的正弦波发生器。

主振级一般用RC式振荡器,也可用差频振荡器。

为便于测试系统的频率特性,要求输出幅频特性平和波形失真小。

3、高频信号发生器频率为100千赫~30兆赫的高频、30~300兆赫的甚高频信号发生器,一般接受LC调谐式振荡器,频率可由调谐电容器的度盘刻度读出,紧要用途是测量各种接收机的技术指标,输出信号可用内部或外加的低频正弦信号调幅或调频,使输出载频电压能够衰减到1微伏以下,高频信号发生器的输出信号电平能精准读数,所加的调幅度或频偏也能用电表读出。

此外,仪器还有防止信号泄漏的良好屏蔽。

4、微波信号发生器从分米波直到毫米波波段的信号发生器,信号通常由带分布参数谐振腔的超高频三极管和反射速调管产生,但有渐渐被微波晶体管、场效应管和耿氏二极管等固体器件取代的趋势,仪器一般靠机械调谐腔体来更改频率,每台可覆盖一个倍频程左右,由腔体耦合出的信号功率一般可达10毫瓦以上,简易信号源只要求能加1000赫方波调幅,而标准信号发生器则能将输出基准电平调整到1毫瓦,再从后随衰减器读出信号电平的分贝毫瓦值;还必需有内部或外加矩形脉冲调幅,以便测试雷达等接收机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C2
30pF
U1
19 XTAL1
18 XTAL2
R4
R5
R6
330
330
330
D4
D5
D6
LED-GREEN LED-YELLOW LED-RED
9 RST
29 30 31
PSEN ALE EA
1 2 3 4 5 6 7 8
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
…… 1、Keil 调试
……
图 3-1 程序调试完成图
5
安徽电子信息职业技术学院课程设计
低频信号发生器
…………程序调试情况说明(包括曾出现的问题,及处理措施。要求全景抓图) …………
2、Proteus 调试
图 3-2 交通信号灯联调效果图
…………软、硬调试情况说明(联调)(包括曾出现的问题,及处理措施。要 求全景抓图)
(一)硬件电路设计
1、交通信号灯控制电路图 采用 AT89C51 单片机控制交通信号灯并实现实时显示倒计时。单片机控制交
通信号灯的电路原理如图 2-1 所示。
C3
R7
10uF
10k
R1 R2 R3
330
330
330
D3
LED-RED
D2
LED-YELLOW
D1
LED-GREEN
C1 30pF X1
CRYSTAL
1
安徽电子信息职业技术学院课程设计
低频信号发生器
选。显示器使用的是共阴极 LED 数码管,并采用 74LS07 同相驱动器。按键消除抖 动的处理采用软件方法。原理是:扫描键盘后,延时 10 ms,再次扫描键盘,确认有键 按下,跳到读键值的子程序,等待按键的动作完成,然后才继续执行其他操作。
二、系统设计
AT89C51
P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7
39 38 37 36 35 34 33 32
P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15
(二) 低频信号发生器方案选择
1、低频信号发生器的控制方案论证 低频信号发生器可以显示不同的波形,如:正弦波,方波,三角波等。本设计
只显示方波。 2、单片机的控制方案论证
根 据 设 计 任 务 书 中 的 设 计 要 求 , 可 选 用 Atmel 公 司 的 89 系 列 单 片 机 AT89C2051,但考虑到将来控制功能的扩充,用 AT89C51 来完成本次设计。控制方 案如下:按键是系统的输入设备,是控制单片机的唯一途径。设计中共使用了 16 个按键, 3×5 键盘和一个复位键。3×5 键盘中包含了 0~9 的数字键和多个波形选 择键。由于功能键较多,所以在输入控制命令时非常方便。在设计要求中还选择将 键盘的输入内容显示出·13·号输出时不需时刻改变,可由单片机的串行通信口输 出显示数据。在设计中,显示采用的是 5 位 7 段显示器显示,显示的数据由单片机 的并行口 P0 输出,采用动态显示的方法,以 P2 口中的低 5 位(P2. 0~P2. 4)作为位
…………
(二)工作原理分析
6
安徽电子信息职业技术学院课程设计
低频信号发生器
交通灯控制器的功能主要包括两大部分,一是自动控制……
交通灯控制器工作原理分析如下。…………
结束语
完成情况:经过两个月的努力,完成了交通灯控制方案的设计,用 AT89C51 单片机实现交通灯控制方案,本方案也可用 AT89C51 单片机来实现,这样可减小 电路板的体积、降低生产成本。本设计只包括交通信号灯控制器部分,在路口实 际使用的点阵式 LED 显示器及其驱动部分均未涉及。
……
3、中断服务程序流程图 (1)紧急状态时,采用中断方式,通过按钮,使单片机执行中断服务程序,让干 线红灯、支线红灯同时亮。中断服务程序流程图如下:
…… (2)调整放行时间时,也采用中断方式,通过按钮,使单片机执行中断服务程序, 让放行时间延长或缩短。中断服务程序流程图如下:
……
3
安徽电子信息职业技术学院课程设计
结 束 语 …………………………………………………………………………… 6 参考文献………………………………………………………………………………8
安徽电子信息职业技术学院课程设计
低频信号发生器
一、绪 言(注:一层标题,居中)
(一)设计任务(注:二层标题,居中)
1、交通信号灯的起源(注:三层标题,靠左顶格排列,标题与标题之间不空行) 交通信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通
参考文献
[1].高大钊主编,土力学与基础工程[M],北京:中国建筑工业出版社,1998.9: 49-55. [2] ……
8
所得收获:通过这次毕业设计,使我得到了一次用专业知识和专业技能去分 析问题、解决问题全面系统的锻炼。使我在单片机的基本原理、单片机应用系统 开发过程,以及用汇编语言设计程序的思路技巧等方面都能向前迈了一大步,为 日后成为合格的应用型人才打下良好的基础。
7
安徽电子信息职业技术学院课程设计
低频信号发生器
21 22 23 24 25 26 27 28
P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1
P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD
10 11 12 13 14 15 16 17
R8 R9 R10
10k
10k
10k
U2:A
2
1 =1 3
SW1 SW2 SW3
(三) 汇编语言程序设计
1、主程序 …… ORG 0000H LJMP MAIN ORG 0030H
MAIN: MOV SP, #50H ……
2、1S 延时子程序
……
3、显示子程序
……
低频信号发生器
4
安徽电子信息职业技术学院课程设计
低频信号发生器
三、交通信号灯控制器仿真
(一)系统仿真
在完成了交通灯控制器硬件设计和软件设计以后,便进入系统的调试阶段。 系统的调试步骤和方法基本上是相同的,但具体细节和所采用的开发系统以及用 户系统选用的单片机型号有关,如可选用 Keil 软件进行软件调试,用 Proteus 软 件完成硬件调试。
74LS86
U3:A
2
1
74LS04
图 2-1 交通信号灯控制线路图
……
2、主要元器件选择
主要元器件选用型号和数量如表 2-1 所示:
……
序号
材料名称
表 2-1 主要元器件清单
规格型号
数量
2
元件代号
安徽电子信息职业技术学院课程设计
1
单片机
2
晶振
AT89C51 6MHz
低频信号发生器
1
U1
1
X1
(二) 程序流程图
二、系统设计 ……………………………………………………………………… 4 (一) 硬件电路设计………………………………………………………… 4 (二) 程序流程图…………………………………………………………… 4 (三) 汇编语言程序设计…………………………………………………… 4
三、低频信号发生器仿真 ……………………………………………………… 5 (一) 系统仿真 ………………………………………………………………5 (二) 工作原理分析………………………………………………………… 5
案。该信号发生器具有体积小、价格低、性能稳定、功能齐全的优点。
关键词: 关键词一 :单片机 AT89C51 关键词二:低频信号发生器 关键词三: 任意波
目录
一、绪言 …………………………………………………………………………… 1 (一) 设计任务……………………………………………………………… 3 (二) 低频信号发生器控制方案…………………………………………… 3
安徽电子信息职业技术学院 《单片机应用技术》 课程设计报告书
Hale Waihona Puke 题 目:低频信号发生器
姓 名: 专 业: 班 级: 学 号: 设计成绩: 指导教师:
电子信息工程技术 电信 095
0903015
黄凤娟
设计完成日期 2010 年 12 月 20 日
摘要
以单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形 合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、 三角波及其他任意波形。波形的频率和幅度在一定范围内可任意改变。介绍了波 形的生成原理、硬件电路和软件部分的设计原理。介绍了单片机控制 D/A 转换器 产生上述信号的硬件电路和软件编程、DAC0832 D/A 转换器的原理和使用方法、 AT89C52 以及与设计电路有关的各种芯片、关于产生不同低频信号的信号源的方
行能力,减少交通事故有明显效果。交通信号灯在 19 世纪就已出现了。 ……
(注:标题与上段正文之间空一行)
2、早期交通信号灯的控制 从最早的手牵皮带到 20 世纪 50 年代的电气控制,从采用计算机控制到现代
化的电子定时监控,交通信号灯在科学化、自动化上不断地更新、发展和完善。 ……
3、本次设计要实现的目标 (1)学会用汇编语言编写程序 (2)能用单片机 AT89C51 实现方波的显示
……
1、内存单元分配 AT89C51 片内 RAM 存储单元分配如表 2-2 所示:
序号 1 2 3 4
表 2-2 存储单元 50H~7FH R4、R5、R6
R1 R2
片内 RAM 存储单元分配表 用途
相关文档
最新文档