全国名校高考数学经典复习题汇编(附详解)专题:诱导公式

合集下载

5.3 诱导公式(精讲)(解析版)--人教版高中数学精讲精练必修一

5.3 诱导公式(精讲)(解析版)--人教版高中数学精讲精练必修一

5.3诱导公式(精讲)诱导公式公式终边关系图示公式公式二角π+α与角α的终边关于原点对称sin (π+α)=-sin αcos (π+α)=-cos αtan (π+α)=tan α公式三角-α与角α的终边关于x 轴对称sin (-α)=-sin αcos (-α)=cos αtan (-α)=-tan α公式四角π-α与角α的终边关于y 轴对称sin (π-α)=sin αcos (π-α)=-cos αtan (π-α)=-tan α公式五sin()cos 2cos()sin 2π-α=απ-α=α公式六sin()cos 2cos()sin 2π+α=απ+α=-α记忆口诀:可概括为“奇变偶不变,符号看象限”:①“变”与“不变”是针对互余关系的函数名而言的,正弦变余弦、余弦变正弦.②“奇”“偶”是对k·π2±α(k∈Z)中的整数k来讲的.③“象限”指k·π2±α(k∈Z)中,将α看成锐角时,k·π2±α(k∈Z)所在的象限,根据“一全正,二正弦,三正切,四一.利用诱导公式求任意角三角函数值的步骤(1)“负化正”:用公式一或三来转化.(2)“大化小”:用公式一将角化为0°到360°间的角.(3)“小化锐”:用公式二或四将大于90°的角转化为锐角.(4)“锐求值”:得到锐角的三角函数后求值.二.三角函数式化简的常用方法(1)合理转化:①将角化成2kπ±α,π±α,k∈Z的形式.②依据所给式子合理选用诱导公式将所给角的三角函数转化为角α的三角函数.(2)切化弦:一般需将表达式中的切函数转化为弦函数.三.诱导公式综合应用要“三看”一看角:①化大为小;②看角与角间的联系,可通过相加、相减分析两角的关系.二看函数名称:一般是弦切互化.三看式子结构:通过分析式子,选择合适的方法,如分式可对分子分母同乘一个式子变形,平方和差、立方和差公式.考点一给角求值问题【例1】(2023·广东肇庆)求下列各式的值.(1)sin1470︒;(2)9πcos4;(3)11πtan6⎛⎫- ⎪⎝⎭.(4)43sin6π⎛⎫-⎪⎝⎭;(5)()()cos120sin150tan855︒︒︒--+.【答案】(1)12(2)24)12;(5)34-【解析】(1)()1sin1470sin 436030sin302︒=⨯︒+︒=︒=.(2)9πππcos cos 2πcos 444⎛⎫=+= ⎪⎝⎭(3)11πππtan tan 2πtan 666⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭(4)43sin 6π⎛⎫- ⎪⎝⎭7sin 66ππ⎛⎫=-+ ⎪⎝⎭7sin sin sin 666ππππ⎛⎫=-=-+= ⎪⎝⎭1=2.(5)原式()()()cos 18060sin 18030tan 1352360︒︒︒︒︒︒=--⋅-++⨯()cos60sin 30tan135︒︒︒=--+()cos60sin30tan 18045︒︒︒︒=+-cos60sin 30tan 45︒︒︒=-1131224=⨯-=-.【一隅三反】1.(2023秋·新疆塔城)sin 240︒的值是()A.BC .12-D .12【答案】A【解析】()sin 240sin 18060sin 602︒=︒+︒=-︒=-.故选:A.2.(2022秋·浙江金华·高一校考阶段练习)已知角θ的终边经过点(1,2)P ,则()sin ππcos cos 2θθθ-=⎛⎫-+ ⎪⎝⎭()A .13-B .13C .23-D .23【答案】D【解析】由三角函数的定义可得tan 2θ=,则()sin πsin tan 2πsin cos tan 13cos cos 2θθθθθθθθ-===++⎛⎫-+ ⎪⎝⎭.故选:D3.(2023春·海南省直辖县级单位·高一校考期中).求下列各值.(1)πsin 6⎛⎫- ⎪⎝⎭;(2)πcos 4⎛⎫- ⎪⎝⎭;(3)7πtan 6⎛⎫- ⎪⎝⎭;(4)7πsin 4⎛⎫- ⎪⎝⎭(5)47cos π6;(6)7πsin 3⎛⎫- ⎪⎝⎭;(7)()tan 855-︒.【答案】(1)12-;(2)2;(3)(4)2【解析】(1)ππ1sin sin 662⎛⎫-=-=- ⎪⎝⎭;(2)ππcos cos 442⎛⎫-== ⎪⎝⎭;(3)7πππtan tan πtan 666⎛⎫⎛⎫-=-+=-= ⎪ ⎪⎝⎭⎝⎭(4)7πππsin sin 2πsin 4442⎛⎫⎛⎫-=--== ⎪ ⎪⎝⎭⎝⎭.(5)47ππcos πcos 8πcos 6662⎛⎫=-== ⎪⎝⎭.(6)7π7πππsin sin sin 2πsin 3333⎛⎫⎛⎫-=-=-+=-= ⎪ ⎪⎝⎭⎝⎭(7)())tan 855tan855tan(2360135tan135-︒=-︒=-⨯︒+︒=-︒()tan 18045tan451=-︒-︒=︒=.考点二化简求值问题【例2】(2023秋·高一课时练习)已知α的终边与单位圆交于点P m ⎛ ⎝⎭,且α为第二象限角,试求()πsin 23πsin πsin 12ααα⎛⎫- ⎪⎝⎭⎛⎫+--+ ⎪⎝⎭的值.【答案】36-【解析】由题意得22(14m +=,解得2116m =,因为α为第二象限角,可得0m <,所以14m =-,所以1sin ,cos 4αα=-,所以()π1sin cos 243πsin cos 1sin πsin 12αααααα⎛⎫- ⎪-⎝⎭==--++⎛⎫+--+ ⎪⎝⎭【一隅三反】1.(2023秋·高一课时练习)已知4cos 5α=-,且α为第三象限角.求()()()()()7πsin 5πcos tan π2tan 19πsin f αααααα⎛⎫---+ ⎪⎝⎭=----的值.【答案】35-【解析】()()()sin sin tan 3sin tan sin 5f ααααααα-===--.2.(2023秋·高一课时练习)已知1cos 3α=-,且α为第二象限角,tan β=()()πsin cos 3sin sin 2cos πcos 3sin sin αβαβαβαβ⎛⎫++ ⎪⎝⎭+--的值为()A.-411B.-11C.11D【答案】C 【解析】因为1cos 3α=-,且α为第二象限角,所以sin 3α=,则()()πsin cos 3sin sin 2cos πcos 3sin sin αβαβαβαβ⎛⎫++ ⎪⎝⎭+--sin cos 3cos sin =cos cos 3sin sin αβαβαβαβ+--sin 3cos tan =cos 3sin tan ααβααβ+--13311⎛⎫-⨯ ⎪=故选:C.3.(2023春·陕西西安)已知函数()22x f x a -=+(0a >且1a ≠)的图像过定点P ,且角α的始边与x 轴的正半轴重合,终边过点P ,则()211π9πcos sin 22sin πααα⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭--等于()A .23-B .23C .32D .32-【答案】A 【解析】()()()222ππππ11π9πcos 6πsin 4πcos sin cos sin 222222sin πsin π+sin πααααααααα⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++-++-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦==--⎡⎤-+⎣⎦又因为ππcos cos sin 22ααα⎡⎤⎛⎫⎛⎫-+=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,sin os π2c αα⎛⎫= ⎪+⎝⎭,()22sin πsin αα+=,故原式=2sin cos 1sin tan αααα-⋅=-;又()22x f x a -=+过定点()2,3P ,所以3tan 2α=,代入原式得原式=12tan 3α-=-.故选:A考点三给值(或式)求值问题【例3-1】(2023秋·高一课时练习)已知1sin(π)3α-=,则sin(2021π)α-的值为()A .3B .3-C .13D .13-【答案】D【解析】由sin()sin παα-=,可得1sin 3α=,则1sin(2021π)sin[(π)2020π]sin(π)sin 3αααα-=--=-=-=-.故选:D.【例3-2】(2023春·四川眉山·高一校考阶段练习)若πcos 6α⎛⎫+ ⎪⎝⎭=13,则πsin 3α⎛⎫- ⎪⎝⎭等于()A .79-B .3C .79D .13【答案】D 【解析】ππππ1sin sin cos 32663ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:D.【例3-3】(2023秋·浙江嘉兴)已知πsin 6α⎛⎫+= ⎪⎝⎭,且ππ,44α⎛⎫∈- ⎪⎝⎭,则πsin 3α⎛⎫-= ⎪⎝⎭()A .BCD 【答案】D【解析】因为ππ,44α⎛⎫∈- ⎪⎝⎭,所以ππ5π,61212α⎛⎫+∈- ⎪⎝⎭,又πsin 063α⎛⎫+=> ⎪⎝⎭,所以ππππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:D【一隅三反】1.(2023·全国·高三专题练习)已知π2cos 33α⎛⎫+= ⎪⎝⎭,则2πcos 3α⎛⎫- ⎪⎝⎭的值等于()A .23B .23-C D .【答案】B【解析】因为2πππ2cos()cos π()cos()3333ααα⎡⎤-=-+=-+=-⎢⎥⎣⎦.故选:B.2.(2023秋·山东德州)已知2π3sin 35x ⎛⎫+= ⎪⎝⎭,则7πcos 6x ⎛⎫+ ⎪⎝⎭等于.【答案】35-/0.6-【解析】7πππππ2π3cos cos(π)cos()sin()sin()6662635x x x x x ⎛⎫+=++=-+=-++=-+=- ⎪⎝⎭.故答案为:35-3.(2023春·上海嘉定·高一校考期中)已知π1cos 64x ⎛⎫+= ⎪⎝⎭,则25ππcos cos 63x x ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭的值为;【答案】1116【解析】π1cos 64x ⎛⎫+= ⎪⎝⎭ ,5πππ1cos cos cos 6664x x x π⎡⎤⎛⎫⎛⎫⎛⎫∴-=-+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,ππππcos cos sin 3266x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,222πππ115cos sin 1cos 13661616x x x ⎛⎫⎛⎫⎛⎫∴-=+=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,25ππ11511cos cos 6341616x x ⎛⎫⎛⎫∴-+-=-+= ⎪ ⎪⎝⎭⎝⎭.故答案为:1116.考点四利用诱导公式证明恒等式【例4】(2022·高一课时练习)求证:()()()3tan 2cos cos 62133tan sin cos 22ααααααπ⎛⎫π--π- ⎪⎝⎭=ππ⎛⎫⎛⎫π-++ ⎪ ⎪⎝⎭⎝⎭.【答案】证明见解析【解析】证明:左边()()()tan cos cos 2tan sin cos 22αααααα⎡π⎤⎛⎫---- ⎪⎢⎥⎝⎭⎣⎦=⎡π⎤⎡π⎤⎛⎫⎛⎫--+-+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()()()()tan sin cos tan cos sin αααααα--=--1==右边,所以原式成立.【一隅三反】1.(2023云南)求证:()()()cos 6sin 2tan 2tan 33cos sin 22πθπθπθθππθθ+---=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭.【答案】证明见解析【解析】证明:左边=()()cos sin tan cos sin tan tan sin (cos )sin cos θθθθθθθθθθθ--==---=右边所以原等式成立2.(2023·高一课时练习)求证:()()()()()11sin 2cos cos cos 22tan 9cos sin 3sin sin 2πππαπααααππαπαπαα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭=-⎛⎫----+ ⎪⎝⎭.【答案】证明见解析.【解析】左边=()()()()sin cos sin sin cos sin sin cos αααααααα-⋅----⋅⋅⋅=–tan α=右边,∴等式成立.3.(2023·全国·高一假期作业)求证:232sin()cos()12212sin ()ππθθπθ-+--+=tan(9)1tan()1πθπθ+++-.【答案】证明见解析【解析】左边()()22222222sin()sin 12sin cos sin cos 2sin cos 1212sin 12sin sin cos 2sin πθθθθθθθθθθθθθ+----+--===--+-()()()2sin cos sin cos cos sin cos sin sin cos θθθθθθθθθθ-++==+--.右边sin 1tan()1tan 1sin cos cos sin tan()1tan 1sin cos 1cos θπθθθθθθπθθθθθ+++++====+----.∴左边=右边,故原等式成立.4.(2023北京)(1)求证:tan(2)sin(2)cos(6)tan 33sin(22παπαπααππαα----=-++;(2)设8tan()7m πα+=,求证1513sin()3cos()37720221sin()cos()77m m ππααππαα++-+=+--+.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)左边=tan()sin()cos()sin[2()]cos[2()]22αααπππαπα-------22(tan)(sin)cos sin sincos sinsin[()]cos[()]sin()cos()2222αααααππππαααααα--===--------sin tancosααα=-=-=右边,所以原等式成立.(2)方法1:左边=88sin[()]3cos[()3]7788sin[4()]cos[2(77πππααππππαπα++++--+-++=888sin()3cos()tan()3777888sin()cos()tan()1777πππαααπππααα-+-+++=-+-+++=31mm++=右边,所以原等式成立.方法2:由8tan()7mπα+=,得tan()7mπα+=,所以,等式左边=sin[2()]3cos[()2]77sin[2()]cos[2()]77πππααπππππαππα++++-+-+-+++=sin()3cos()77sin()cos()77ππααππαα++++++=tan()3371tan()17mmπαπα+++=+++=右边,等式成立.。

高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学 知识点 三角函数  诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。

【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。

属于基础题型。

================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。

【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。

================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。

三角函数的诱导公式

三角函数的诱导公式
o o o o
⑶ sin 11 π = sin(π + π ) = -sin π = -sin18o = -0.3090 10 10 10
3
3
3
例3:已知 sin 20 a, 如何求
sin 380 , sin 200 , sin(20 ), sin160 ?
y
(x, y)
p3
160
函数名不变, 符号看象限
诱导公式 三:
sin( ) sin ; cos( ) cos ; tan( ) tan 。函数名不变, 符号看象限 诱导公式 四: (将α看成锐角)。 sin( ) sin ; cos( ) cos ; tan( ) tan 。
公式一、二、三、四都叫做诱导公式. 我们可以用下面一段话来概括公式一~ 四: -α , α +k 2πo k Z , π ±α 的三 角函数值,等于α的同名函数值,前面加上 一个把α看成锐角时原函数值的符号。
简化成“函数名不变,符号看象限”的口诀。
例1:将下列各三角函数化成锐角三角函数。
全国名校高中数学优质学案汇编(附详解) 1.3 三角函数的诱对称性
角之间的 数量关系
对称点的 数量关系 诱导公式
“对称是美的基本形式”
教学目标
知识与能力
1、识记诱导公式; 2、理解和掌握公式的内涵及结构特征, 会初步运用诱导公式求三角函数的值,并进 行简单三角函数式的化简和证明。
从而得到公式三:
y sin y,cos x, tan ; x
sin(- α ) = - sin α; cos(- a) = cos α; tan(- α ) = - tan α。

高中数学《三角函数的诱导公式》经典练习题及参考答案

高中数学《三角函数的诱导公式》经典练习题及参考答案

三角函数的诱导公式经典练习题一、选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为( ) A. 21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A. 23 B. 21 C. 23± D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD. cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4) 二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ . 8.|sinα|=sin (-π+α),则α的取值范围是 .三、解答题:9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.参考答案1.C 2.A 3.C 4.C 5.A6.±65π 7.11-+m m 8.[(2k -1) π,2k π] 9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.1611 11.解:(1)sin3π7=sin (2π+3π)=sin 3π=23. (2)cos 4π17=cos (4π+4π)=cos 4π=22. (3)tan (-6π23)=cos (-4π+6π)=cos 6π=23. (4)sin (-765°)=sin [360°×(-2)-45°]=sin (-45°)=-sin45°=-22. 注:利用公式(1)、公式(2)可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:(1)sin3π4·cos 6π25·tan 4π5=sin (π+3π)·cos (4π+6π)·tan (π+4π) =(-sin 3π)·cos 6π·tan 4π=(-23)·23·1=-43. (2)sin [(2n +1)π-3π2]=sin (π-3π2)=sin 3π=23. 13.解:f (θ)=θθθθθcos cos 223cos sin cos 2223++-++ =θθθθθcos cos 223cos cos 1cos 2223++-+-+ =θθθθθcos cos 22)cos (cos 2cos 2223++--- =θθθθθcos cos 22)1(cos cos )1(cos 223++--- =θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++- =θθθθθcos cos 22)2cos cos 2)(1(cos 22++++- =cos θ-1,∴f (3π)=cos 3π-1=21-1=-21.。

高中必考难点题型(带答案)--诱导公式(解析版)

高中必考难点题型(带答案)--诱导公式(解析版)

简单已测:2388次正确率:95.4 %1.的值为( )A.B.C.D.考点:利⽤诱导公式求三⻆函数的值知识点:诱导公式⼀:终边相同的⻆,同名三⻆函数值相等、诱导公式的应⽤答案:A解析:,故选:A.⼀般已测:4680次正确率:80.0 %2.化简( )A.B.C.D.考点:同⻆三⻆函数基本关系的运⽤、利⽤诱导公式化简三⻆函数式知识点:同⻆三⻆函数的基本关系的应⽤、诱导公式的应⽤答案:B 解析:,故选:B.简单已测:3090次正确率:81.2 %3.的值等于( )A.B.C.D.考点:利⽤诱导公式求三⻆函数的值知识点:诱导公式⼀:终边相同的⻆,同名三⻆函数值相等答案:C解析:.故选:.简单已测:1684次正确率:90.5 %4.对于,下列等式中恒成⽴的是( )A.tan (−330)∘ 3 3− 3−333tan −330=tan 30= (∘)∘33 =cos (π−α)tan (3π−α)sin (2π−α)tan (π+α)sin ( +α)2πcos α−sin α−cos αsin α= =−sin αcos (π−α)tan (3π−α)sin (2π−α)tan (π+α)sin ( +α)2πcos αtan α−sin αtan αcos αsin 32017π 21−21 2 3−23sin =sin = 32017π3π23C α∈R cos(−α)=−cos αB.C.D.考点:利⽤诱导公式化简三⻆函数式知识点:诱导公式⼆:终边关于原点对称、诱导公式三:终边关于x 轴对称答案:B解析:对于,对于,对于⼀般已测:3662次正确率:74.6 %5.已知,则( ).A.B.C.D.考点:利⽤诱导公式根据条件求值知识点:诱导公式三:终边关于x 轴对称、诱导公式五:⻆度互余答案:D解析:,,则.故答案为:.中等已测:4495次正确率:75.4 %6.下列关系中正确的是( )A.B.C.D.考点:利⽤诱导公式化简三⻆函数式、正弦函数的单调性问题知识点:诱导公式四:⻆度互补、诱导公式五:⻆度互余答案:B解析:,,由三⻆函数线可知.即,故选.⼀般已测:685次正确率:84.8 %sin(−α)=−sin αsin(π+α)=sin αcos(π+α)=cos αA:cos(−α)=cos αC:sin(π+α)=−sin αD :cos(π+α)=−cos αsin(α+75)= ∘21cos(α−15)=∘2 3−23−21 21∵sin(α+75)= ∘21∴cos[90−(α+75)]=cos (15−α)=∘∘∘21cos(α−15)=cos(15−α)= ∘∘21 21sin 15<sin 163<cos 74∘∘∘sin 15<cos 74<sin 163∘∘∘sin 163<sin 15<cos 74∘∘∘cos 74<sin 163<sin 15∘∘∘∵sin 163=sin 17∘∘cos 74=sin 16∘∘sin 15<sin 16<sin 17∘∘∘sin 15<cos 74<sin 163∘∘∘B7.设,,且,则( )A.B.C.D.考点:同⻆三⻆函数基本关系的运⽤、两⻆和与差的灵活应⽤知识点:同⻆三⻆函数的商数关系、诱导公式六:异名函数变换,⻆度相差90度答案:C解析:由,得:,即,,,,∴当时,成⽴. 故选:C .中等已测:1359次正确率:73.5 %8.已知则.考点:同⻆三⻆函数基本关系的运⽤、利⽤诱导公式化简求值知识点:同⻆三⻆函数的平⽅关系、同⻆三⻆函数的商数关系答案:解析:解:⼜故答案为:⼀般已测:113次正确率:91.8 %9.已知⻆的终边过点,则,.考点:任意⻆的三⻆函数的定义理解及应⽤、同⻆三⻆函数基本关系的运⽤知识点:任意⻆的三⻆函数定义、同⻆三⻆函数的商数关系答案:解析:⻆终边上⼀点,由三⻆函数的定义可得,,故答案为:,.⼀般已测:1931次正确率:65.1 %a∈0, (2π)β∈0, (2π)tan α= cos β1+sin β3α−β= 2π3α+β= 2π2α−β= 2π2α+β=2πtan α= cos β1+sin β = cos αsin αcos β1+sin βsin αcos β=cos α+cos αsin βsin α−β=cos α=sin −α()(2π)∵α∈0, (2π)β∈0, (2π)2α−β= 2πsin α−β=sin −α=cos α()(2π)sin (α+ )= ,2π31α∈(− ,0),2πtan α=−22∵sin (α+ )=cos α,sin (α+ )= ,2π2π31∴cos α= 31α∈(− ,0),2π∴sin α=− ,32 2∴tan α= =−2 ,cos αsin α2−2 .2θ(4,−3)tan θ= =sin θ−cos(θ−180)∘sin(θ+90)+cos θ∘− 438∵θP (4,−3)∴tan θ=− 43∴ = = =8sin θ−cos(θ−180)∘sin(θ+90)+cos θ∘sin θ−(−cos θ)cos θ+cos θtan θ+12− 438(1)(2)10.设(其中为⾮零实数),若,则.考点:利⽤诱导公式根据条件求值、利⽤诱导公式化简三⻆函数式知识点:诱导公式⼀:终边相同的⻆,同名三⻆函数值相等、诱导公式⼆:终边关于原点对称答案:解析:由题意:(其中为⾮零实数),,可得,得,那么.故答案为.⼀般已测:4980次正确率:66.9 %11.已知的终边经过点,求的值.考点:利⽤诱导公式根据条件求值、利⽤诱导公式化简三⻆函数式知识点:利⽤⻆a 终边上任意⼀点的坐标定义三⻆函数、诱导公式三:终边关于x 轴对称答案:解析:的终边经过点,,.简单已测:3829次正确率:81.5 %12.已知,其中为第三象限⻆,求的值.考点:同⻆三⻆函数基本关系的运⽤、利⽤诱导公式求三⻆函数的值知识点:同⻆三⻆函数的基本关系的应⽤、诱导公式的应⽤答案:解析:,且为第三象限⻆,,则原式.⼀般已测:2666次正确率:94.7 %13.已知.求的值.当为第三象限⻆时,求的值.考点:三⻆函数在各象限的符号、根据同⻆三⻆函数关系求值知识点:同⻆三⻆函数的基本关系的应⽤、诱导公式的应⽤(1)答案:f (x )=asin (πx +θ)+bcos (πx +θ)+3a ,b ,θf (2016)=−1f (2017)=7f (x )=asin (πx +θ)+bcos (πx +θ)+3a ,b ,θf (2016)=−1−1=asin (2016π+θ)+bcos (2016π+θ)+3asin θ+bcos θ=−4f (2017)=asin (2017π+θ)+bcos (2017π+θ)+3=asin (2016π+π+θ)+bcos (2016π+π+θ)=asin (π+θ)+bcos (π+θ)+3=−asin θ−bcos θ+3=−(asin θ+bcos θ)+3=77αP (m ,3m )(m <0) 4cos (−α)+sin (2π−α)2cos (π−α)−3sin (π+α)7∵αP (m ,3m )(m <0)∴tan α=3∴ = = =74cos (−α)+sin (2π−α)2cos (π−α)−3sin (π+α)4cos α−sin α−2cos α+3sin α4−tan α−2+3tan αcos (75+α)= ∘31αcos (105−α)+sin (α−105)∘∘ 3−1+2 2∵cos (75+α)= ∘31α∴sin (75+α)=− =− ∘1−( )31232 2=cos [180−(75+α)]+sin [(75+α)−180]=−cos (75+α)−sin (75+α)= ∘∘∘∘∘∘3−1+2 2 =3cos(π−a )sin(3π−a )sin(−π−a )sin −a cos +a (23π)(2π)sin a a cos a ,tan a −313ππ(1)(2)(1)(2)解析:,,.(2)答案: 解析:为第三象限⻆,,.⼀般已测:4393次正确率:86.8 %14.已知,计算下列各式的值.;考点:同⻆三⻆函数基本关系的运⽤、利⽤诱导公式化简求值知识点:同⻆三⻆函数的基本关系的应⽤、诱导公式的应⽤(1)答案:解析:由题易得:原式;(2)答案:解析:原式.⼀般已测:3653次正确率:87.7 %15.已知⽅程,求的值.考点:利⽤诱导公式化简三⻆函数式、三⻆函数的化简求值知识点:诱导公式的应⽤答案:解析:,且原式⼀般已测:1494次正确率:72.7 %16.已知,其中.求的值;求的值.考点:同⻆三⻆函数基本关系的运⽤、根据同⻆三⻆函数关系求值知识点:同⻆三⻆函数的平⽅关系、同⻆三⻆函数的商数关系(1)答案:解析:,;=3cos π−a sin 3π−a sin −π−a ()()()sin −a cos +a (23π)(2π)∴ =3−cos a ⋅sin a ⋅sin a −cos a ⋅−sin a ()∴− =3,sin a =− sin a 131 4 2∵a ∴cos a =− =− 1−sin a 2322∴tan a = = cos a sin a 4 2 =2sin α−cos αsin α+cos αcos α−2sin αcos α−12 cos (π−α)sin (α−3π)sin (π−α)sin ( +α)25πsin (2π−α)cos (π+α)cos (α− )cos ( −α)2π211π− 23tan α=3= = = =−sin α+cos α22cos α−2sin αcos α−12sin α+cos α22−2sin αcos α−sin α2tan α+12−2tan α−tan α223−3= =−tan α=−3−cos α(−sin α)sin αcos α−sin α(−cos α)sin α(−sin α)sin (α−3π)=2cos (α−4π) 2sin ( −α)−sin (−α)23πsin (π−α)+5cos (2π−α)− 43∵sin (α−3π)=2cos (α−4π)∴−sin (3π−α)=2cos (4π−α).∴−sin (π−α)=2cos (−α),∴sin α=−2cos αcos α≠0,∴= = = =− .−2cos α+sin αsin α+5cos α−2cos α−2cos α−2cos α+5cos α−4cos α3cos α43sinx = 540≤x ≤ 2πcosx sin −x −sin 2π−x (2π)()cos −x () 53∵sinx = ,0≤x ≤ 542π∴cosx = = 1−sin x 253(2)答案:解析:,,原式. 73∵sinx =54cosx = 53∴= = = cosx +sinx cosx + 5354 5373。

高中数学诱导公式全集高三英语作文套题万能公式高考语文现代文规范答题模式

高中数学诱导公式全集高三英语作文套题万能公式高考语文现代文规范答题模式

高中数学诱导公式全集+高三英语作文套题万能公式+高考语文现代文规范答题模式一、高中数学诱导公式全集:常用旳诱导公式有如下几组:公式一:设α为任意角, 终边相似旳角旳同一三角函数旳值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角, π+α旳三角函数值与α旳三角函数值之间旳关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α旳三角函数值之间旳关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:运用公式二和公式三可以得到π-α与α旳三角函数值之间旳关系: sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:运用公式一和公式三可以得到2π-α与α旳三角函数值之间旳关系: sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α旳三角函数值之间旳关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意: 在做题时, 将a当作锐角来做会比很好做。

高中数学专题6.5三角函数的诱导公式(2个考点六大题型) 试卷及答案

高中数学专题6.5三角函数的诱导公式(2个考点六大题型)  试卷及答案

专题6.5三角函数的诱导公式(2个考点六大题型)【题型1 诱导公式一】【题型2 诱导公式二、三、四】【题型3 诱导公式五、六】【题型4 诱导公式-恒等式的证明】【题型5 诱导公式-化简、求值】【题型6 正切函数的诱导公式】【题型1 诱导公式一】cos390=(D.-sin1080=)2820 1.(2023春·北京东城·高一北京市第一六六中学校考阶段练习)sin210=( )1210cos120tan 45+= 根据诱导公式,填适当的式子,使为第二象限角,且sin θcos165=(-24sin(α-是ABC的高一校考开学考试)已知ABC为锐角三角形,则下列不等关系中cos cosA>sin cosA>高一重庆市杨家坪中学校考阶段练习)(多选)已知cos2cos882sin47sin133+=;(cos5cos852sin50sin130+=. 根据以上恒等式,请你猜想出一个一般性的结论并证明. 秋·高一课时练习)求证:当2=或3时,tan(cos(2k 2π1203=πsin(2α-秋·高一课时练习))tan2022,sin2022位于(2)若()0,πθ∈,且()25fθ=-,求cos sinθθ-的值.专题6.5三角函数的诱导公式(2个考点六大题型)【题型1 诱导公式一】【题型2 诱导公式二、三、四】【题型3 诱导公式五、六】【题型4 诱导公式-恒等式的证明】【题型5 诱导公式-化简、求值】【题型6 正切函数的诱导公式】【题型1 诱导公式一】cos390=(D.-()3cos390cos36030cos302=+==.辽宁葫芦岛·高一统考期末)17sin4π的值为(sin1080=.()sin1080sin33600sin00=⨯+==;cos高一课时练习)已知12cot5θ=-,且θ为第二象限角,.)2820)()32820sin 836060sin 602=-⨯+==.ππtan 144⎫==⎪⎭. ππ2⎫()1sin210sin 18030sin 302=+=-=-.高一校联考阶段练习)在平面直角坐标系中,若角【详解】(sin πθ+的终边可能在第三或第四象限CD.2023春·吉林长春列结论正确的是(210cos120tan 45+= 【分析】利用诱导公式及特殊角的三角函数值化简求值. ()()11sin 18030cos 18060210cos120sin 30cos 60221tan 45tan 45tan 451--++-+--====-. 故答案为:-12023春·福建福州·高二校考期末)根据诱导公式,填适当的式子,使 cosα=-cos165=( 24- ()cos165cos 9075sin 75=+=-,则()75sin 3045sin30cos 45cos30sin 45=+=+1222=⨯+26cos165sin 754+︒=-︒=-. 故选:A .是ABC的高一校考开学考试)已知ABC 为锐角三角形,则下列不等关系中cos cos A >sin cos A >【分析】因为ABC 为锐角三角形,所以π【详解】因为ABC 为锐角三角形,,,3πcos A >,4πcos A <π因为ABC 为锐角三角形,,2B π+>∴,02A π<<sin(2A π>cos2cos882sin47sin133+=;(cos5cos852sin50sin130+=. 根据以上恒等式,请你猜想出一个一般性的结论并证明. ()()()cos 90cos 2sin 45sin 135αααα-+=+-,证明见详解.【分析】观察结构猜想等式,利用三角恒等变换证明即可)()()cos 90cos 245sin 135αααα-+=+- 证明:由诱导公式可得()()()cos 90sin ,sin 135sin 45αααα-=-=+,)()()()90cos sin cos cos 2sin cos 45cos sin 4545sin 135sin 45ααααααααααα-+++===++-+ 秋·高一课时练习)求证:当2k =或3时,tan(π)tan(π)cos(2π)sin[(21)π]k k k k αααα-+=-++【答案】证明见解析【详解】(tan 3π+C.2023·全国·高三专题练习)已知 【答案】B2π1203=πsin(2α-ABD2π1203=πtan 4=cos α,所以【详解】(cos πα-)πsin α-=-AB.2023秋·广东河源3π⎫⎛)π6θ⎛⎫-+ ⎪⎝⎭所以,5π6fθ⎛+⎝故答案为:(1)1.(2022秋·甘肃兰州·高一校考期末)在平面直角坐标系中,点()tan2022,sin2022P 位于第( )象限 A .一 B .二 C .三 D .四【答案】D【分析】运用诱导公式计算出P 点坐标的符号就可判断出P 点所在的象限.【详解】()tan 2022tan 5360222tan 2220︒︒︒︒=⨯+=> ,()sin 2022sin 5360222sin 2220︒︒︒︒=⨯+=< , ()tan 2022,sin 2022P ︒︒∴ 在第四象限;故选:D.2.(2022秋·江苏常州·高一常州高级中学校考期末)已知偶函数()f x 在(0,)+∞上单调递减,若tan114a =︒,tan172b =︒,tan 287c =︒,则下列不等关系中正确的是( ) A .()()()f c f b f a >> B .()()()f c f a f b >> C .()()()f b f c f a >> D .()()()f b f a f c >>【答案】D【分析】根据题意,由三角函数的诱导公式可得tan114tan 66a =︒=-︒,tan172tan8b =︒=-︒,tan 287tan107tan 73c =︒=︒=-︒,由正切函数的性质结合函数的奇偶性和单调性分析可得答案.,04π<-,而060<正确;23,cos π⎛⎫= ⎪3013π<<故选:ACD.4.(2023【答案】-【分析】利用诱导公式化简计算即可π25π5ππππcos tan sin πcos 32πtan π346346⎛⎫⎛⎫⎛⎫=+⨯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ πππ3232cos tan 3462234⎛⎫⎛⎫-=-⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭; 故答案为:24. 2021秋·北京通州·高一校考阶段练习)已知cos α是方程2320x x --=三象限角,求3sin α⎛-+ ⎝,2sin cos α+3cos 2sin 2ππα⎫⎛+⎪ ⎭⎝⎫⎛+⎪ ⎭⎝全国·高一专题练习)已知)()f θ=-cos θθ=-sin 0θθ-<sin θθ-=。

2025高考数学必刷题 第28讲、三角函数概念及诱导公式(学生版)

2025高考数学必刷题  第28讲、三角函数概念及诱导公式(学生版)

第28讲三角函数概念及诱导公式知识梳理知识点一:三角函数基本概念1、角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是{}Z k k S ∈+︒⋅==,αββ360.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(4)象限角的集合表示方法:2、弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:rad 180π=︒,rad 1801π=︒,π︒=180rad 1.(3)扇形的弧长公式:r l ⋅=α,扇形的面积公式:22121r lr S ⋅==α.3、任意角的三角函数(1)定义:任意角α的终边与单位圆交于点)(y x P ,时,则y =αsin ,x =αcos ,)0(tan ≠=x xyα.(2)推广:三角函数坐标法定义中,若取点P )(y x P ,是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则r y =αsin ,r x =αcos ,)0(tan ≠=x xyα三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号αsin R ++--αcos R+--+αtan }2|{Z k k ∈+≠,ππαα+-+-记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦.4、三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线知识点二:同角三角函数基本关系1、同角三角函数的基本关系(1)平方关系:1cos sin 22=+αα.(2)商数关系:)2(tan cos sin ππααααk +≠=;知识点三:三角函数诱导公式公式一二三四五六角)(2Z k k ∈+απαπ+α-απ-απ-2απ+2正弦αsin αsin -αsin -αsin αcos αcos 余弦αcos αcos -αcos αcos -αsin αsin -正切αtan αtan αtan -αtan -口诀函数名不变,符号看象限函数名改变,符号看象限【记忆口诀】奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.【解题方法总结】1、利用1cos sin 22=+αα可以实现角α的正弦、余弦的互化,利用αααtan cos sin =可以实现角α的弦切互化.2、“ααααααcos sin cos sin cos sin -+,,”方程思想知一求二.222(sin cos )sin cos 2sin cos 1sin 2ααααααα+=++=+222(sin cos )sin cos 2sin cos 1sin 2ααααααα-=+-=-22(sin cos )(sin cos )2αααα++-=必考题型全归纳题型一:终边相同的角的集合的表示与区别例1.(2024·辽宁·校联考一模)已知角α的终边上一点的坐标为4π4πsin ,cos 55⎛⎫ ⎪⎝⎭,则α的最小正值为()A .π5B .3π10C .4π5D .17π10例2.(2024·全国·高三专题练习)下列与角9π4的终边相同的角的表达式中正确的是()A .()2π45Z k k +∈B .()9π360Z 4k k ⋅+∈C .()360315Z k k ⋅-∈D .()5ππZ 4k k +∈例3.(2024·广东·高三统考学业考试)下列各角中与437︒角的终边相同的是()A .67B .77C .107D .137变式1.(2024·北京·高三北大附中校考阶段练习)已知角α的终边为射线(0)y x x =≤,则下列正确的是()A .54πα=B .cos 2α=C .tan 12πα⎛⎫+=- ⎪⎝⎭D .sin 14πα⎛⎫+= ⎪⎝⎭【解题方法总结】(1)终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2)注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.题型二:等分角的象限问题例4.(2024·全国·高三专题练习)已知α是锐角,那么2α是().A .第一象限角B .第二象限角C .小于180°的正角D .第一或第二象限角例5.(2024·全国·高三专题练习)若角α是第二象限角,则角2α的终边不可能在()A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限例6.(2024·浙江·高三专题练习)若角α满足α=236k ππ+(k ∈Z),则α的终边一定在()A .第一象限或第二象限或第三象限B .第一象限或第二象限或第四象限C .第一象限或第二象限或x 轴非正半轴上D .第一象限或第二象限或y 轴非正半轴上变式2.(1990·上海·高考真题)设α角属于第二象限,且cos cos 22αα=-,则2α角属于()A .第一象限B .第二象限C .第三象限D .第四象限变式3.(2024·全国·高三专题练习)已知角α的终边与53π的终边重合,则3α的终边不可能在()A .第一象限B .第二象限C .第三象限D .第四象限变式4.(2024·全国·高三专题练习)若角α是第一象限角,则2α是()A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角【解题方法总结】先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示.题型三:弧长与扇形面积公式的计算例7.(2024·上海松江·高三上海市松江二中校考阶段练习)已知扇形的圆心角为2π3,扇形的面积为3π,则该扇形的周长为__________.例8.(2024·上海徐汇·上海市南洋模范中学校考三模)已知扇形圆心角60,αα= 所对的弧长6πl =,则该扇形面积为__________.例9.(2024·全国·高三专题练习)在东方设计中存在着一个名为“白银比例”的理念,这,它在东方文化中的重要程度不亚于西方文化中的“黄金分割比例”,传达出一种独特的东方审美观.如图,假设扇子是从一个圆面剪下的,扇形的面积为1S ,圆面剩余部分的面积为2S ,当21S S =扇面较为美观.那么按“白银比例”制作折扇时,扇子圆心角的弧度数为____________.变式5.(2024·全国·高三专题练习)《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为20米,则该扇形田的面积为_____平方米.变式6.(2024·福建厦门·高三福建省厦门第六中学校考阶段练习)若一个扇形的周长是4为定值,则当该扇形面积最大时,其圆心角的弧度数是__.变式7.(2024·江西鹰潭·高三鹰潭一中校考阶段练习)已知一扇形的圆心角为α,半径为r ,弧长为l ,若扇形周长为20,当这个扇形的面积最大时,则圆心角α=______弧度.【解题方法总结】应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.题型四:三角函数定义题例10.(2024·湖南邵阳·高三统考学业考试)已知()3,4P 是角α终边上的一点,则sin α=()A .35B .45C .34D .47例11.(2024·全国·高三对口高考)如果点P 在角2π3的终边上,且||2OP =,则点P 的坐标是()A .B .(-C .(D .(1)-例12.(2024·北京丰台·北京丰台二中校考三模)已知点A 的坐标为(,将OA 绕坐标原点O 逆时针旋转π2至OB ,则点B 的纵坐标为()A .B .1-CD .1变式8.(2024·全国·高三专题练习)设a<0,角α的终边与圆221x y +=的交点为(34)P a a -,,那么sin 2cos αα+=()A .25-B .15-C .15D .25变式9.(2024·全国·高三专题练习)如图所示,在平面直角坐标系xOy 中,动点P ,Q 从点(1,0)A 出发在单位圆上运动,点P 按逆时针方向每秒钟转6π弧度,点Q 按顺时针方向每秒钟转116π弧度,则P ,Q 两点在第2019次相遇时,点P 的坐标为________.【解题方法总结】(1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出角α终边的位置.(2)判断三角函数值的符号,关键是确定角的终边所在的象限,然后结合三角函数值在各象限的符号确定所求三角函数值的符号,特别要注意不要忽略角的终边在坐标轴上的情况.题型五:象限符号与坐标轴角的三角函数值例13.(2024·全国·高三对口高考)若13π7α=,则()A .sin 0α>且cos 0α>B .sin 0α>且cos 0α<C .sin 0α<且cos 0α>D .sin 0α<且cos 0α<例14.(2024·全国·高三专题练习)已知点()sin23,cos23A -是角α终边上一点,若0360α<< ,则α=()A .113B .157C .293D .337例15.(2024·河南·校联考模拟预测)已知α是第二象限角,则点(cos(sin ),sin(cos ))αα所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限变式10.(2024·河南·校联考模拟预测)已知α是第二象限角,则点(cos()α-,sin()α-)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限变式11.(2024·河南许昌·高三校考期末)在平面直角坐标系中,点()sin 2023tan 2023P ︒︒,位于第()象限A .一B .二C .三D .四变式12.(2024·全国·高三专题练习)已知点()cos ,tan P θθ是第二象限的点,则θ的终边位于()A .第一象限B .第二象限C .第三象限D .第四象限【解题方法总结】正弦函数值在第一、二象限为正,第三、四象限为负;.余弦函数值在第一、四象限为正,第二、三象限为负;.正切函数值在第一、三象限为正,第二、四象限为负.题型六:同角求值—条件中出现的角和结论中出现的角是相同的例16.(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知θ是三角形的一个内角,且满足sin cos 5θθ-=,则tan θ=()A .2B .1C .3D .12例17.(2024·山西阳泉·统考二模)已知sin cos αα+,0πα<<,则sin cos αα-=()A .BC .D 例18.(2024·全国·高三专题练习)已知1sin cos 5αα+=,且()0,πα∈,sin cos αα-=()A .75±B .75-C .75D .4925变式13.(2024·贵州铜仁·统考模拟预测)已知πsin sin 2θθ⎛⎫-+ ⎪⎝⎭tan θ=()A .B .1-C .1D 变式14.(2024·上海浦东新·华师大二附中校考模拟预测)已知sin cos αα、是关于x 的方程2320x x a -+=的两根,则=a __________.变式15.(2024·湖南衡阳·高三衡阳市一中校考期中)已知sin cos αα-=sin 2α=________.变式16.(2024·全国·高三专题练习)已知()7sin cos 0π13ααα+=<<,则tan α=______.变式17.(2024·全国·高三专题练习)若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ-=________.变式18.(2024·陕西西安·校考模拟预测)已知tan 2θ=,则1sin 2cos 2θθ+的值是__________.变式19.(2024·浙江温州·乐清市知临中学校考二模)已知tan x ,则23sin 2sin cos x x x -=__________.变式20.(2024·全国·高三对口高考)若sin cos 2sin cos x xx x-=+,求sin cos x x 的值为__________.【解题方法总结】(1)若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2)若无象限条件,一般“弦化切”.题型七:诱导求值与变形例19.(2024·山西阳泉·统考三模)已知πsin 6α⎛⎫+= ⎪⎝⎭,且ππ,44α⎛⎫∈- ⎪⎝⎭,则πsin 3α⎛⎫-= ⎪⎝⎭_______.例20.(2024·四川绵阳·统考三模)已知π,π2θ⎛⎫∈ ⎪⎝⎭,()sin π3θ+=,则tan θ=______.例21.(2024·陕西西安·高三西北工业大学附属中学校考阶段练习)若()1sin 2πα+=-,则cos α的值为()A .12±B .12C .2D .2±变式21.(2024·陕西西安·高三西北工业大学附属中学校考阶段练习)若1sin 3A =,则()sin 6A π-的值为()A .13B .13-C.3-D.3变式22.(2024·广东深圳·统考模拟预测)已知π4sin 35α⎛⎫+= ⎪⎝⎭,则5πcos 6α⎛⎫+ ⎪⎝⎭的值为()A .35-B .35C .45-D .45变式23.(2024·陕西西安·长安一中校考二模)已知π5cos 513α⎛⎫-= ⎪⎝⎭,则7πsin 10α⎛⎫-= ⎪⎝⎭()A .513-B .513C .-1213D .1213【解题方法总结】(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数.(2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化题型八:同角三角函数基本关系式和诱导公式的综合应用例22.(2024·河南驻马店·统考三模)已知tan 2θ=,则3πsin sin 2θθ⎛⎫+= ⎪⎝⎭()A .35B .12C .12-D .25-例23.(2024·全国·高三对口高考)若tan 1tan 1x x =--,求π3πsin cos 22x x ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的值.例24.(2024·全国·高三专题练习)已知tan 3α=,求()()πsin 3sin π23πcos cos 5π2αααα⎛⎫+++ ⎪⎝⎭⎛⎫--+ ⎪⎝⎭的值.变式24.(2024·河南周口·高三校考期中)(1)若3sin cos 0αα+=,求2cos 2sin cos ααα+的值;(2)设()222sin(π)cos(π)cos(π)3ππ1sin cos sin 22f ααααααα+--+⎛⎫⎛⎫+++-+ ⎪ ⎪⎝⎭⎝⎭=)12si (n 0α≠+,求23π6f ⎛⎫- ⎪⎝⎭的值.变式25.(2024·江苏扬州·高三校联考期末)在平面直角坐标系xOy 中,O 是坐标原点,角α的终边OA 与单位圆的交点坐标为()1,02A m m ⎛⎫-< ⎪⎝⎭,射线OA 绕点O 按逆时针方向旋转θ弧度..后交单位圆于点B ,点B 的纵坐标y 关于θ的函数为()y f θ=(1)求函数()y f θ=的解析式,并求2f π⎛⎫- ⎪⎝⎭的值;(2)若()34f θ=()0,θπ∈,求tan 6πθ⎛⎫+ ⎪⎝⎭的值变式26.(2024·贵州贵阳·高三统考期中)已知角α满足5sin cos 5αα-=(1)若角α是第三象限角,求tan α的值;(2)若sin()tan(5)cos()()3tan(2)cos()2f αππαπααππαα-++=---,求()f α的值.【解题方法总结】(1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(2)注意角的范围对三角函数符号的影响。

专题5.3 诱导公式(解析版)

专题5.3 诱导公式(解析版)

专题5.3诱导公式一、单选题1.函数3()3x f x a -=+(0a >,且1a ≠)的图象恒过定点A ,点A 在角θ终边上,则3cos π2θ⎛⎫-= ⎪⎝⎭()A .35-B .35C .45-D .45【答案】C【解析】3()3x f x a -=+(0a >,且1a ≠)恒过点()3,4A ,因为点A 在角θ终边上,所以4sin 5θ=,则34cos πsin 25θθ⎛⎫-=-=- ⎪⎝⎭故选:C2.若4π5cos 513α⎛⎫+=- ⎪⎝⎭,则7πsin 10α⎛⎫-=⎪⎝⎭()A .513-B .1213-C .513D .1213【答案】C【解析】7π7π4π3π4π5sin sin sin cos 101052513αααα⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-=-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:C3.若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】B【解析】:因为1sin 63a π⎛⎫+= ⎪⎝⎭,所以21cos cos sin 32663ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选:B.4.已知角,02πα⎛⎫∈- ⎪⎝⎭,且22tan 3tan sin 4sin 0αααα--=,则()sin 2021απ+=()A B .14C .34-D .【答案】A【解析】解:因为22tan 3tan sin 4sin 0αααα--=,所以()()tan 4sin tan sin 0αααα-+=,因为,02πα⎛⎫∈- ⎪⎝⎭,所以tan 0α<且sin 0α<,所以tan 4sin 0αα-=,即sin 4sin cos ααα=,所以1cos 4α=,所以sin 4α==-,所以()()()sin 2021sin 10102sin sin 4απαππαπα+=++⨯=+=-=;故选:A5.已知3cos 34πα⎛⎫+=- ⎪⎝⎭,则sin 6πα⎛⎫-= ⎪⎝⎭()A .35B .35-C .34D .34-【答案】C【解析】因为362πππαα⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭,所以632πππαα⎛⎫⎛⎫-=+- ⎪ ⎝⎭⎝⎭,所以3sin sincos 63234ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=+-=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:C 6.已知()cos ,1,1,,2k k πααπ⎛⎫=∈-∈ ⎪⎝⎭,则()sin πα+=()A.BC.D .1k-【答案】A【解析】解:因为()cos ,1,1,,2k k πααπ⎛⎫=∈-∈ ⎪⎝⎭,所以sin α==所以()sin sin παα+=-=A7.已知()()()sin cos 5sin sin 22αππαπαπα++-=⎛⎫-+- ⎪⎝⎭,则tan α=()A .34B .43C .32-D .32【答案】D【解析】()()()sin cos sin cos 5cos sin sin sin 22αππαααπαααπα++---==-⎛⎫-+- ⎪⎝⎭,可得()sin cos 5cos sin αααα--=-,即4sin 6cos αα=,故3tan 2α=.故选:D.8.已知71sin 123πα⎛⎫+=- ⎪⎝⎭,5sin 12πα⎛⎫-= ⎪⎝⎭()A .13-B.3-C .13D.3【答案】C【解析】由题意,5571sin sin sin 1212123πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫-=-+-=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:C.9.已知角α终边上一点P 的坐标为4sin ,cos55ππ⎛⎫⎪⎝⎭,则角α的一个可能值为()A .5πB .310π-C .5π-D .45π【答案】B 【解析】πsin 05>,4πcos 05<,因此α是第四象限角,2222π4πππsin cos sin cos 15555+=+=,因此πππ3π3πcos sin cos()cos cos()5251010α==-==-,所以3π2π,10k k Z α=±∈,只有B 符合.故选:B .10)A .sin 4cos4-B .sin 4cos4--C .cos 4sin 4-D .sin 4cos4+【答案】C【解析】=,cos 4sin 4=-,故选:C11.若33sin 25πα⎛⎫+= ⎪⎝⎭,且α是第三象限角,则2021cos 2πα⎛⎫+= ⎪⎝⎭()A .35B .35-C .45D .45-【答案】C【解析】33sin cos 25παα⎛⎫+=-= ⎪⎝⎭,3cos 5α∴=-,又α是第三象限角,4sin 5α∴==-,20214cos sin 25παα⎛⎫∴+=-= ⎪⎝⎭.故选:C.12.若()sin cos 12232sin sin 2ππααππαα⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫-+- ⎪⎝⎭,则22sin sin cos 3cos αααα--=()A .110B .310C .910D .32【答案】C【解析】解:()sin cos cos sin 1tan 1223sin cos tan 12sin sin 2ππαααααπαααπαα⎛⎫⎛⎫++- ⎪ ⎪++⎝⎭⎝⎭===--⎛⎫-+- ⎪⎝⎭,解得tan 3α=-,则222222sin sin cos 3cos sin sin cos 3cos sin cos αααααααααα----=+22tan tan 39339tan 19110ααα--+-===++.故选:C.13.已知角α终边上点A 的坐标为34,55⎛⎫- ⎪⎝⎭,则()3cos cos 2ππαα⎛⎫-+-+= ⎪⎝⎭()A .75B .75-C .65-D .15-【答案】D【解析】∵角α终边上点A 的坐标为34,55⎛⎫- ⎪⎝⎭,35x ∴=-,45y =,1r OA ==.4sin 5α∴==y r ,cos 53x r α==-,()3341cos cos cos sin 2555ππαααα⎛⎫⎛⎫∴-+-+=--=---=- ⎪ ⎪⎝⎭⎝⎭.故选:D14.已知角,02πα⎛⎫∈- ⎪⎝⎭,且22tan 3tan sin 4sin 0αααα--=,则()cos 2021απ+=()A .14-B.4-C .14D.4【答案】A【解析】因为22tan 3tan sin 4sin 0αααα--=,所以()()tan 4sin tan sin 0αααα-+=,因为,02πα⎛⎫∈- ⎪⎝⎭,所以tan 0<α且sin 0α<,所以tan 4sin 0αα-=,即sin 4sin cos ααα=,所以1cos 4α=,所以()()()1cos 2021cos 10102cos cos 4+=++⨯=+=-=-απαππαπα;故选:A15.若()tan π3α-=,则sin 2cos sin cos αααα-=+()A .52B .52-C .14-D .14【答案】D 【解析】由()tan π3α-=可得,tan 3α=,故sin 2cos tan 2321sin cos tan 1314αααααα---===+++,故选:D二、填空题16.已知1sin 62πα⎛⎫-= ⎪⎝⎭,那么2cos 3πα⎛⎫-=⎪⎝⎭______.【答案】12-或0.5-【解析】:因为2362πππαα⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭,所以2326πππαα⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭所以21cos cos sin 32662ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=+-=--=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:12-17__________.【答案】1【解析】原式=sin 20cos 201cos 20sin160sin 20cos 20+==++.故答案为:1.18.若sin θcos(π)cos(2π)3ππ3πcos [sin()1]cos(π)sin()sin()222θθθθθθθ--+--++-+的值_______【答案】6【解析】原式=cos cos (cos 1)θθθ---+cos cos cos cos θθθθ-⋅+11cos 11cos θθ=++-1cos 1cos (1cos )(1cos )θθθθ-++=+-221cos θ=-22sin θ=,因为sin θ=,所以22261sin 3θ==.所以cos(π)cos(2π)63ππ3πcos [sin()1]cos(π)sin()sin()222θθθθθθθ--+=--++-+.故答案为:6.19.若角α的终边落在直线y x =上,则co 3si 22n s παπα⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭-_____.或【解析】因为角α的终边落在直线y x =上,所以角α为第一或第三象限角,3sin cos cos sin 22ππαααα⎛⎫⎛⎫⎪ ⎪-++=--⎝⎭⎝⎭,当角α为第一象限角时,cos sin 2αα==,cos sin 22αα--=--=当角α为第三象限角时,cos sin 2αα==,cos sin 22αα--=+=20.已知π3cos 64α⎛⎫+=- ⎪⎝⎭,则5ππcos sin 63αα⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭______.【答案】32或1.5【解析】因为π3cos 64α⎛⎫+=- ⎪⎝⎭,所以5ππcos sin 63αα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭5ππcos sin 63αα⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭cos sin 626ππππαα⎡⎤⎡⎤⎛⎫⎛⎫=-+--+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦cos cos 66ππαα⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭332cos 2642πα⎛⎫⎛⎫=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭,故答案为:32三、解答题21.已知()()()()sin cos 2sin cos 2f πθπθθπθπθ--=⎛⎫-+ ⎪⎝⎭.(1)化简()f θ,并求83f π⎛⎫⎪⎝⎭的值;(2)若()3f θ=,求22sin 3sin cos θθθ-的值.【答案】(1)()tan f θθ=,83f π⎛⎫=⎪⎝⎭(2)910【解析】(1)()()()()sin cos 2sin()cos 2f πθπθθπθπθ--=-+sin cos()sin (cos )2θθπθθ-=⎛⎫--- ⎪⎝⎭sin cos cos (cos )θθθθ=--tan θ=则83f π⎛⎫⎪⎝⎭8tan 3π⎛⎫= ⎪⎝⎭2tan 3π⎛⎫= ⎪⎝⎭tan 3π⎛⎫=- ⎪⎝⎭=(2)由(1)知,tan 3θ=.则22sin 3sin cos θθθ-2222sin 3sin cos sin cos θθθθθ-=+222222sin 3sin cos cos sin cos cos θθθθθθθ-=+222tan 3tan tan 1θθθ-=+22233331⨯-⨯=+9.10=22.(1)若α是第二象限角,且π1cos 23α⎛⎫+=- ⎪⎝⎭,求tan α的值;(2)已知()()()()()3πsin 3πcos 2πsin 2cos πsin πf αααααα⎛⎫--- ⎪⎝⎭=---,化简()f α,在(1)的条件下,求()f α的值.【答案】(1)4-(2)3-【解析】(1)π1cos sin 23αα⎛⎫+=-=- ⎪⎝⎭,1sin 3α=,α是第二象限角,cos 3α∴==-,则sin 2tan cos 4ααα==-.(2)()()()()()()()3πsin 3πcos 2πsin sin cos cos 2cos cos πsin πcos sin f αααααααααααα⎛⎫--- ⎪-⎝⎭===----,由(1)知:cos 3α=-,则()cos 3f αα==-.23.已知函数()()3sin sin 2cos 3tan x x f x x x ππ⎛⎫⋅- ⎪⎝⎭=--⋅.(1)求353f π⎛⎫- ⎪⎝⎭;(2)若()1332f f πθθ⎛⎫=-- ⎪⎝⎭,求2cos 2sin 10sin 2cos sin θθθθθ++-的值.【答案】(1)12-(2)2【解析】(1)()()3sin sin sin cos 2cos cos 3tan cos tan x x x x f x x x x x x ππ⎛⎫⋅- ⎪⋅⎝⎭===---⋅-⋅,35351cos cos 3332f πππ⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)由()1332f f πθθ⎛⎫=-- ⎪⎝⎭得1cos sin 3θθ=,tan 3θ=,所以222cos 2sin 12tan 10tan 10sin 7922cos sin 2tan 1tan θθθθθθθθθ+++=+=-+=--+.24.已知cos sin 22333sin()sin 2ππααππαα⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫-++ ⎪⎝⎭.(1)求tan()πα+的值;(2)求2sin cos cos ααα+的值.【答案】(1)12(2)65【解析】(1)由cos sin 22333sin()sin 2ππααππαα⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫-++ ⎪⎝⎭,可得sin cos 33sin cos αααα+=-,所以8sin 4cos αα=,解得1tan 2α=,所以1tan()tan 2παα+==.(2)由(1)知1tan 2α=,所以22222sin cos cos tan 16sin cos cos sin cos tan 15αααααααααα+++===++.。

专题08 诱导公式的化简求值(解析版)-高考数学计算题型精练(新高考通用版)

专题08 诱导公式的化简求值(解析版)-高考数学计算题型精练(新高考通用版)

诱导公式的化简求值1.已知π0,2α⎛⎫∈ ⎪⎝⎭,3sin 5α=,则9πsin sin(8π)25πsin sin(7π)2αααα⎛⎫+++ ⎪⎝⎭=⎛⎫+++ ⎪⎝⎭______.【答案】7【详解】因为3sin 5α=,且π0,2α⎛⎫∈ ⎪⎝⎭,所以4cos 5α==,所以sin 3tan cos 4ααα==.所以9πsin sin(8π)25πsin sin(7π)2αααα⎛⎫+++ ⎪⎝⎭⎛⎫+++ ⎪⎝⎭31cos sin 1tan 473cos sin 1tan 14αααααα+++====---.故答案为:7.2.若π2cos 123α⎛⎫+= ⎪⎝⎭,则2πsin 23α⎛⎫+= ⎪⎝⎭__________.【答案】19-【详解】2ππππsin 2sin 2cos 2312212ααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=++=+ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22π212cos 1211239α⎛⎫⎛⎫=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故答案为:19-.3.计算7π5πcos sin 644πtan 3的结果为__________.【答案】4【详解】因为7πππcoscos πcos 666⎛⎫=+=-= ⎪⎝⎭5πππsin sin πsin 444⎛⎫=+=-=- ⎪⎝⎭4πππtan tan πtan 333⎛⎫=+= ⎪⎝⎭所以7π5πcos sin 22644πtan 3⎛⎫⎛⎫-⨯ ⎪ ⎪=故答案为:4.4.点()3,4A 在角θ的终边上,则sin(π)2cos πcos()cos 2θθθθ++=--__________.【答案】2【详解】因为点()3,4A 在角θ的终边上,则4tan 3θ=,所以42sin(π)2cos sin 2cos tan 232π4sin cos tan 1cos()cos 123θθθθθθθθθθ-+++-+-+===-----.故答案为:25.若1sin 3α=,则πcos 2α⎛⎫+= ⎪⎝⎭__________.【答案】13-【详解】π1cos sin 23αα⎛⎫+=-=- ⎪⎝⎭.故答案为:13-6.已知角α终边上一点()2,3P -,则()()πcos sin π23πcos πcot 2αααα⎛⎫+- ⎪⎝⎭=⎛⎫++ ⎪⎝⎭________.【答案】【详解】由诱导公式知,()()πcos sin πsin sin 2sin 3πcos (tan )cos πcot 2ααααααααα⎛⎫+- ⎪-⋅⎝⎭===--⋅-⎛⎫++ ⎪⎝⎭,因为角α终边上一点()2,3P -,所以sin α所以原式sin 13α=-=-.故答案为:7.23πtan 3⎛⎫-= ⎪⎝⎭____.【详解】23π23π2π2ππtan(tan tan(7π)tan tan 33333-=-=-+=-=8.cos660︒=________.【答案】12/0.5【详解】()()1cos660cos 236060cos 60cos602︒=⨯︒-︒=-︒=︒=故答案为:129.化简:()()()()sin 2πcos 6πcos πsin 5πθθθθ---=-+_____.【答案】1-【详解】原式=()()()()()()()sin cos sin cos 1cos πsin πcos sin θθθθθθθθ-⋅--⋅==-+⋅+-⋅-.故答案为:1-.10.若()sin π3α-=,则πcos 2α⎛⎫+= ⎪⎝⎭______.【答案】【详解】因为()sin sin παα-=所以πcos sin 2αα⎛⎫+=-=- ⎪⎝⎭.故答案为:11.()()cos πππsin cos sin π22αααα-⎛⎫⎛⎫-+ ⎪ ⎪-⎝⎭⎝⎭=____________【答案】2cos α-【详解】原式()()()2cos cos sin cos sin ααααα-=⋅⋅-=--故答案为:2cos α-.12.已知()1cos π2α+=-,3π2π2α<<,则()sin 3πα+=_________.【答案】2【详解】()1cos π2α+=- ,1cos 2α∴-=-,即1cos 2α=,3π2π2α<<,sin 2α∴==()sin 3πsin αα∴+=-=13.()()()()tan 2πsin 2πcos 6πcos π3ππsin cos 22x x x x x x -----=⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭__________【答案】sin x【详解】()()()tan 2πtan ,sin 2πsin sin x x x x x -=---=-=-,()()()cos 6πcos cos ,cos πcos x x x x x -=-=-=-,3ππsin cos ,cos sin 22x x x x ⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭,原式()()()()tan sin cos cos tan cos sin cos sin x x x x x x x x x-⨯-⨯⨯-==⨯=-⨯,故答案为:sin x .14.若α的终边过点()1,2-,则()()sin ππsin cos π2ααα-=⎛⎫+-+ ⎪⎝⎭______.【答案】1-【详解】因为α的终边过点(1,2)-,由三角函数的定义可得2tan 21α==--,所以()()sin πsin 11tan (2)1πcos cos 22sin cos π2ααααααα-===⨯-=-+⎛⎫+-+ ⎪⎝⎭.故答案为:1-15.已知()1sin π3α+=,则πcos()2α+=_________________.【答案】13【详解】由已知1sin(π)sin 3αα+=-=,1sin 3α=-,所以π1cos()sin 23αα+=-=.故答案为:13.16.若角α的终边过点()1,2-,则πsin 2α⎛⎫-= ⎪⎝⎭__________.【答案】【详解】角α的终边过点(1,2)-,由三角函数的定义得cos α=由诱导公式得ππsin sin cos 225ααα⎛⎫⎛⎫-=--=-=- ⎪ ⎪⎝⎭⎝⎭,故答案为:17.1717cos πsin π44⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭______.【详解】17π17π17π17πππcos sin cos sin cos 4πsin 4π444444⎛⎫⎛⎫⎛⎫⎛⎫---=+=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ππcos sin 4422=+=;.18.7πsin 3的值为__________【答案】2【详解】7πππsinsin 2πsin 3332⎛⎫=+== ⎪⎝⎭.19.已知5sin 13α=,则πcos 2α⎛⎫+= ⎪⎝⎭______.【答案】513-【详解】由π5cos sin 213αα⎛⎫+=-=- ⎪⎝⎭.故答案为:513-20.已知tan 3α=,求sin(4)3cos()92sin()sin(7)2παπαπαπα-+--=-+-+_________【答案】-6【详解】原式=sin 3cos tan 33362cos sin 2tan 23αααααα------===--+-+-+.故答案为:-6.21.已知角x 在第二象限,且π4cos ,25x ⎛⎫+=- ⎪⎝⎭则tan 2x =______.【答案】247/337【详解】π4cos 25x ⎛⎫+=- ⎪⎝⎭,即4sin 5x -=-,则4sin 5x =, 角x在第二象限,则3cos 5x ==-,则4tan 3x =-,22tan 24tan 21tan 7x x x ∴==-.故答案为:247.22.若()1sin π2A +=-,则3πcos 2A ⎛⎫-= ⎪⎝⎭____________.【答案】12-/-0.5【详解】因为()2π3π5π2A A ⎛⎫-= ⎪⎝⎭+-,所以3πcos 2A ⎛⎫-= ⎪⎝⎭()()()()5πππ1cos πcos πcos πsin π2222A A A A ⎡⎤⎡⎤⎡⎤+-=+-=-+=+=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故答案为:12-23.化简:()()tan cos 3ππ2co i πt 2πs n 2αααα⎛⎫- ⎪-⎝⎭⋅=+⎛⎫+ ⎪⎝⎭_________.【答案】1【详解】()()tan cos 3πcos cot 21cot 2πcos cot πi 2πs n αααααααα⎛⎫- ⎪---⎝⎭⋅=⋅=+⎛⎫+ ⎪⎝⎭.故答案为:124.已知α是第二象限角,1sin 3α=,则πsin 2α⎛⎫+= ⎪⎝⎭________.【答案】3-/【详解】因为α是第二象限角,1sin 3α=,所以πsin cos 2αα⎛⎫+==-- ⎪⎝⎭故答案为:25.已知1tan 2α=,则()cos ππcos 2αα-=⎛⎫+ ⎪⎝⎭__________.【答案】2【详解】因为1tan 2α=,所以()cos πcos 12πsin tan cos 2ααααα--===-⎛⎫+ ⎪⎝⎭.故答案为:2.26.已知1cos 2α=,3π2π2α<<,则()sin 2πα-=______.【答案】2【详解】因为13πcos ,2π22αα=<<,所以sin2α==-,所以sin(2)sinπαα-=-=.故答案为:2.27.化简:()()()π11πcosπcos cos229πcosπsinπsin2αααααα⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭=⎛⎫---+⎪⎝⎭______.【答案】tanα【详解】()()()π11πcosπcos cos229πcosπsinπsin2αααααα⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭⎛⎫---+⎪⎝⎭()()cos sin sin tancos sin cosααααααα-⋅--==-.故答案为:tanα.28.化简πsin(5π)cos()cos(8π)23πsin()sin(4π)2θθθθθ---=---__.【答案】sinθ【详解】πsin(5π)cos()cos(8π)(sin)sin cos2sin3πcos(sin)sin()sin(4π)2θθθθθθθθθθθ----==----.故答案为:sinθ.29.化简222sin(π)cos(π)cos(2π)3π3π1cos cos sin222παααααα+-+-⎛⎫⎛⎫⎛⎫+-++-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果为______.【答案】1tanα【详解】222sin(π)cos(π)cos(2π)3π3π1cos cos sin222παααααα+-+-⎛⎫⎛⎫⎛⎫+-++-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222(sin)(cos)cosππ1cos cos cosπ22παααααα--+=⎛⎫⎛⎫+-++-⎪⎡⎤⎡⎤++⎢⎥⎢⎪⎝⎭⎝⎭⎥⎣⎦⎣⎦22222sin cos cos 2sin cos cos 1sin sin cos ππ1cos cos cos 22αααααααααααα++==++-⎡⎤⎛⎫⎛⎫+---+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22sin cos cos (2sin 1)cos cos 12sin sin (2sin 1)sin sin tan αααααααααααα++====++.故答案为:1tan α.30.已知角θ的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点()()8,60P m m m -->.(1)求sin θ,cos θ的值;(2)求()()()()()()3πsin sin 3πcos πcos 25πsin 2πcos 3πsin sin π2θθθθθθθθ⎛⎫-⋅-⋅+⋅- ⎪⎝⎭⎛⎫-⋅-⋅-⋅- ⎪⎝⎭的值.【答案】(1)3sin 5θ=-,4cos 5θ=-;(2)34-【详解】(1)由题意知,10r m ==,∴63sin 105y m r m θ-===-,84cos 105x m r m θ-===-;(2)原式()()()()()()()322sin sin cos sin sin cos sin cos cos sin sin cos θθθθθθθθθθθθ-⋅-⋅-⋅-⋅==--⋅-⋅⋅-⋅tan θ=-,由(1)知,sin 3tan cos 4θθθ==,∴()()()()()()3πsin sin 3πcos πcos 325π4sin 2πcos 3πsin sin π2θθθθθθθθ⎛⎫-⋅-⋅+⋅- ⎪⎝⎭=-⎛⎫-⋅-⋅-⋅- ⎪⎝⎭.31.已知角θ的始边为x 轴非负半轴,终边过点(A -.(1)3ππcos sin 22θθ⎛⎫⎛⎫-++ ⎪ ⎪.(2)已知角α的始边为x 轴非负半轴,角θ和α的终边关于y 轴对称,求πsin 6α⎛⎫- ⎪⎝⎭的值.【答案】(1)2-(2)6【详解】(1)由题可知OA =则sin ,cos ,tan 33θθθ===3ππcos 222θθ⎛⎫⎛⎫-+++ ⎪ ⎪=-.(2)因为角θ和α的终边关于y 轴对称,所以sin αcos α所以π1sin sin cos 6226ααα⎛⎫-=-= ⎪⎝⎭.32.已知()()ππsin cos 223πcos πsin 2f ααααα⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫-+ ⎪⎝⎭.(1)若角α的终边经过点(),2m m ,0m ≠,求()f α的值;(2)若()2f α=,求sin cos sin cos αααα+-的值.【答案】(1)2(2)3【详解】(1)()()()()ππsin cos cos sin 22tan 3πcos cos cos πsin 2f αααααααααα⎛⎫⎛⎫-+ ⎪ ⎪-⋅-⎝⎭⎝⎭===-⋅-⎛⎫-+ ⎪⎝⎭,因为角α的终边经过点(),2m m ,0m ≠,所以()2tan 2m f mαα===.(2)由(1)知()tan 2f αα==,所以sin cos tan 1213sin cos tan 121αααααα+++===---.33.已知()()()()()πsin sin tan π2tan 2πsin π+f αααααα⎛⎫--- ⎪⎝⎭=-(1)化简()f α.(2)若α为第三象限角,且3π1cos 25⎛⎫-= ⎪⎝⎭α,求()f α的值.【答案】(1)()f αcos α=(2)()f α=【详解】(1)()()()()()πsin sin tan π2tan sin πf αααααα⎛⎫--- ⎪⎝⎭=-+()()()cos sin tan tan sin ααααα⋅-⋅-=-⋅-cos α=.(2)∵α为第三象限角,且3π1cos sin 25⎛⎫-=-= ⎪⎝⎭αα,∴1sin 5α=-,()cos f αα===.34.已知()()()3πsin 2πsin 2πsin cos π2f ααααα⎛⎫-⋅- ⎪⎝⎭=⎛⎫+⋅- ⎪⎝⎭.(1)化简()f α;(2)若()2f α=,求2222sin 1sin 2cos ααα-+的值【答案】(1)()tan f αα=-(2)12【详解】(1)()()()()()3πsin 2πsin sin cos 2tan cos cos sin cos π2πf αααααααααα⎛⎫-⋅- ⎪-⋅-⎝⎭===-⋅-⎛⎫+⋅- ⎪⎝⎭;(2)由(1)得tan 2α-=,tan 2α∴=-,()2222222222222sin sin cos 2sin 1sin cos sin 2cos sin 2cos sin 2cos αααααααααααα-+--∴==+++221tan ta 1412422n αα--===++.35.(1)化简:3πtan(π)cos(2π)sin()2cos(π)sin(π)ααααα---+----;(2)已知π3cos 45x ⎛⎫+= ⎪⎝⎭,求2sin 22sin 1tan x xx --的值.【答案】(1)1-;(2)725【详解】(1)3πtan(π)cos(2π)sin()2cos(π)sin(π)ααααα---+----=sin cos (tan )cos (cos )cos 1(cos )sin sin ααααααααα⋅-⋅⋅-=-=--⋅;(2)2sin 22sin 2sin (cos sin )2sin cos sin 1tan 1cos x x x x x x xx x x--==--,()2π331818cos cos sin cos sin 12sin cos 4552525x x x x x x x ⎛⎫+==⇒-=⇒-=⎪⎝⎭72sin cos 25x x ⇒=,因此2sin 22sin 71tan 25x x x -=-.36.已知()()()()π3πcos tan πsin 22cos πtan 3πf αααααα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=++.(1)若()0,2πα∈,且()12f α=-,求α的值;(2)若()3π125f f αα⎛⎫-+= ⎪⎝⎭,且π3π,22⎛⎫∈ ⎪⎝⎭α,求tan α的值.【答案】(1)7π6α=或11π6α=(2)4tan 3α=-【详解】(1)()()()()()()π3πcos tan πsin sin tan cos 22sin cos πtan 3πcos tan f αααααααααααα⎛⎫⎛⎫+-+ ⎪ ⎪---⎝⎭⎝⎭===++-,()0,2πα∈,且()1sin 2f αα==-,则7π6α=或11π6α=.(2)()3π3π1sin sin sin cos 225f f αααααα⎛⎫⎛⎫-+=-+=+=⎪ ⎪⎝⎭⎝⎭,则1sin cos 5αα=-,所以22221cos sin cos cos 15αααα⎛⎫+=+-= ⎪⎝⎭,解得4cos 5α=或3cos 5α=-,由π3π,22⎛⎫∈ ⎪⎝⎭α,则3cos 5α=-,得4sin 5α=,所以4sin 45tan 3cos 35ααα===--37.已知tan 3α=,求()()πsin 3sin π23πcos cos 5π2αααα⎛⎫+++ ⎪⎝⎭⎛⎫--+ ⎪⎝⎭的值.【答案】4【详解】因为()πsin cos ,sin πsin 2αααα⎛⎫+=+=- ⎪⎝⎭,()()3πcos sin ,cos 5πcos πcos 2ααααα⎛⎫-=-+=+=- ⎪⎝⎭,所以()()πsin 3sin πcos 3sin 13tan 23πsin cos tan 1cos cos 5π2αααααααααα⎛⎫+++ ⎪--⎝⎭==-+-+⎛⎫--+ ⎪⎝⎭,又tan 3α=,所以()()πsin 3sin π133243π31cos cos 5π2αααα⎛⎫+++ ⎪-⨯⎝⎭==-+⎛⎫--+ ⎪⎝⎭.故答案为:4.38.已知()()5πsin πsin 23π2sin sin π2αααα⎛⎫-++ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭.(1)求tan α的值;(2)求24sin cos 2cos ααα+的值.【答案】(1)7tan 4α=-(2)1613-【详解】(1)依题意得,()()5πsin πsin sin cos 2π2cos sin 2sin sin π2αααααααα⎛⎫-++ ⎪+⎝⎭=--⎛⎫-++ ⎪⎝⎭tan 132tan αα+==--,解得7tan 4α=-(2)22224sin cos 2cos 4sin cos 2cos sin cos αααααααα++=+24tan 2tan 1αα+=+1613=-.39.已知角α终边上一点(4,3),P -求()πcos()sin π211π9πcos()sin()22a a a α+----++的值.【答案】67【详解】角α终边上一点(4,3),P -3tan ,4y x α∴==-则原式32()sin sin 2tan 64.3sin cos tan 1714αααααα-⨯----====-+-++故答案为:6740.设()322π2cos sin 2cos π222cos 7πcos f θθθθθθ⎛⎫++--- ⎪⎝⎭=+++-()()(),求2023π3f ⎛⎫⎪⎝⎭的值.【答案】12.【详解】因为()322π2cos sin 2cos π222cos 7πcos f θθθθθθ⎛⎫++--- ⎪⎝⎭=+++-()()()=322222cos cos 2cos cos 2cos cos 2cos 22cos cos 22cos cos θθθθθθθθθθθ++++==++++(),所以2023π2023πππ1cos cos 3372πcos 33332f ⎛⎫⎛⎫==⨯+== ⎪ ⎪⎝⎭⎝⎭41.已知1tan 2θ=-,求下列各式的值:(1)22cos 12sin cos θθθ-;(2)tan(π)sin(π)3πππsin cos cos 222θθθθθ--⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】(1)34-(2)54【详解】(1)原式()222222cos sin cos cos sin 2sin cos 2sin cos θθθθθθθθθ-+-==22111tan 3212tan 422θθ⎛⎫-- ⎪-⎝⎭===-⎛⎫⨯- ⎪⎝⎭.(2)原式tan sin (cos )sin (sin )θθθθθ=--22221sin cos cos cos θθθθ+==22151tan 124θ⎛⎫=+=+-= ⎪⎝⎭.42.已知()()()()()3sin 3πcos 2πsin π2cos πsin πf αααααα⎛⎫-⋅-⋅-+ ⎪⎝⎭=--⋅-+.(1)化简()f α;(2)若31π3α=-,()f α.【答案】(1)cos α(2)12【详解】(1)由题意可得:()()()()()()()()()3sin 3πcos 2πsin πsin πcos cos 2cos cos πsin πcos sin πf αααααααααααα⎛⎫-⋅-⋅-+ ⎪-+⋅⋅-⎝⎭===--⋅-+-⋅-+,故()cos f αα=.(2)∵31π3α=-,则()3131πππ1πcos πcos 10πcos cos 333332f f α⎛⎫⎛⎫⎛⎫⎛⎫=-=-=--=-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∴()12f α=.43.已知3πsin(3π)cos(2π)sin()2()cos(π)sin(π)f αααααα---+=----.(1)化简()f a ;(2)若α是第三象限角,且3π1co (s 52α-=,求π(6f α+的值;【答案】(1)()f α=cos α-;(2)110【详解】(1)3πsin(3π)cos(2π)sin()2()cos(π)sin(π)f αααααα---+=----(sin )cos (cos )cos (cos )sin αααααα-⋅⋅-==--.(2)因为3π1co (s 52α-=,又3ππcos(cos()sin 22ααα-=+=-,所以1sin 5α=-,又α是第三象限的角,所以cos α=-所以ππππ(cos()cos cos sin sin6666f αααα+=-+=-+111(()5210-=-⨯-⨯=.44.sin(2π)sin(π)cos(π)sin(3π)cos(π)ααααα-+----.【答案】sin α【详解】因为sin(2π)sin()sin ,sin(π)sin ,ααααα-=-=-+=-cos(π)cos(π)cos ααα--=+=-,sin(3π)sin(π)sin ,cos(π)cos ,ααααα-=-=-=-所以原式sin (sin )(cos )sin sin (cos )αααααα-⋅-⋅-==⋅-.45.(1)化简:()()()()()()π11πsin 2πcos πcos cos 229πcos πsin 3πsin πsin 2f ααααααααα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫----+ ⎪⎝⎭(2)求值:cos21cos24sin159sin 204︒⋅︒+︒⋅︒.【答案】(1)tan α-;(2)2.【详解】(1)()()()()()()π11πsin 2πcos πcos cos 229πcos πsin 3πsin πsin 2f ααααααααα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫----+ ⎪⎝⎭()()()()()()πsin cos sin cos 6π2πcos sin πsin πsin 4π2αααααααα⎡⎤⎛⎫----+ ⎪⎢⎥⎝⎭⎣⎦=⎡⎤⎛⎫---+++⎡⎤ ⎪⎣⎦⎢⎥⎝⎭⎣⎦()()()()πsin cos sin cos 2πcos sin sin sin 2αααααααα⎡⎤⎛⎫----+⎪⎢⎥⎝⎭⎣⎦=⎛⎫-+ ⎪⎝⎭()()()2222sin cos cos sin cos sin sin 2tan cos sin cos cos sin cos cos πααααααααααααααα⎛⎫-+ ⎪--⎝⎭===-=---(2)cos 21cos 24sin159sin 204cos 21cos 24sin 21sin 24︒⋅︒+︒⋅︒=︒⋅︒-︒︒()cos 2124cos 452=︒+︒=︒46..化简下列各式:(1)π2912sin cos 6ππtan 54⎛⎫-+⋅ ⎪⎝⎭;(2)3tan(π)cos(2π)sin(π)2cos(3π)sin(π)ααααα+⋅+⋅---⋅--.【答案】(1)12-(2)1-【详解】(1)原式52sin cos 0π6π5=-+⨯2π1sin6=-=-(2)原式tan cos cos 1cos sin ααααα⋅⋅==--⋅47.已知()()()()()5πsin 2πcos πcos 29πcos πsin πsin 2x x x f x x x x ⎛⎫-+- ⎪⎝⎭=⎛⎫---+ ⎪⎝⎭.(1)化简()f x ;(2)已知()2f α=,求sin2α的值.【答案】(1)tan x -(2)45-【详解】(1)由题意得()()()()()5πsin 2πcos πcos 29πcos πsin πsin 2x x x f x x x x ⎛⎫-+- ⎪⎝⎭=⎛⎫---+ ⎪⎝⎭(sin )(cos )sin sin tan (cos )sin cos cos x x x xx x x x x--==-=--.(2)由()2f α=,可得tan 2,tan 2αα-=∴=-,则2222sin cos 2tan 4sin2sin cos tan 15ααααααα===-++.48.(1)已知()2tan π3α-=-,求cos 3sin cos 9sin α-αα+α的值;(2)化简()()()()3πsin πsin tan 2π2πsin tan πcos 2θθθθθθ⎛⎫--- ⎪⎝⎭⎛⎫-+- ⎪⎝⎭.【答案】(1)17-;(2)tan θ.【详解】(1)因为()2tan πtan 3αα-=-=-,可得2tan 3α=,所以213cos 3sin 13tan 132cos 9sin 19tan 7193αααααα-⨯--===-+++⨯;(2)()()()()()()23πsin πsin tan 2πsin cos tan 2tan πcos tan sin tan πcos 2θθθθθθθθθθθθ⎛⎫--- ⎪--⎝⎭==⎛⎫-+- ⎪⎝⎭.49.已知sin 2cos αα=,求:(1)化简()()πcos 2sin 2πcos 2π5πsin 2αααα⎛⎫- ⎪⎝⎭--⎛⎫+ ⎪⎝⎭;(2)求2sin2sin sin cos cos21ααααα+--的值.【答案】(1)45(2)1【详解】(1)因为sin 2cos αα=,22sin cos 1αα+=,所以22sin sin 12αα⎛⎫+= ⎪⎝⎭,即24sin 5α=,()()2πcos sin 42sin 2πcos 2πsin cos sin 5πcos 5sin 2ααααααααα⎛⎫- ⎪⎝⎭--===⎛⎫+ ⎪⎝⎭.(2)sin tan 2cos ααα== ,2sin2sin sin cos cos21ααααα∴+--()222sin cos sin sin cos 2cos 11αααααα=+---222sin cos sin sin cos 2cos αααααα=+-222tan tan tan 2221222ααα=+-⨯==+-.50.化简以下式子:()()()()()7πsin cos πtan 3π2sin 2πtan πcos 9παααααα⎛⎫++- ⎪⎝⎭--+-【答案】1tan α-【详解】()()()()()7πsin cos πtan 3π2sin 2πtan πcos 9παααααα⎛⎫++- ⎪⎝⎭--+-()()()()3πsin cos tan 2sin tan cos παααααα⎛⎫+-- ⎪⎝⎭=--()()()()()cos cos tan sin tan cos αααααα---=--cos 1sin tan ααα=-=-.。

高考数学专题: 三角函数的诱导公式

高考数学专题: 三角函数的诱导公式
全国名校高考数学优质学案、专题汇编(附详解)
第四章
三角函数
三角函数的诱导公式
栏 目 导 航
链教材 ·夯基固本 研题型 ·技法通关
链教材 ·夯基固本
激活思维
- 3-1 . 1. (必修4P19例1改编)计算:tan300° +2sin450° · cos(-120° ) 的值为__________
cos
2
π π π 2 x+ +1=sinx+ +sin x+ =a+a2. 6 6 6
知识梳理 1. 诱导公式 -α sin( ) cos( ) tan( ) -sin α cos α -tan α π-α sin α π+α 2π-α π 2-α cos α sin α / π 2+α cos α 3π 2 -α 3π 2 +α
【解析】tan300° +2sin450° cos(-120° )=tan(360° -60° )+2sin(360° +90° ) cos120° =tan(-60° )+2sin90° cos(180° -60° )=-tan60° -2cos60° =- 3-1.
2.
2 π 5 (必修4P23习题11改编)已知tan(π+θ)=2,那么sinθ· sin2-θ=________.
π 以sinθsin tanθ 2 2 = = . tan2θ+1 22+1 5
sinθ· cosθ =sinθcosθ= = 2 2 sin θ+cos θ
2 3. (必修4P20练习3改编)化简:sin2(π+α)-cos(π+α)· cos(-α)+1=________.
cos180° +10° [-sin180° +30° ] (2) 原式= cos360° -10° [-tan360° +225° ]

高中数学 三角函数诱导公式(带答案)

高中数学 三角函数诱导公式(带答案)

习题精炼一、选择题1、下列各式不正确的是 ( )A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 2、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于( ) A .-23 m B .-32 m C .23 m D .32 m3、⎪⎭⎫⎝⎛-π619sin 的值等于( ) A .21B . 21-C .23 D . 23-4、如果).cos(|cos |π+-=x x 则x 的取值范围是( C )A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ5.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-66、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .437.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 ( )A .211aa ++ B .-211aa ++ C .211aa +-D .211aa +-8.若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题1、求值:sin160°cos160°(tan340°+cot340°)= .2、若sin (125°-α)=1213,则sin (α+55°)=.3、cos π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π7 = .4、已知,1)sin(=+βα则=+++)32sin()2sin(βαβα .三、解答题1、已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.2、若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.3、设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.4.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.《诱导公式》参考答案一、选择题ABAC BABC二、填空题1、1.2、1312.3、0.4、0三、解答题1、7.2、25.3、22)41(=g , 5312()1,()s i n ()1,6233g f π=+=-+ 1)4sin()43(+-=πf , 故原式=3.4、解析:(1)由已知等式(sin )3(sin )4sin cos f x f x x x -+=⋅ ①得x x x f x f cos sin 4)sin (3)(sin -=-+ ② 由3⨯①-②,得8x x x f cos sin 16)(sin ⋅=,故212)(x x x f -=.(2)对01x ≤≤,将函数212)(x x x f -=的解析式变形,得2242()2(1)2f x x x x x =-=-+=22112()24x --+,当22x =时,max 1.f =。

专题4.1 三角函数---诱导公式(有详细答案)

专题4.1  三角函数---诱导公式(有详细答案)

专题4.1 三角函数---诱导公式【考点定位】2020考纲解读和近几年考点分布 一、任意角的概念、弧度制① 了解任意角的概念. ② 了解弧度制概念,能进行弧度与角度的互化. 二、三角函数① 理解任意角三角函数(正弦、余弦、正切)的定义. ② 能灵活运用诱导公式,③ 理解同角三角函数的基本关系式: 22sin cos 1x x +=,sin tan cos xx x= 三、三角恒等变换:两角和与差的三角函数公式 【考点pk 】【考点一 有关三角函数的概念和公式的简单应用】 例1:若)2sin()tan()2cos()sin(απαπαπαπ+---=33-,且()πα,0∈. 求:(1)ααααsin cos sin cos +-;(2)ααα2cos cos sin 1+-的值.历年高考试题之一1、(山东文、理3)若点(a , 9)在函数3xy =的图象上,则tan=6a π的值为 (A )0(B)(C) 1(D)2、(全国文14 )已知3(),tan 22παπα∈=,,则cos α= 3、(全国理14)若3cos 5a =-,且3(,)2a ππ∈,则tan a = 4.(高考全国卷I 理科2)记cos(80)k -︒=,那么tan100︒=C.5. “()24x k k Z ππ=+∈”是“tan 1x =”成立的 ( )(A )充分不必要条件. (B )必要不充分条件. (C )充分条件. (D )既不充分也不必要条件.6.(高考全国Ⅰ卷文科1) cos300︒=(A)2-(B)-12 (C)12(D) 2 7.已知α是第二象限的角, tan α=1/2,则cos α=__________ 8. “6πα=”是“1cos 22α=”的 A . 充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 9.已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(A )43-(B )54(C )34-(D )4510. o585sin 的值为(A) 2-(B)2(C)2- (D) 2 11.下列关系式中正确的是( )A .0sin11cos10sin168<< B .0sin168sin11cos10<< C .0sin11sin168cos10<< D .0sin168cos10sin11<< 12.若4sin ,tan 05θθ=->,则cos θ= . 13、已知α∈R ,则cos()2π+α=( )A .sin αB .cos αC .sin -αD .cos -α14、已知3cos()5x π+=,(, 2)x ππ∈,则tan x = . 15、设α是第三象限角,5tan 12α=,则=αcos ;16、已知54cos -=α且π,π2α⎛⎫∈ ⎪⎝⎭,则πtan 4α⎛⎫+ ⎪⎝⎭等于( )(A)71-(B)7- (C)71(D)717.在平面直角系中,以x 轴的非负半轴为角的始边,如果角α、β的终边分别与单位圆交于点125(,)1313和34(,)55-,那么sin cos αβ等于 ( )A .3665- B. 313- C .413 D. 486518.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且sin 5θ=-,则y= . 【考点二 三角恒等变换】例1:cos13计算sin43cos 43-sin13的值等于( )A .12B .3C .2D .2历年高考试题之二 1、已知,2)4tan(=+πx 则xx2tan tan 的值为__________2、已知α∈(2π,π),sin α=5,则tan 2α=3、已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( )A 54-B 53-C 32D 434、已知函数()12sin 36f x x π⎛⎫=- ⎪⎝⎭,x R ∈.(1)求()0f 的值; (2)设10,0,,3,2213f ππαβα⎡⎤⎛⎫∈+= ⎪⎢⎥⎣⎦⎝⎭()632,5f βπ+=求()sin αβ+的值. 5.若sin a = -45,a 是第一象限的角,则sin()4a π+=(A )-10 (B )10 (C ) -10 (D )106.已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . 7.已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值作业: 一、选择题1.已知0cos sin >αα,则角α的终边所在的象限是( )A .第一、二象限B .第二、四象限C .第一、三象限D .第三、四象限 2.如果角θ的终边过点P (a ,3a )(a ≠0),则sin θ的值为( )A 、10103 B 、1010 C 、10103± D 、1010± 3.已知α是三角形的一个内角,且32cos sin =+αα,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .不等腰的直角三角形 D .等腰直角三角形 4.若sin 0α<且tan 0α>,则α的终边在( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 5.若0cos sin <αα,则角α的终边在 ( )A.第二象限B.第四象限C.第二、四象限 D .第三、四象限6.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于( ) A.43-B.34- C.43 D.347.下列命题中的真命题是( )A.三角形的内角必是第一象限或第二象限的角B.角α的终边在x 轴上时,角α的正弦线、正切线分别变成一个点 C .终边相同的角必相等 D. 终边在第二象限的角是钝角 8.函数,cos 2sin x x =则x x cos sin ∙的值是( )A.41 B. 21 C. 52D. 329.已知3sin 5α=- ,4cos 5α=,则tan α ( ) A .34 B .34- C .43 D .43- 10.已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为 ( )A .-2B .2C .1623D .-162311.已知点P (ααcos ,tan )在第三象限,则角α在( )A .第一象限B .第二象限C .第三象限D .第四象限12.若是α第二象限角,则1sin 1tan 2-αα化简的结果是 ( ) A .1 B .-1 C .tan 2α D .-tan 2α13.425sin2)311tan()415(cos 42πππ+--的值为( )A .1B .13-C .12-D .()122-14)A .cos160︒ B. cos160-︒ C .cos160±︒ D.cos160±︒ 15.0sin 390=( )A .21 B .21- C .23D .23-16.式子sin2 cos3 tan4的值 ( )A 小于0B 大于0C 等于0D 不存在二、填空题 1.函数tan()4y x π=+的定义域为 . 2.已知sin cos θθ-=44sin cos θθ+= 3.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___ 、___ 、___ 象限. 4.已知2tan -=α.则ααα2cos cos sin 2+的值为 .. 5.已知角α的终边过点P(–5, 12),则cos α=_____________. 6.若3sin 5θ=-,tan 0θ>,则cos θ=_____________. 7.已知tan1a =,tan 2b =,tan3c =,则a ,b ,c 的大小关系是_____________.三、解答题1.(1)计算:23tan()6π-;(2)已知4cos5x=-,且(,),2xππ∈--求tan x得值.2、已知函数1()2sin(),36f x x x Rπ=-∈(1)求5()4fπ的值;(2)设106,0,,(3),(32),22135f fππαβαβπ⎡⎤∈+=+=⎢⎥⎣⎦求cos()αβ+的值.专题4.1 三角函数---诱导公式 答案【考点一 有关三角函数的概念和公式的简单应用】 例1、解:【名师点睛】①给角求值问题,利用诱导公式找到给定角和常见特殊角的联系求出值;②对于给值求值的问题的结构特点是“齐次式”,求值时通常利用同角三角函数关系式,常数化为正弦和余弦的性质,再把正弦化为正切函数的形式. 历年高考试题之一1、D 【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===2、【解析】由22222cos 11cos ,sin cos tan 15ααααα===++又3(),cos 02παπα∈<,所以cos 5α=- 3、【解析】∵cos α=35-,且3(,)2παπ∈,∴4sin 5α=-,∴tan α=sin cos αα=34. 4、B 【解析】222sin801cos 801cos (80)1k =-=--=-,所以tan100tan80︒=-sin 80cos80=-=-5、A 解析:14tan)42tan(==+πππk ,所以充分;但反之不成立,如145tan=π 6、C 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=7、【解析】5-∵1tan 2α=-,∴cos 5α=-8、【答案】A查.当2()6k k Z παπ=+∈时,1cos 2cos 4cos 332k ππαπ⎛⎫=+== ⎪⎝⎭,反之,当1cos 22α=时,有()2236k k k Z ππαπαπ=+⇒=+∈,或()2236k k k Z ππαπαπ=-⇒=-∈,故应选A.9、D 【解析】222222sin sin cos 2cos sin sin cos 2cos sin cos θθθθθθθθθθ+-+-=+ =22tan tan 2tan 1θθθ+-+=4224415+-=+10、A 解:2245sin )45180sin()225360sin(585sin -=-=+=+=oo o o o o 11、C 解析:因为sin160sin(18012)sin12,cos10cos(9080)sin80︒︒︒︒︒︒︒︒=-==-=,由于正弦函数sin y x =在区间[0,90]︒︒上为递增函数,因此sin11sin12sin80︒︒︒<<,即sin11sin160cos10︒︒︒<<。

高考数学复习典型题型专题讲解与练习23 诱导公式

高考数学复习典型题型专题讲解与练习23 诱导公式

高考数学复习典型题型专题讲解与练习专题23 诱导公式题型一 三角函数的化简、求值——诱导公式1.已知sin(π)α-是方程61x =cos(5π)tan(2π)sin(3π)cot(π)αααα-⋅-+⋅-的值.【答案】【解析】61x =210=13= ,19x = ,1sin(π)sin 9αα-=-=,1sin 9α=- , cos(5π)tan(2π)cos(π)tan()cos (tan )sin(3π)cot(π)sin(π)cot()sin (cot )αααααααααααα-⋅--⋅--⋅-==+⋅-+⋅--⋅- sin cos sin cos cos cos sin sin αααααααα⋅==⋅ , 因为1sin 9α=-,所以cos α=,那么原式值为故答案为:2.已知sin(7π)3cos(2π)αα-=-,则tan(3π)α+=__________.【答案】3-【解析】由sin(7π)3cos(2π)αα-=-,得()sin 3cos απα-=,即sin 3cos αα-=, 因此sin tan(3π)tan 3cos αααα+===-.故答案为:3-.3.若角α终边上一点()2,3P -,则cos sin()2cos()sin(3)παπαπαπα⎛⎫++ ⎪⎝⎭--的值为___________. 【答案】32【解析】由诱导公式知,()cos sin()sin sin 2tan cos()sin(3)cos sin παπααααπαπααα⎛⎫++ ⎪--⎝⎭==----,因为角α终边上一点()2,3P -, 所以33tan 22α==--, 所以原式3tan 2α=-= 故答案为:324.若tan 2α=,则sin()sin 23cos cos()2ππααπαπα⎛⎫+-+ ⎪⎝⎭⎛⎫++- ⎪⎝⎭的值为___________. 【答案】-3 【解析】sin()sin sin cos tan 13233sin cos tan 11cos cos()2ππαααααπααααπα⎛⎫+-+ ⎪-----⎝⎭====---⎛⎫++- ⎪⎝⎭故答案为:-35.对k ∈Z ,设sin(2π)k θ--与cos(2π)k θ-是方程221)50x x m ++=的两根.求;(1)m 的值;(2)sin cos()1cot()1tan()θθθθ-++-+-的值.【答案】(1)m =;(2)【解析】(1)由诱导公式可得,sin(2)sin k πθθ--=,cos(2)cos k πθθ-=,∴由题意,sin cos θθ+=5sin cos 2m θθ=②, ∴①平方可得:12sin cos θθ+,代入②可解得:m = (2)22sin cos()sin cos sin cos cos sin 1cot()1tan()sin cos 11sin cos sin cos θθθθθθθθθθθθθθθθ--+=+==+=+-+----题型二 三角函数恒等式的证明——诱导公式6.求证:sin()11sec()tan()cos()11csc()ααααα--+-⋅=--+--. 【答案】证明见解析 【解析】左式11sin 1sin sin 11cos cos 1cos 1cos cos 11+sin 1+sin αααααααααα+----+=⋅=⋅⋅++ ()tan tan αα=-=-,故左式与右式相等,即原等式成立.7.已知A 、B 、C 是ABC 的三个内角,求证;(1)cos(2)cos 0A B C A +++=;(2)3πtan tan 044A B C +++=. 【答案】(1)证明见详解;(2)证明见详解.【解析】(1)cos(2)cos A B C A +++cos[()]cos cos(π)cos A B C A A A A =++++=++ cos cos A A =-+0=. (2)3πtan tan 44A B C +++π3π3π+tan tan tan π444C C C -+⎛⎫=+=-+ ⎪⎝⎭3πtan 4C +3π3πtan tan 044C C ++=-+=. 8.求证:()()()cos 6sin 2tan 2tan 33cos sin 22πθπθπθθππθθ+---=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭. 【答案】证明见解析【解析】证明:左边=()()cos sin tan cos sin tan tan sin (cos )sin cos θθθθθθθθθθθ--==---=右边 所以原等式成立9.若k ∈Z ,求证:sin(π)cos(π)1sin[(1)π]cos[(1)π]k k k k αααα-+=-+++-. 【答案】证明见解析【解析】证明:若k 为偶数,则 左边sin()cos sin(π)cos(π)αααα-=+- sin cos (sin )(cos )αααα-=-- 1=-;若k 为奇数,则 左边sin(π)cos(π)sin cos()αααα-+=- sin (cos )sin cos αααα-= 1=-;左边=右边,所以原式成立.题型三 诱导公式的综合应用10.已知tan(5π+α)=m ,则sin(3)cos()sin()cos()αππααπα-+---+的值为( )A .11m m +-B .11m m -+ C .-1D .1【答案】A【解析】因为tan(5π+α)=tan(π+α)=tan α=m ,所以原式sin cos tan 11sin cos tan 11m m αααααα+++==---. 故选:A11.已知37π6α=-,则222sin(π)cos(π)cos(2π)1sin (π)sin(π)cos (2π)αααααα+⋅---+-++-+的值为( )A ...12 【答案】A 【解析】原式()2222sin cos cos 2sin cos cos cos 11sin sin cos 2sin sin sin tan αααααααααααααα-⋅---====+---,当37π6α=-时,37tan tan tan 66ππα⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭故1tan α= 故选:A.12.如果()1sin 2A π+=-,那么cos 2A π⎛⎫+= ⎪⎝⎭________. 【答案】12-【解析】由()11sin sin ,sin 22π+=-=-∴=A A A , 而1cos sin 22A A π⎛⎫+=-=- ⎪⎝⎭.故答案为:12-.13.证明:cos()sin(5)cos(8)21cos(3)sin(3)sin(4)πθθππθπθθπθπ---⋅⋅=----【答案】证明见解析 【解析】证明:原式sin(5)sin cos sin sin cos 1cos()sin(3)sin(4)cos sin sin πθθθθθθπθπθθπθθθ---⋅⋅=⋅⋅=----+---. 14.是否存在角()022ππαβαβπ⎛⎫∈-∈ ⎪⎝⎭,,,,,,使等式()sin 32ππαβ⎛⎫-=- ⎪⎝⎭,()()απβ-=+同时成立?若存在,求出αβ,的值;若不存在,试说明理由. 【答案】存在,,46ππαβ==【解析】()sin 3sin (1)2ππαβαβ⎛⎫-=-⇒= ⎪⎝⎭,()()(2)απβαβ-=+, 因为22ππα⎛⎫∈- ⎪⎝⎭,,所以cos 0α>,因此02πβ⎛⎫∈ ⎪⎝⎭,, 22(2)(1)+得,2221sin 3cos 2cos 2ααα+=⇒=,因为22ππα⎛⎫∈- ⎪⎝⎭,,所以4πα=±, 当4πα=时,1sin sin 42πββ=⇒=,因为02πβ⎛⎫∈ ⎪⎝⎭,,所以6πβ=; 当4πα=-时,1sin sin 42πββ⎛⎫-=⇒=- ⎪⎝⎭,因为02πβ⎛⎫∈ ⎪⎝⎭,,所以1sin 2β=-不成立, 因此存在角()022ππαβαβπ⎛⎫∈-∈ ⎪⎝⎭,,,,,,使等式()sin 32ππαβ⎛⎫-=- ⎪⎝⎭,()()απβ-=+同时成立,此时,46ππαβ==.。

专题48 高中数学诱导公式二、三、四(解析版)

专题48 高中数学诱导公式二、三、四(解析版)

专题48 诱导公式二、三、四1.诱导公式二(1)角π+α与角α的终边关于原点对称.如图所示.(2)公式:sin(π+α)=-sinα;cos(π+α)=-cosα;tan(π+α)=tanα.2.诱导公式三(1)角-α与角α的终边关于x轴对称.如图所示.(2)公式:sin(-α)=-sinα;cos(-α)=cosα;tan(-α)=-tanα.3.诱导公式四(1)角π-α与角α的终边关于y轴对称.如图所示.(2)公式:sin(π-α)=sinα;cos(π-α)=-cosα;tan(π-α)=-tanα.4.α+k·2π(k∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.5.四组诱导公式的记忆四组诱导公式的记忆口诀是“函数名不变,符号看象限”.“口诀”的正确理解:“函数名不变”是指等式两边的三角函数同名;“符号”是指等号右边是正号还是负号;“看象限”是指假设α是锐角,要看原函数名在本公式中角的终边所在象限是取正值还是负值,如sin(π+α),若α看成锐角,则π+α在第三象限,正弦在第三象限取负值,故sin(π+α)=-sin α.6.四组诱导公式的作用公式一的作用:把不在0~2π范围内的角化为0~2π范围内的角;公式二的作用:把第三象限角的三角函数化为第一象限角的三角函数;公式三的作用:把负角的三角函数化为正角的三角函数;公式四的作用:把第二象限角的三角函数化为第一象限角的三角函数.题型一 给角求值问题1.求下列各三角函数值:(1)sin 1320°;(2)cos ⎝⎛⎭⎫-31π6;(3)tan(-945°);(4) tan ⎝⎛⎭⎫-4π3 ;(5) (5)sin 2π3 ;(6) cos ⎝⎛⎭⎫-7π6 [解析] (1)法一:sin 1 320°=sin(3×360°+240°)=sin 240°=sin(180°+60°)=-sin 60°=-32. 法二:sin 1 320°=sin(4×360°-120°)=sin(-120°)=-sin(180°-60°)=-sin 60°=-32. (2)法一:cos ⎝⎛⎭⎫-31π6=cos 31π6=cos ⎝⎛⎭⎫4π+7π6=cos ⎝⎛⎭⎫π+π6=-cos π6=-32. 法二:cos ⎝⎛⎭⎫-31π6=cos ⎝⎛⎭⎫-6π+5π6=cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (3)tan(-945°)=-tan 945°=-tan(225°+2×360°)=-tan 225°=-tan(180°+45°)=-tan 45°=-1. (4)tan ⎝⎛⎭⎫-4π3=tan ⎝⎛⎭⎫-2π+2π3=tan 2π3=tan ⎝⎛⎭⎫π-π3=-tan π3=- 3. (5)sin2π3=sin ⎝⎛⎭⎫π-π3=sin π3=32. (6)cos ⎝⎛⎭⎫-7π6=cos 7π6=cos ⎝⎛⎭⎫π+π6=-cos π6=-32. 2.求下列三角函数值:(1)sin(-1200°);(2)tan945°;(3)cos 119π6.[解析] (1)sin(-1200°)=-sin1200°=-sin(3×360°+120°)=-sin120°=-sin(180°-60°)=-sin60°=-32. (2)tan945°=tan(2×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. (3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32. 3.计算:(1)cos π5+cos 2π5+cos 3π5+cos 4π5;(2)tan 10°+tan 170°+sin 1 866°-sin(-606°). (3)tan π5+tan 2π5+tan 3π5+tan 4π5;(4)sin(-60°)+cos225°+tan135°.(5)sin420°cos330°+sin(-690°)cos(-660°).[解析](1)原式=⎝⎛⎭⎫cos π5+cos 4π5+⎝⎛⎭⎫cos 2π5+cos 3π5=⎣⎡⎦⎤cos π5+cos ⎝⎛⎭⎫π-π5+⎣⎡⎦⎤cos 2π5+cos ⎝⎛⎭⎫π-2π5 =⎝⎛⎭⎫cos π5-cos π5+⎝⎛⎭⎫cos 2π5-cos 2π5=0. (2)原式=tan 10°+tan(180°-10°)+sin(5×360°+66°)-sin [(-2)×360°+114°]=tan 10°-tan 10°+sin 66°-sin(180°-66°)=sin 66°-sin 66°=0.(3)原式=tan π5+tan 2π5+tan ⎝⎛⎭⎫π-2π5+tan ⎝⎛⎭⎫π-π5=tan π5+tan 2π5-tan 2π5-tan π5=0. (4)原式=-sin60°+cos(180°+45°)+tan(180°-45°)=-32-cos45°-tan45° =-32-22-1=-2+3+22.(5)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)cos(-2×360°+60°) =sin60°cos30°+sin30°cos60°=32×32+12×12=1. 4.利用公式求下列三角函数值: (1)cos476π;(2)tan(-855°);(3)sin(-945°)+cos(-296π);(4)tan 34π+sin 116π. [解析] (1)cos476π=cos(116π+6π)=cos 116π=cos(2π-π6)=cos π6=32. (2)tan(-855°)=-tan 855°=-tan(2×360°+135°)=-tan 135°=-tan(180°-45°) =-tan(-45°)=tan 45°=1.(3)原式=sin(-2×360°-225°)+cos ⎝⎛⎭⎫-4π-5π6=sin(-225°)+cos ⎝⎛⎭⎫-5π6 =-sin(180°+45°)+cos ⎝⎛⎭⎫π-π6=sin 45°-cos π6=22-32=2-32. (4)原式=tan(π-π4)+sin(2π-π6)=-tan π4-sin π6=-1-12=-32.5.求下列各三角函数值:(1)cos ⎝⎛⎭⎫-31π6;(2)tan(-765°);(3)sin 4π3·cos 25π6·tan 5π4. [解析] (1)cos ⎝⎛⎭⎫-31π6=cos 31π6=cos ⎝⎛⎭⎫4π+7π6=cos ⎝⎛⎭⎫π+π6=-cos π6=-32. (2)tan(-765°)=-tan 765°=-tan(45°+2×360°)=-tan 45°=-1. (3)sin4π3·cos 25π6·tan 5π4=sin ⎝⎛⎭⎫π+π3cos ⎝⎛⎭⎫4π+π6·tan ⎝⎛⎭⎫π+π4=-sin π3cos π6tan π4=-32×32×1=-34. 6.求下列各式的值:(1)sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°; (2)sin8π3cos 31π6+tan ⎝⎛⎭⎫-23π4. [解析] (1)原式=sin(120°-4×360°)cos(30°+3×360°)+cos(60°-3×360°)sin(30°+2×360°)+tan(135°+360°)=sin120°cos30°+cos60°sin30°+tan135°=32×32+12×12-1=0.(2)原式=sin ⎝⎛⎭⎫2π+2π3cos ⎝⎛⎭⎫4π+7π6+tan ⎝⎛⎭⎫-6π+π4=sin 2π3cos 7π6+tan π4 =sin π3·⎝⎛⎭⎫-cos π6+tan π4=32×⎝⎛⎭⎫-32+1=14. 7.求值:sin(-1 200°)×cos 1 290°+cos(-1 020°)×sin(-1 050°)+tan 855°.[解析]原式=-sin(120°+3×360°)×cos(210°+3×360°)+cos(300°+2×360°)×[-sin(330°+2×360°)]+tan(135°+2×360°)=-sin 120°×cos 210°-cos 300°×sin 330°+tan 135°=-sin (180°-60°)×cos (180°+30°)-cos(360°-60°)×sin(360°-30°)+tan(180°-45°) =sin 60°×cos 30°+cos 60°×sin 30°-tan 45°=32×32+12×12-1=0. 8.cos (-585°)sin 495°+sin (-570°)的值等于________. [解析]原式=cos (360°+225°)sin (360°+135°)-sin (360°+210°)=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°-(-sin 30°)=-2222+12=2-2. 9.sin 2150°+sin 2135°+2sin 210°+cos 2225°的值是[解析]因为sin 150°=sin(180°-30°)=sin 30°=12,sin 135°=sin(180°-45°)=sin 45°=22,sin 210°=sin(180°+30°)=-sin 30°=-12,cos 225°=cos(180°+45°)=-cos 45°=-22,所以原式=⎝⎛⎭⎫122+⎝⎛⎭⎫222+2×⎝⎛⎭⎫-12+⎝⎛⎭⎫-222=14+12-1+12=14.10.已知600°角的终边上有一点P (a ,-3),则a 的值为 [解析]由题意得tan 600°=-3a,又因为tan 600°=tan(360°+240°)=tan 240°=tan(180°+60°)=tan 60°=3, 所以-3a=3,所以a =- 3.11.设sin 160°=a ,则cos 340°的值是( )A .1-a 2 B.1-a 2 C .-1-a 2D .±1-a 2[解析]因为sin 160°=a ,所以sin(180°-20°)=sin 20°=a ,而cos 340°=cos(360°-20°)=cos 20°=1-a 2. 12.已知a =tan ⎝⎛⎭⎫-7π6,b =cos 23π4,c =sin ⎝⎛⎭⎫-33π4,则a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .b >c >aD .c >a >b[解析]a =-tan 7π6=-tan π6=-33,b =cos ⎝⎛⎭⎫6π-π4=cos π4=22,c =-sin 33π4=-sin π4=-22, ∴b >a >c .13.已知f (x )=⎩⎨⎧sin πx (x <0),f (x -1)-1(x >0),则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. [解析] f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6=sin ⎝⎛⎭⎫-2π+π6=sin π6=12, f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫116-1-1=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫56-1-2=f ⎝⎛⎭⎫-16-2=sin ⎝⎛⎭⎫-π6-2=-sin π6-2=-12-2=-52, 所以f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116=12-52=-2. 14.若f (n )=sinn π3(n ∈Z),则f (1)+f (2)+f (3)+…+f (2 020)=________. [解析]f (1)=sin π3=32,f (2)=sin 2π3=32,f (3)=sin π=0,f (4)=sin 4π3=-32,f (5)=sin 5π3=-32,f (6)=sin 2π=0,f (7)=sin7π3=sin π3=f (1),f (8)=f (2),…, 因为f (1)+f (2)+f (3)+…+f (6)=0,所以f (1)+f (2)+f (3)+…+f (2 020)=f (1)+f (2)+f (3)+f (4)+336×0=32. 题型二 给值(式)求值问题1.若cos(π+α)=-13,则cos α的值为[解析] cos(π+α)=-cos α,所以cos α=13.2.若cos(π+α)=-12,32π<α<2π,则sin(2π+α)等于( )A.12 B .±32 C.32D .-32[解析]由cos(π+α)=-12,得cos α=12,故sin(2π+α)=sin α=-1-cos 2α=-32(α为第四象限角). 3.已知cos(α-π)=-513,且α是第四象限角,则sin(-2π+α)等于( )A .-1213 B.1213 C .±1213D.512[解析]由cos(α-π)=-513,得cos α=513.又α为第四象限角,所以sin(-2π+α)=sin α=-1-cos 2α=-1213.4.已知cos(π-α)=-35,且α是第一象限角,则sin(-2π-α)的值是( )A.45 B .-45 C .±45 D.35[解析]因为cos(π-α)=-cos α,所以cos α=35.因为α是第一象限角,所以sin α>0.所以sin α=1-cos 2α=1-⎝⎛⎭⎫352=45.所以sin(-2π-α)=sin(-α)=-sin α=-45. 5.已知tan ⎝⎛⎭⎫π3-α=13,则tan ⎝⎛⎭⎫2π3+α等于 [解析]因为tan ⎝⎛⎭⎫2π3+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-α=-tan ⎝⎛⎭⎫π3-α,所以tan ⎝⎛⎭⎫2π3+α=-13. 6.已知cos ⎝⎛⎭⎫π6-α=33,则cos ⎝⎛⎭⎫α+5π6=________. 【解析】)cos ⎝⎛⎭⎫α+5π6=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-33. 7.已知cos ⎝⎛⎭⎫π6-α=33,则cos ⎝⎛⎭⎫α-13π6=________. [解析]cos ⎝⎛⎭⎫α-13π6=cos ⎝⎛⎭⎫13π6-α=cos ⎣⎡⎦⎤2π+⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6-α=33. 8.已知cos ⎝⎛⎭⎫π6-α=33,则cos ⎝⎛⎭⎫5π6+α-sin 2⎝⎛⎭⎫α-π6=________. [解析])因为cos ⎝⎛⎭⎫5π6+α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-33, sin 2⎝⎛⎭⎫α-π6=sin 2⎣⎡⎦⎤-⎝⎛⎭⎫π6-α=sin 2⎝⎛⎭⎫π6-α=1-cos 2⎝⎛⎭⎫π6-α=1-⎝⎛⎭⎫332=23, 所以cos ⎝⎛⎭⎫5π6+α-sin 2⎝⎛⎭⎫α-π6=-33-23=-2+33.9.已知α为第二象限角,且sin α=35,则tan(π+α)的值是[解析] 因为sin α=35且α为第二象限角,所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(π+α)=tan α=-34.10.已知cos(α-55°)=-13,且α为第四象限角,则sin(α+125°)的值为________;[解析]∵cos(α-55°)=-13<0,且α是第四象限角.∴α-55°是第三象限角.∴sin(α-55°)=-1-cos 2(α-55°)=-223.∵α+125°=180°+(α-55°),∴sin(α+125°)=sin[180°+(α-55°)]=-sin(α-55°)=223. 11.已知sin(π+α)=35,且α是第四象限角,那么cos(α-π)的值是[解析]因为sin(π+α)=-sin α=35,所以sin α=-35.又α是第四象限角,所以cos α=45,所以cos(α-π)=cos(π-α)=-cos α=-45.12.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是[解析]∵sin(π+α)=-sin α=45,∴sin α=-45,且α为第四象限角,∴cos α=1-sin 2α=35.又∵cos(α-2π)=cos(2π-α)=cos α=3513.若cos(2π-α)=53且α∈⎝⎛⎭⎫-π2,0,则sin(π-α)= [解析]因为cos(2π-α)=cos α=53,且α∈⎝⎛⎭⎫-π2,0,所以sin α=-1-cos 2α=-23, 所以sin(π-α)=sin α=-23.14.若sin(π+α)=12,α∈⎝⎛⎭⎫-π2,0,则tan(π-α)等于 [解析]因为sin(π+α)=-sin α,根据条件得sin α=-12,又α∈⎝⎛⎭⎫-π2,0,∴cos α>0, 所以cos α=1-sin 2α2=32.所以tan α=sin αcos α=-13=-33.所以tan(π-α)=-tan α=33.15.若sin(π+α)+sin(-α)=-m ,则sin(3π+α)+2sin(2π-α)等于 [解析] 因为sin(π+α)+sin(-α)=-2sin α=-m ,所以sin α=m 2,则sin(3π+α)+2sin(2π-α)=-sin α-2sin α=-3sin α=-32m .16.已知sin 5π7=m ,则cos 2π7=________.[解析] 因为sin 5π7=sin ⎝⎛⎭⎫π-2π7=sin 2π7=m ,且2π7∈⎝⎛⎭⎫0,π2,所以cos 2π7=1-m 2.17.已知sin(α-360°)-cos(180°-α)=m ,则sin(180°+α)·cos(180°-α)等于 [解析]sin(α-360°)-cos(180°-α)=sin α+cos α=m ,sin(180°+α)cos(180°-α)=sin αcos α=(sin α+cos α)2-12=m 2-12.18.已知cos(α-75°)=-13,且α为第四象限角,求sin(105°+α)的值.[解析] ∵cos(α-75°)=-13<0,且α为第四象限角,∴sin(α-75°)=-1-cos 2(α-75°)=-1-⎝⎛⎭⎫-132=-223,∴sin(105°+α)=sin [180°+(α-75°)]=-sin(α-75°)=223. 19.已知sin ⎝⎛⎭⎫α-π4=32,则sin ⎝⎛⎭⎫5π4-α的值为 [解析]sin ⎝⎛⎭⎫5π4-α=sin ⎝⎛⎭⎫π+π4-α=-sin ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫α-π4=32. 20.已知cos(508°-α)=1213,则cos(212°+α)=________.[解析]由于cos(508°-α)=cos(360°+148°-α)=cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°)=cos(α-148°)=cos(148°-α)=1213. 21.若α∈⎝⎛⎭⎫π2,3π2,tan(α-7π)=-34,则sin α+cos α的值为 [解析]∵tan(α-7π)=-tan(7π-α)=-tan(6π+π-α)=-tan(π-α)=tan α=-34,α∈⎝⎛⎭⎫π2,3π2,且tan α<0,∴α∈⎝⎛⎭⎫π2,π,∴sin α>0,cos α<0. 又∵tan α=sin αcos α=-34, ①而sin 2α+cos 2α=1, ②由①②,解得⎩⎨⎧sin α=35,cos α=-45.∴sin α+cos α=35-45=-15.22.设f (x )=a sin(πx +α)+b cos(πx +β)+7,α,β均为实数,若f (2 018)=8,则f (2 019)的值为________. [解析]因为f (2 018)=a sin(2 018π+α)+b cos(2 018π+β)+7=a sin α+b cos β+7, 所以a sin α+b cos β+7=8,所以a sin α+b cos β=1,又f (2 019)=a sin(2 019π+α)+b cos(2 019 π+β)+7=-a sin α-b cos β+7=-1+7=6. 所以f (2 019)=6.题型三 化简求值问题1.以下四种化简过程,其中正确的有( )①sin(360°+200°)=sin200°;②sin(180°-200°)=-sin200°; ③sin(180°+200°)=sin200°;④sin(-200°)=sin200°.A .0个B .1个C .2个D .3个[解析]由诱导公式一知①正确;由诱导公式四知②错误;由诱导公式二知③错误;由诱导公式三知④错误.[答案] B2.sin 2(2π-α)+cos(π+α)cos(π-α)+1的值是[解析]原式=sin 2α+(-cos α)·(-cos α)+1=sin 2α+cos 2α+1=1+1=2. 3.sin 2(π+α)-cos(π+α)cos(-α)+1的值为 [解析]∵原式=sin 2α-(-cos α·cos α)+1=sin 2α+cos 2α+1=24.设f (α)=2sin (2π-α)cos (2π+α)-cos (-α)1+sin 2α+sin (2π+α)-cos 2(4π-α),则f ⎝⎛⎭⎫-236π的值为 [解析]f (α)=2sin (-α)cos α-cos α1+sin 2α+sin α-cos 2α=-cos α(2sin α+1)sin α(2sin α+1)=-1tan α.所以f ⎝⎛⎭⎫-236π=-1tan ⎝⎛⎭⎫-236π=-1tan π6=- 3. 5.化简(1)sin (540°+α)·cos (-α)tan (α-180°);(2)sin (2π+α)cos (-π+α)cos (-α)tan α.[解析] (1)sin (540°+α)·cos (-α)tan (α-180°)=sin (180°+α)·cos αtan α=-sin α·cos αtan α=-cos 2α.(2)sin (2π+α)cos (-π+α)cos (-α)tan α=sin α(-cos α)cos αtan α=-cos α.6.化简:(1)cos (-α)tan (7π+α)sin (π-α);(2)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(3)sin (1 440°+α)·cos (1 080°-α)cos (-180°-α)·sin (-α-180°). [解析] (1)cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1.(2)原式=(-tan α)sin (-α)cos (-α)cos (π-α)sin (π-α)=tan α·sin α·cos α-cos α·sin α=-tan α.(3)原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1.7.化简下列各式. (1)cos (π+α)·sin (2π+α)sin (-α-π)·cos (-π-α); (2)cos190°·sin (-210°)cos (-350°)·tan (-585°). (3)cos (θ+4π)·cos 2(θ+π)·sin 2(θ+3π)sin (θ-4π)sin (5π+θ)cos 2(-π+θ).[解析] (1)原式=-cos α·sin α-sin (π+α)·cos (π+α)=cos α·sin αsin α·cos α=1.(2)原式=cos (180°+10°)·[-sin (180°+30°)]cos (-360°+10°)·[-tan (360°+225°)]=-cos10°·sin30°cos10°·[-tan (180°+45°)]=-sin30°-tan45°=12.(3)原式=cos θ·cos 2θ·sin 2θsin θ·(-sin θ)·cos 2θ=-cos θ.8.已知tan(π+α)=-12,则2cos (π-α)-3sin (π+α)4cos (α-2π)+sin (4π-α)=________.[解析]tan(π+α)=-12,则tan α=-12,原式=-2cos α-3(-sin α)4cos α+sin (-α)=-2cos α+3sin α4cos α-sin α=-2+3tan α4-tan α=-2+3×⎝⎛⎭⎫-124-⎝⎛⎭⎫-12=-79.9.已知tan(π+α)=3,求2cos (π-α)-3sin (π+α)4cos (-α)+sin (2π-α)的值.[解析]因为tan(π+α)=3,所以tan α=3. 故2cos (π-α)-3sin (π+α)4cos (-α)+sin (2π-α)=-2cos α+3sin α4cos α-sin α=-2+3tan α4-tan α=-2+3×34-3=7.10.已知tan(π+α)=-12,求下列各式的值:(1)2cos (π-α)-3sin (π+α)4cos (α-2π)+sin (4π-α);(2)sin(α-7π)cos(α+5π). [解析]由tan(π+α)=-12,得tan α=-12.(1)原式=-2cos α-3(-sin α)4cos α+sin (-α)=-2cos α+3sin α4cos α-sin α=-2+3tan α4-tan α=-2+3×⎝⎛⎭⎫-124-⎝⎛⎭⎫-12=-79.(2)原式=sin(-6π+α-π)cos(4π+α+π)=sin(α-π)cos(α+π)=-sin α(-cos α) =sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-25. 11.2+2sin (2π-θ)-cos 2(π+θ)可化简为________. [解析]2+2sin (2π-θ)-cos 2(π+θ)=2-2sin θ-cos 2θ=2-2sin θ-(1-sin 2θ)=sin 2θ-2sin θ+1=(sin θ-1)2=1-sin θ.12.2+2sin (2π-θ)-cos 2(π+θ)可化简为________.[解析]原式=2-2sin θ-cos 2θ=2-2sin θ-(1-sin 2θ)=(sin θ-1)2=1-sin θ.13.化简:1+2sin (π-2)·cos (π-2)=________.[解析]1+2sin (π-2)·cos (π-2)=1-2sin2cos2=(sin2-cos2)2=|sin2-cos2|,因2弧度在第二象限,故sin2>0>cos2,所以原式=sin2-cos2.14.已知sin(α+π)=45,且sin αcos α<0,则2sin (α-π)+3tan (3π-α)4cos (α-3π)=________. [解析]因为sin(α+π)=-sin α=45,且sin αcos α<0, 所以sin α=-45,cos α=35,tan α=-43, 所以2sin (α-π)+3tan (3π-α)4cos (α-3π)=-2sin α-3tan α-4cos α=85+4-4×35=-73. 15.若tan(7π+α)=a ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为 [解析]由tan(7π+α)=a ,得tan α=a ,∴sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=-sin (3π-α)-cos α-sin α+cos α=sin α+cos αsin α-cos α=tan α+1tan α-1=a +1a -1. 16.已知tan(7π+α)=2,求2cos (π-α)-3sin (3π+α)4cos (-α)+sin (2π-α)的值. [解析]∵tan(7π+α)=2,∴tan α=2,∴2cos (π-α)-3sin (3π+α)4cos (-α)+sin (2π-α)=-2cos α+3sin α4cos α-sin α=-2+3tan α4-tan α=-2+3×24-2=2. 17.已知sin(α-π)=2cos(2π-α),求证:sin (π-α)+5cos (2π+α)3cos (π-α)-sin (-α)=-35. [解析]因为sin(α-π)=2cos(2π-α),所以-sin α=2cos α,所以sin α=-2cos α.所以左边=sin α+5cos α-3cos α+sin α=-2cos α+5cos α-3cos α-2cos α=3cos α-5cos α=-35=右边,所以原式得证. 18.已知f (α)=sin (π+α)cos (2π-α)tan (-α)tan (-π-α)sin (-π-α). (1)化简f (α);(2)若α是第三象限角,且sin(α-π)=15,求f (α)的值; (3)若α=-31π3,求f (α)的值. [解析] (1)f (α)=-sin αcos α(-tan α)(-tan α)sin α=-cos α.(2)∵sin(α-π)=-sin α=15,∴sin α=-15.又α是第三象限角,∴cos α=-265,∴f (α)=265. (3)∵-31π3=-6×2π+5π3, ∴f ⎝⎛⎭⎫-31π3=-cos ⎝⎛⎭⎫-6×2π+5π3=-cos 5π3=-cos π3=-12. 19.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A .sin α=sin βB .sin(α-2π)=sin βC .cos α=cos βD .cos(2π-α)=-cos β[解析]由α和β的终边关于x 轴对称,故β=-α+2k π(k ∈Z),故cos α=cos β.[答案] C20.在△ABC 中,给出下列四个式子:①sin(A +B )+sin C ;②cos(A +B )+cos C ;③sin(2A +2B )+sin 2C ;④cos(2A +2B )+cos 2C . 其中为常数的是( )A .①③B .②③C .①④D .②④[解析]①sin(A +B )+sin C =2sin C ;②cos(A +B )+cos C =-cos C +cos C =0;③sin(2A +2B )+sin 2C =sin [2(A +B )]+sin 2C =sin [2(π-C )]+sin 2C =sin(2π-2C )+sin 2C=-sin 2C +sin 2C =0;④cos(2A +2B )+cos 2C =cos [2(A +B )]+cos 2C =cos [2(π-C )]+cos 2C =cos(2π-2C )+cos 2C =cos 2C +cos 2C =2cos 2C .故选B.21.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.[解析]由条件得sin A =2sin B ,3cos A =2cos B ,平方相加得2cos 2A =1,cos A =±22, 又A ∈(0,π),∴A =π4或34π.当A =34π时,cos B =-32<0,∴B ∈⎝⎛⎭⎫π2,π, ∴A ,B 均为钝角,不合题意,舍去.∴A =π4,cos B =32,∴B =π6,∴C =712π. 综上所述,A =π4,B =π6,C =712π. 22.当θ=5π4时,sin[θ+(2k +1)π]-sin[-θ-(2k +1)π]sin (θ+2k π)cos (θ-2k π)(k ∈Z)的值等于________. [解析]原式=-sin θ-sin θsin θcos θ=-2cos θ.当θ=5π4时,原式=-2cos 5π4=2 2. 23.下列三角函数式:①sin ⎝⎛⎭⎫2n π+3π4;②cos ⎝⎛⎭⎫2n π-π6;③sin ⎝⎛⎭⎫2n π+π3;④cos ⎣⎡⎦⎤(2n +1)π-π6;⑤sin ⎣⎡⎦⎤(2n -1)π-π3.其中n ∈Z ,则函数值与sin π3的值相同的是( ) A .①②B .②③④C .②③⑤D .③④⑤ [解析]①中sin ⎝⎛⎭⎫2n π+3π4=sin 3π4≠sin π3; ②中,cos ⎝⎛⎭⎫2n π-π6=cos π6=sin π3; ③中,sin ⎝⎛⎭⎫2n π+π3=sin π3; ④中,cos ⎣⎡⎦⎤(2n +1)π-π6=cos ⎝⎛⎭⎫π-π6=-cos π6≠sin π3; ⑤中,sin ⎣⎡⎦⎤(2n -1)π-π3=sin ⎝⎛⎭⎫-π-π3=-sin ⎝⎛⎭⎫π+π3=sin π3. 24.设k 为整数,化简:(1)sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α); (2)1+2sin 290°cos 430°sin 250°+cos 790°;(3)sin ⎝⎛⎭⎫2k π+2π3cos ⎝⎛⎭⎫k π+4π3(k ∈Z). [解析]法一:(分类讨论)当k 为偶数时,设k =2m (m ∈Z),则原式=sin (2m π-α)cos[(2m -1)π-α]sin[(2m +1)π+α]cos (2m π+α)=sin (-α)cos (π+α)sin (π+α)cos α=(-sin α)(-cos α)-sin αcos α=-1; 当k 为奇数时,设k =2m +1(m ∈Z),同理可得原式=-1.法二:(配角法)由于k π-α+k π+α=2k π,(k +1)π+α+(k -1)π-α=2k π,故cos [(k -1)π-α]=cos [(k +1)π+α]=-cos(k π+α),sin [(k +1)π+α]=-sin(k π+α), sin(k π-α)=-sin(k π+α).所以原式=-sin (k π+α)[-cos (k π+α)]-sin (k π+α)cos (k π+α)=-1. (2)原式=1+2sin (360°-70°)cos (360°+70°)sin (180°+70°)+cos (720°+70°)=1-2sin 70°cos 70°-sin 70°+cos 70° =|cos 70°-sin 70°|cos 70°-sin 70°=sin 70°-cos 70° cos 70°-sin 70°=-1. (3)当k 为偶数时,原式=sin 2π3cos 4π3=sin ⎝⎛⎭⎫π-π3cos ⎝⎛⎭⎫π+π3=-sin π3cos π3=-34. 当k 为奇数时,原式=sin 2π3cos ⎝⎛⎭⎫π+4π3=sin ⎝⎛⎭⎫π-π3cos ⎝⎛⎭⎫2π+π3=sin π3cos π3=34. 25.化简:sin (α+n π)+sin (α-n π)sin (α+n π)cos (α-n π)(n ∈Z). [解析]当n =2k ,k ∈Z 时,原式=sin (α+2k π)+sin (α-2k π)sin (α+2k π)cos (α-2k π)=2cos α.当n =2k +1,k ∈Z 时,原式=sin[α+(2k +1)π]+sin[α-(2k +1)π]sin[α+(2k +1)π]cos[α-(2k +1)π]=-2cos α. 所以原式=⎩⎨⎧ 2cos α(n 为偶数),-2cos α(n 为奇数).26.已知函数f (x )=6cos (π+x )+5sin 2(π-x )-4cos (2π-x ),且f (m )=2,试求f (-m )的值. [解析]因为f (x )=6cos (π+x )+5sin 2(π-x )-4cos (2π-x )=-6cos x +5sin 2x -4cos x , 又因为f (-x )=-6cos (-x )+5sin 2(-x )-4cos (-x )=-6cos x +5sin 2x -4cos x =f (x ), 所以f (-m )=f (m )=2.27.已知1+tan (θ+720°)1-tan (θ-360°)=3+22, 求:[cos 2(π-θ)+sin(π+θ)cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)的值. [解析]由1+tan (θ+720°)1-tan (θ-360°)=3+22,得(4+22)tan θ=2+22,所以tan θ=2+224+22=22. 故[cos 2(π-θ)+sin(π+θ)cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)=(cos 2θ+sin θcos θ+2sin 2θ)·1cos 2θ =1+tan θ+2tan 2θ=1+22+2×⎝⎛⎭⎫222=2+22.。

高三数学诱导公式试题答案及解析

高三数学诱导公式试题答案及解析

高三数学诱导公式试题答案及解析1.已知,则()A.B.C.D.【答案】D【解析】利用降幂公式及诱导公式得【考点】1、降幂公式;2、诱导公式.2. tan300º=_______.【答案】【解析】.【考点】三角函数及其诱导公式.3.已知,,则 .【答案】【解析】,又,则【考点】三角函数运算.4.的值为A.B.C.D..【答案】C【解析】.【考点】1、三角恒等变换;2、诱导公式及三角函数值.5.若,则( )A.B.C.D.【答案】A【解析】∵,∴,∴.【考点】1.诱导公式;2.倍角公式.6.在中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.(I)若,求边c的值;(II)设,求的最大值.【答案】(Ⅰ).(Ⅱ).【解析】(Ⅰ)由角成等差数列,及,首先得到.进一步应用余弦定理即得所求.(Ⅱ)根据,可化简得到根据,即可得到时,有最大值.试题解析:(Ⅰ)因为角成等差数列,所以,因为,所以. 2分因为,,,所以.所以或(舍去). 6分(Ⅱ)因为,所以9分因为,所以,所以当,即时,有最大值. 12分【考点】等差数列,和差倍半的三角函数,,三角函数的性质,余弦定理的应用.7.已知向量,,函数.将函数的图象上各点的纵坐标保持不变,横坐标先缩短到原来的,把所得到的图象再向左平移个单位,得到函数的图象.(1)求函数的单调递增区间;(2)若,求的值.【答案】(1)函数的单调递增区间为;(2).【解析】(1)先利用平面向量数量积的运算求出函数的解析式,结合辅助角公式将函数的解析式化简为,在,的前提下,解不等式得到函数的单调递增区间;(2)先利用得到的值,然后利用函数图象变换求出函数的解析式,并利用二倍角公式求出的值.试题解析:(1),,解得:,所以的单调递增区间为;(2),由(1)得,,,将函数的图象上各点的纵坐标保持不变,横坐标先缩短到原来的,得:,再向左平移个单位,,得.【考点】1.平面向量的数量积;2.三角函数的单调区间;3.三角函数图象变换;4.二倍角公式8.已知,,则的值是( )A.B.C.D.1【答案】C【解析】∵,∴,又∵,∴,∴.【考点】1.诱导公式;2.平方关系;3.两角和与差的正弦公式.9.已知则.【答案】.【解析】因,得,所以.【考点】三角函数的两角和差化积公式.10.在中,,,则面积为()A.B.C.D.【答案】B.【解析】在中,,又有,,则,即,,所以.【考点】向量的运算及三角函数公式.11.已知直线的倾斜角为,则= ()A.B.C.D.【答案】B【解析】由.【考点】二倍角正切公式.12.在中,角、、的对边分别为、、,且,则()A.B.C.D.【答案】A【解析】,故选A.【考点】1.二倍角公式;2.内角和定理;3.诱导公式;4.两角和的余弦公式13.在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角C的大小;(2)求的最大值.【答案】(1);(2)2.【解析】本题考查两角和与差的正弦公式和三角函数最值以及解三角形中正弦定理的应用,考查运用三角公式进行三角变换的能力,考查运算能力.第一问,先利用两角和的正弦公式将等式的左边变形,再利用2个正弦值相等分析出2个角的关系,进行求角;第二问,先利用正弦定理,将边换成角,将第一问的结果代入,利用两角和的正弦公式化简表达式,最后利用三角函数值求最值.试题解析:(1),即,则. 3分因为,又进而,所以,故,. 6分(2)由正弦定理及(1)得. 9分当时,取最大值2. 10分【考点】1.两角和的正弦公式;2.正弦定理;3.三角函数最值.14.已知,,则= ()A.B.C.D.【答案】C【解析】因为,,所以,.【考点】三角函数求值,三角恒等变化.15.若,则的值为()A.B.C.D.【答案】B【解析】,选B.【考点】三角函数诱导公式.16.=________.【答案】【解析】.【考点】三角求值.17.已知,,则= .【答案】【解析】,又是第四象限的角,所以,即.【考点】诱导公式.18.已知,则()A.B.C.D.【答案】B【解析】利用诱导公式、二倍角公式计算..【考点】诱导公式、二倍角公式19.已知,则=________.【答案】【解析】所以,=.【考点】1.诱导公式;2.三角函数值.20.已知∈(,0),,则=A.B.C.D.【解析】于是。

新高考数学复习考点知识与题型专题讲解31---诱导公式(解析版)

新高考数学复习考点知识与题型专题讲解31---诱导公式(解析版)

新高考数学复习考点知识与题型专题讲解31 诱导公式考点知识讲解一 特殊关系角的终边对称性(1)π+α的终边与角α的终边关于对称;(2)-α的终边与角α的终边关于对称);(3)π-α的终边与角α的终边关于对称;(4)π2-α的终边与角α的终边关于直线对称考点知识讲解二 诱导公式(1)诱导公式二sin (π+α)=,cos (π+α)=,tan (π+α)=.(2)诱导公式三sin (-α)=,cos (-α)=,tan (-α)=.(3)诱导公式四sin (π-α)=,cos (π-α)=,tan (π-α)=(4)诱导公式五①角π2-α与角α的终边关于对称,如图所示.②公式:sin ⎪⎭⎫ ⎝⎛-απ2=,cos ⎪⎭⎫ ⎝⎛-απ2=. (5)诱导公式六(1)公式五与公式六中角的联系π2+α=. (2)公式:sin ⎪⎭⎫ ⎝⎛+απ2=,cos ⎪⎭⎫ ⎝⎛+απ2=. 答案:原点x 轴y 轴y =x -sin α-cos αtan α-sin αcos α-tan αsin α-cos α-tan α⎪⎭⎫⎝⎛--αππ2cos α-sin α 题型一 三角函数的化简、求值——诱导公式1.已知sin(π)α-是方程61x =cos(5π)tan(2π)sin(3π)cot(π)αααα-⋅-+⋅-的值.【答案】【解析】61x =210+=13= ,19x = , 1sin(π)sin 9αα-=-=,1sin 9α=- , cos(5π)tan(2π)cos(π)tan()cos (tan )sin(3π)cot(π)sin(π)cot()sin (cot )αααααααααααα-⋅--⋅--⋅-==+⋅-+⋅--⋅- sin cos sin cos cos cos sin sin αααααααα⋅==⋅ , 因为1sin 9α=-,所以cos α=,那么原式值为故答案为:题型二 三角函数恒等式的证明——诱导公式2.求证:sin()11sec()tan()cos()11csc()ααααα--+-⋅=--+--.【答案】证明见解析 【解析】左式11sin 1sin sin 11cos cos 1cos 1cos cos 11+sin 1+sin αααααααααα+----+=⋅=⋅⋅++ ()tan tan αα=-=-,故左式与右式相等,即原等式成立.题型三 诱导公式的综合应用3.已知tan(5π+α)=m ,则sin(3)cos()sin()cos()αππααπα-+---+的值为( ) A .11m m +-B .11m m -+ C .-1D .1【答案】A【解析】因为tan(5π+α)=tan(π+α)=tan α=m ,所以原式sin cos tan 11sin cos tan 11m m αααααα+++==---. 故选:A 1.2πsin3= A .12BC.1 【答案】C【解析】2πsinsin 33π==. 故选C 2.若()1sin 3πα-=-,那么3cos 2πα⎛⎫- ⎪⎝⎭的值为( ). A .13B .13-CD.【答案】A【解析】解:∵()1sin 3πα-=-,∴1sin 3α=-, ∴31cos sin 23παα⎛⎫-=-= ⎪⎝⎭, 故选:A .3.设()()()()()()222sin 2cos 2cos 1sin sin 2cos 4f παπααααπαπα-+--=+++--,则236f π⎛⎫- ⎪⎝⎭的值为( ) A..【答案】D【解析】()()()()()()()22222sin 2cos 2cos 2sin cos cos 1sin sin 2cos 41sin sin cos f παπαααααααπαπαααα-+----==+++--++-()()2cos 2sin 12sin cos cos 12sin sin sin 2sin 1tan αααααααααα++=-=-=-++,因此,2311123236tan tan tan 4666f πππππ⎛⎫-=-=-=-== ⎪⎛⎫⎛⎫⎝⎭-- ⎪ ⎪⎝⎭⎝⎭故选:D.4.已知72333tan(),cos ,sin()644a b c πππ=-==-,则,,a b c 的大小关系是 A .b a c >>B .a b c >>C .b c a >>D .a c b >>【答案】A【解析】根据诱导公式,化简可得tancos sin 644a b c πππ=-====-=, 所以b a c >>,故选A.5.已知角α的终边上有一点P (1,3),则()()sin sin 23cos 2cos 2ππααπαπα⎛⎫--+ ⎪⎝⎭⎛⎫-+-+ ⎪⎝⎭的值为( ) A .25-B .45-C .47-D .-4 【答案】A【解析】∵点P 在角α的终边上,则tan α=3,∴()()sin sin 23cos 2cos 2ππααπαπα⎛⎫--+ ⎪⎝⎭⎛⎫-+-+ ⎪⎝⎭=sin cos tan 12sin 2cos tan 25αααααα--==----- ,故选A.6.设函数()sin()cos()f x a x b x παπβ=+++,其中,,,a b αβ均为非零实数, 且有(2017)1f =,则(2018)f =__________.【答案】-1【解析】∵()()()sin cos f x a x b x παπβ=+++,其中,,,a b αβ均为非零实数,,若2017201720171f asin bcos asin bcos παπβαβ=+++=-+-=()()(),1asin bcos αβ∴+=-, 则2018201820181f asin bcos asin bcos παπβαβ=+++=+=-()()(),故答案为1-,7.化简:sin()cos()sin()cos()222cos()sin()πππααπααπαπα+--++++. 【答案】0【解析】 原式=cos sin cos ααα-+=-sin α+sin α=0.8.设(sin cos )sin cos f x x x x +=,则cos 6f π⎛⎫= ⎪⎝⎭________.【答案】18- 【解析】∵()()211sin cos sin cos 22f x x x x +=+-, ∴()21122f x x =-,∴2211111cos cos 6262228f ππ⎛⎫=-=⨯-=- ⎪⎝⎭⎝⎭. 故答案为:18-. 9.利用公式求下列三角函数值:(1)()cos 420︒-;(2)7sin 6π⎛⎫- ⎪⎝⎭;(3)()tan 1140︒-; (4)77cos 6π⎛⎫- ⎪⎝⎭;(5)tan 315︒;(6)11sin 4π⎛⎫- ⎪⎝⎭. 【答案】(1)12(2)12(3)4)(5)-1(6)【解析】(1)()()1cos 420cos420cos 36060cos602︒︒︒︒︒-==+==; (2)771sin sin sin sin 66662πππππ⎛⎫⎛⎫-=-=-+== ⎪ ⎪⎝⎭⎝⎭; (3)()()tan 1140tan 108060tan60︒︒︒︒-=-+=-=(4)7755cos cos 12cos cos cos 66666πππππππ⎛⎫⎛⎫⎛⎫⎛⎫-=--=-=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(5)()tan315tan 360451︒︒︒=-=-;(6)115sin sin 4sin 444πππππ⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.化简11sin(2)cos()cos cos 229cos()sin(3)sin()sin 2πππαπαααππαπαπαα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭⎛⎫----+ ⎪⎝⎭. 【答案】tan α-【解析】原式()()()()()()sin cos sin cos 52cos sin sin sin 42παααπαπαπαπαπα⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦=⎡⎤⎛⎫⎡⎤---+++ ⎪⎢⎥⎣⎦⎝⎭⎣⎦ ()()2sin cos cos 2sin tan cos cos sin sin sin 2παααααπααααα⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦==-=-⎛⎫⎡⎤---+ ⎪⎣⎦⎝⎭. 11.计算:(1)()()22sin 120cos180tan 45cos 330sin 210︒︒︒︒︒++--+-;(3)2342cos cos cos cos tan tan 555533ππππππ+++--. 【答案】(1)12(2)12(3)0【解析】(1)原式223311sin 60cos0tan45cos 30sin30114422︒︒︒︒︒=-+-+=-+-+=; (2)原式==sin80cos1012cos102cos102︒︒︒︒====. (3)原式22cos cos cos cos tan tan 555533πππππππππ⎛⎫⎛⎫⎛⎫=++-+---- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 22cos cos cos cos tan tan tan tan 055553333ππππππππ⎛⎫=+-----=-= ⎪⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国名校高考数学经典复习题汇编(附详解)专题:诱导公式1.(全国名校·山东师大附中模拟)(tan10°-3)sin40°的值为( ) A .-1 B .0 C .1 D .2答案 A解析 (tan10°-3)·sin40°=(sin10°cos10°-sin60°cos60°)·sin40°=-sin50°cos10°·cos60°·sin40°=-2sin40°·cos40°cos10°=-sin80°cos10°=-1.2.(全国名校·广东珠海期末)已知tan (α+π5)=2,tan (β-4π5)=-3,则tan(α-β)=( )A .1B .-57C.57 D .-1答案 D解析 ∵t an(β-4π5)=-3,∴tan (β+π5)=-3.∵tan (α+π5)=2,∴tan (α-β)=tan [(α+π5)-(β+π5)]=tan (α+π5)-tan (β+π5)1+tan (α+π5)tan (β+π5)=2-(-3)1+2×(-3)=-1.故选D.3.(全国名校·湖南永州一模)已知sin (α+π6)+cos α=-33,则cos(π6-α)=( )A .-223B.223 C .-13D.13 答案 C解析 由sin (α+π6)+cos α=-33,得sin (α+π3)=-13,所以cos(π6-α)=cos[π2-(α+π3)]=sin (α+π3)=-13.4.(全国名校·山东,文)函数y =3sin2x +cos2x 的最小正周期为( ) A.π2 B.2π3 C .π D .2π答案 C解析 ∵y =3sin2x +cos2x =2(32sin2x +12cos2x)=2sin(2x +π6),∴T =2π2=π.故选C. 5.在△ABC 中,tanA +tanB +3=3tanAtanB ,则C 等于( ) A.π3 B.2π3 C.π6 D.π4答案 A解析 由已知得tanA +tanB =-3(1-tanAtanB), ∴tanA +tanB1-tanAtanB=-3,即tan(A +B)=- 3.又tanC =tan[π-(A +B)]=-tan(A +B)=3,0<C<π,∴C =π3.6.sin47°-sin17°cos30°cos17°=( )A .-32B .-12C.12D.32答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°sin17°,∴原式=sin30°cos17°cos17°=sin30°=12.7.(全国名校·河北冀州考试)(1+tan18°)(1+tan27°)的值是( ) A. 2 B. 3 C .2 D. 5答案 C解析 (1+tan18°)(1+tan27°)=1+tan18°+tan27°+tan18°tan27°=1+tan45°·(1-tan18°tan27°)+tan18°tan27°=2.8.(全国名校·课标全国Ⅰ,理)设α∈(0,π2),β∈(0,π2)且tan α=1+sin βcos β,则( )A .3α-β=π2B .3α+β=π2C .2α-β=π2D .2α+β=π2答案 C解析 ∵α,β∈(0,π2),∴-β∈(-π2,0),∴α-β∈(-π2,π2).∵tan α=1+sin βcos β,∴sin αcos α=1+sin βcos β. 即sin αcos β-cos αsin β=cos α. 化简得sin (α-β)=cos α.∵α∈(0,π2),∴cos α>0,sin (α-β)>0.∴α-β∈(0,π2),得α-β+α=π2,即2α-β=π2,故选C.9.(全国名校·湖北中学联考)4sin80°-cos10°sin10°=( )A. 3 B .- 3 C. 2 D .22-3答案 B 解析4sin80°-cos10°sin10°=4sin80°sin10°-cos10°sin10°=2sin20°-cos10°sin10°=2sin (30°-10°)-cos10°sin10°=- 3.故选B.10.(全国名校·四川自贡一诊)已知cos (α+2π3)=45,-π2<α<0,则sin (α+π3)+sin α=( )A .-435B .-335C.335D.435答案 A 解析 ∵cos (α+2π3)=45,-π2<α<0,∴cos (α+23π)=cos αcos 23π-sin αsin 23π=-12cos α-32sin α=45,∴32sin α+12cos α=-45.∴sin (α+π3)+sin α=32sin α+32cos α=3(32sin α+12cos α)=-435.故选A.11.(全国名校·湖南邵阳二联)若tan π12cos 5π12=sin 5π12-msin π12,则实数m 的值为( )A .2 3B. 3C .2D .3答案 A解析 由tan π12cos 5π12=sin 5π12-msin π12,得sin π12cos 5π12=sin 5π12cos π12-msin π12cos π12,∴12msinπ6=sin(5π12-π12)=sin π3,解得m =2 3. 12.(2013·课标全国Ⅱ,理)设θ为第二象限角,若tan (θ+π4)=12,则sin θ+cos θ=________.答案 -105解析 由tan (θ+π4)=1+tan θ1-tan θ=12,得tan θ=-13,即sin θ=-13cos θ.将其代入sin 2θ+cos 2θ=1,得109cos 2θ=1.因为θ为第二象限角,所以cos θ=-31010,sin θ=1010.所以sin θ+cos θ=-105.13.化简:sin (3α-π)sin α+cos (3α-π)cos α=________.答案 -4cos2α解析 原式=-sin3αsin α+-cos3αcos α=-sin3αcos α+cos3αsin αsin αcos α=-sin4αsin αcos α=-4sin αcos α·cos2αsin αcos α=-4cos2α.14.求值:1sin10°-3sin80°=________.答案 4解析 原式=cos10°-3sin10°sin10°cos10°=2(12cos10°-32sin10°)sin10°cos10°=4(sin30°cos10°-cos30°sin10°)2sin10°cos10°=4sin (30°-10°)sin20°=4.15.已知cos (α+β)cos (α-β)=13,则cos 2α-sin 2β=________.答案 13解析 ∵(cos αcos β-sin αsin β)(cos αcos β+sin αsin β)=13,∴cos 2αcos 2β-sin 2αsin 2β=13.∴cos 2α(1-sin 2β)-(1-cos 2α)sin 2β=13.∴cos 2α-sin 2β=13.16.(全国名校·北京,理)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos (α-β)=________.答案 -79解析 方法一:因为角α与角β的终边关于y 轴对称,所以α+β=2k π+π,k ∈Z ,所以cos (α-β)=cos(2k π+π-2α)=-cos2α=-(1-2sin 2α)=-[1-2×(13)2]=-79.方法二:因为sin α=13>0,所以角α为第一象限角或第二象限角,当角α为第一象限角时,可取其终边上一点(22,1),则cos α=223,又(22,1)关于y 轴对称的点(-22,1)在角β的终边上,所以sin β=13,cos β=-223,此时cos (α-β)=cos αcos β+sin αsin β=223×(-223)+13×13=-79.当角α为第二象限角时,可取其终边上一点(-22,1),则cos α=-223,因为(-22,1)关于y 轴对称的点(22,1)在角β的终边上,所以sin β=13,cosβ=223,此时cos(α-β)=cos αcos β+sin αsin β=(-223)×223+13×13=-79.综上可得,cos (α-β)=-79.17.(全国名校·广东深圳测试)2sin46°-3cos74°cos16°=________.答案 1 解析2sin46°-3cos74°cos16°=2sin (30°+16°)-3sin16°cos16°=cos16°cos16°=1.18.(全国名校·江苏泰州中学摸底)已知0<α<π2<β<π,且sin (α+β)=513,tan α2=12.(1)求cos α的值;(2)证明:sin β>513.答案 (1)35(2)略解析 (1)∵tan α2=12,∴tan α=2tan α21-tan 2α2=2×121-(12)2=43.∴⎩⎪⎨⎪⎧sin αcos α=43,sin 2α+cos 2α=1.又α∈(0,π2),解得cos α=35.(2)证明:由已知得π2<α+β<3π2.∵sin (α+β)=513,∴cos (α+β)=-1213.由(1)可得sin α=45,∴sin β=sin [(α+β)-α]=513×35-(-1213)×45=6365>513.19.(全国名校·江苏南京调研)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α和钝角β的终边分别与单位圆交于点A ,B.若点A 的横坐标是31010,点B 的纵坐标是255.(1)求cos (α-β)的值; (2)求α+β的值. 答案 (1)-55 (2)3π4解析 因为锐角α的终边与单位圆交于A ,且点A 的横坐标是31010,所以由任意角的三角函数的定义可知cos α=31010,从而sin α=1-cos 2α=1010.因为钝角β的终边与单位圆交于点B ,且点B 的纵坐标是255,所以sin β=255,从而cos β=-1-sin 2β=-55.(1)cos (α-β)=cos αcos β+sin αsin β=31010×(-55)+1010×255=-210.(2)sin (α+β)=sin αcos β+cos αcos β=1010×(-55)+31010×255=22. 因为α为锐角,β为钝角,所以α+β∈(π2,3π2),所以α+β=3π4.。

相关文档
最新文档