第十五章欧拉图与哈密顿图s-精选
合集下载
欧拉图与哈密顿图
哈密顿回路。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.21
图G称为可2-着色(2-chromatic),
如果可用两种颜色给G的所有顶点着色, 使每个顶点着一种颜色,而同一边的两端点 必须着不同颜色。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.16
设图G是可2-着色的。如果G是哈密顿 图,那么着两种颜色的顶点数目相等;如 果G有哈密顿通路,那么着两种颜色的顶点 数目之差至多为一。
✓定理8.14
设图G为具有n个顶点的简单无向图,如果G的 每一对顶点的度数之和都不小于n – 1 ,那么G中有 一条哈密顿通路;如果G的每一对顶点的度数之和 不小于n,且n≥3,那么G为一哈密顿图。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.15
当n为不小于3的奇数时,
Kn上恰有 n 1 条互相均无任何公共边的 2
离散数学导论
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
➢ 定义8.19
图G称为欧拉图(Euler graph),
如果图G上有一条经过G的所有顶点、所有
边的闭路径。图G称为欧拉路径(Euler
walk),如果图G上有一条经过G 所有顶点、所有边的路径。
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
✓ 定理8.11
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.20
无向图G称为哈密顿图(Hamilton graph),
如果G上有一条经过所有顶点的回路
(也称这一回路为哈密顿回路)。称无向图有哈密顿 通路(非哈密顿图),如果G上有一条经过所有顶点的
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.21
图G称为可2-着色(2-chromatic),
如果可用两种颜色给G的所有顶点着色, 使每个顶点着一种颜色,而同一边的两端点 必须着不同颜色。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.16
设图G是可2-着色的。如果G是哈密顿 图,那么着两种颜色的顶点数目相等;如 果G有哈密顿通路,那么着两种颜色的顶点 数目之差至多为一。
✓定理8.14
设图G为具有n个顶点的简单无向图,如果G的 每一对顶点的度数之和都不小于n – 1 ,那么G中有 一条哈密顿通路;如果G的每一对顶点的度数之和 不小于n,且n≥3,那么G为一哈密顿图。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.15
当n为不小于3的奇数时,
Kn上恰有 n 1 条互相均无任何公共边的 2
离散数学导论
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
➢ 定义8.19
图G称为欧拉图(Euler graph),
如果图G上有一条经过G的所有顶点、所有
边的闭路径。图G称为欧拉路径(Euler
walk),如果图G上有一条经过G 所有顶点、所有边的路径。
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
✓ 定理8.11
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.20
无向图G称为哈密顿图(Hamilton graph),
如果G上有一条经过所有顶点的回路
(也称这一回路为哈密顿回路)。称无向图有哈密顿 通路(非哈密顿图),如果G上有一条经过所有顶点的
离散数学课件15欧拉图与哈密顿图
证明 若G是平凡图,结论显然成立。
下面设G为非平凡图,设G是m条边的n阶无 向图,
并设G的顶点集V={v1,v2,…,vn}。 必要性。因为G为欧拉图,所以G中存在欧 拉回路,
设C为G中任意一条欧拉回路,vi,vj∈V, v2i0,2v0/7j/都23 在C上,
定理15.1的证明
充分性。由于G为非平凡的连通图可知,G中边数 m≥1。
2020/7/23
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 充分性。设G的两个奇度顶点分别为u0和v0, 对G加新边(u0,v0),得G =G∪(u0,v0), 则G 是连通且无奇度顶点的图, 由定理15.1可知,G 为欧拉图, 因而存在欧拉回路C ,而C=C -(u0,v0)为G中一 条欧拉通路, 所以G为半欧拉图。
并2行从020/7遍/C23 上G 的i中某的顶欧点拉vr回开路始C行遍i,,i=每1遇,2,到…v,s*j,i,最就后
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 必要性。设G是m条边的n阶无向图,因为G为 半欧拉图, 因而G中存在欧拉通路(但不存在欧拉回路), 设Г=vi0ej1vi1…vim-1ejmvim为G中一条欧拉通路, vi0≠vim。 v∈V(G),若v不在Г的端点出现,显然d(v)为偶 数, 若v在端点出现过,则d(v)为奇数,
欧拉对物理力学、天文学、弹道学、航海学、建筑学、音 乐都有研究!有许多公式、定理、解法、函数、方程、常数等 是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标 准教程。19世纪伟大的数学家高斯曾说过“研究欧拉的著作永 远是了解数学的好方法”。欧拉还是数学符号发明者,他创设 的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等, 至今202沿0/7/2用3 。
下面设G为非平凡图,设G是m条边的n阶无 向图,
并设G的顶点集V={v1,v2,…,vn}。 必要性。因为G为欧拉图,所以G中存在欧 拉回路,
设C为G中任意一条欧拉回路,vi,vj∈V, v2i0,2v0/7j/都23 在C上,
定理15.1的证明
充分性。由于G为非平凡的连通图可知,G中边数 m≥1。
2020/7/23
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 充分性。设G的两个奇度顶点分别为u0和v0, 对G加新边(u0,v0),得G =G∪(u0,v0), 则G 是连通且无奇度顶点的图, 由定理15.1可知,G 为欧拉图, 因而存在欧拉回路C ,而C=C -(u0,v0)为G中一 条欧拉通路, 所以G为半欧拉图。
并2行从020/7遍/C23 上G 的i中某的顶欧点拉vr回开路始C行遍i,,i=每1遇,2,到…v,s*j,i,最就后
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 必要性。设G是m条边的n阶无向图,因为G为 半欧拉图, 因而G中存在欧拉通路(但不存在欧拉回路), 设Г=vi0ej1vi1…vim-1ejmvim为G中一条欧拉通路, vi0≠vim。 v∈V(G),若v不在Г的端点出现,显然d(v)为偶 数, 若v在端点出现过,则d(v)为奇数,
欧拉对物理力学、天文学、弹道学、航海学、建筑学、音 乐都有研究!有许多公式、定理、解法、函数、方程、常数等 是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标 准教程。19世纪伟大的数学家高斯曾说过“研究欧拉的著作永 远是了解数学的好方法”。欧拉还是数学符号发明者,他创设 的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等, 至今202沿0/7/2用3 。
欧拉图与哈密顿图
例15.3 在图15.6中给出的三个图都是 二部图。它们中的那些是哈密顿图?哪些 是半哈密顿图?为什么? 解 在(1)中,易知互补顶点子集 V1={a,f},V2={b,c,d,e}。设此二部图为G1, 则G1=<V1,V2,E>. p(G1-V1)=4>|V1|=2,由 定理15.6及其推论可知,G1不是哈密顿 图,也不是半哈密顿图。
是在G'中存在u到v的路径Г2,显然Г1 与Г2边不重,这说明u,v处于Г1∪Г2 形成的简单回路上。
三、求欧拉图中欧拉回路的算法
设G为欧拉图,一般来说G中存 在若干条欧拉回路,下面介绍两种求 欧拉回路的算法。
1.Fleury算法,能不走桥就不走桥: (1)任取v0∈V(G),令P0=v0. (2)设Pi=v0e1v1e2…eivi已经行遍, 按下面方法来从E(G)-{e1,e2,…,ei}中选 取ei+1: (a)ei+1与vi相关联; (b)除非无别的边可供行遍, 否则ei+1不应该为Gi=G-{e1,e2,…,ei}中的 桥。 (3)当(2)不能再进行时,算法停止。
p(C-V1)达到最大值|V1|,而当V1中顶点在C 上有彼此相邻的情况时,均有p(C-V1)<|V1|, 所以有p(C-V1)≤|V1|.而C是G的生成子图, 所以,有p(G-V1)≤p(C-V1)≤|V1|. 本定理的条件是哈密顿图的必要条件, 但不是充分条件。可以验证彼得松图(图 14.3中(1)所示)满足定理中的条件,但 它不是哈密顿图。当然,若一个图不满足 定理中的条件,它一定不是哈密顿图。
2.逐步插入回路法 设G为n阶无向欧拉图,V(G)={v1,v2,…,vn}, 求G中欧拉回路的逐步插入回路法的算法如下: 开始 i←0,v*=v1,v=v1,P0=v1, G0=G. 1.在Gi中任取一条与V关联的边 e=(v,v'),将e及v’加入到Pi中得到Pi+1. 2.若v '=v*,转3,否则i←i+1,v=v' , 转1.
欧拉图于哈密顿图
§15.1 欧拉图
一、历史背景--哥尼斯堡七桥问题
}
1
二、定义 欧拉通路 (欧拉迹) ——通过图中每条边一次 且仅一次,并且过每一顶点的通路。 欧拉回路 (欧拉闭迹) ——通过图中每条边一次 且仅一次,并且过每一顶点的回路。 欧拉图 ——存在欧拉回路的图。
}
2
三、无向图是否具有欧拉通路或回路的判定
(3) 具有哈密尔顿回路而没有欧拉回路,
解:
(4) 既没有欧拉回路,也没有哈密尔顿回路。
解:
}
14
作业
习题十五 2、11、14、15、20
}
15
余顶点的入度均等于出度, 这两个特殊的顶点中,一个 顶点的入度比出度大1,另一 个顶点的入度比出度小1。
D 有欧拉回路( D为欧拉图) D 连通, D 中所有
顶点的入度等于出度。
}
6
例3、判断以下有向图是否欧拉图。
}
7
§15.2 哈密尔顿图
一、问题的提出
1859年,英国数学家哈密尔顿,周游世界游戏。
(2)
解:是哈密尔顿图,
存在哈密尔顿回路和通路。
}
11
例1、判断下图是否具有哈密尔顿回路,通路。
(3)
解:不存在哈密尔顿回路,
也不存在哈密尔顿通路。
}
12
例2、画一个无向图,使它
(1) 具有欧拉回路和哈密尔顿回路,
解:
(2) 具有欧拉回路而没有哈密尔顿回路, 解:
}
13
例2、画一个无向图,使它
G 中只有两个奇度 G 有欧拉通路 G 连通,
顶点(它们分别是欧拉通路的
两个端点)。
G有欧拉回路( G为欧拉图) G 连通, G 中均
一、历史背景--哥尼斯堡七桥问题
}
1
二、定义 欧拉通路 (欧拉迹) ——通过图中每条边一次 且仅一次,并且过每一顶点的通路。 欧拉回路 (欧拉闭迹) ——通过图中每条边一次 且仅一次,并且过每一顶点的回路。 欧拉图 ——存在欧拉回路的图。
}
2
三、无向图是否具有欧拉通路或回路的判定
(3) 具有哈密尔顿回路而没有欧拉回路,
解:
(4) 既没有欧拉回路,也没有哈密尔顿回路。
解:
}
14
作业
习题十五 2、11、14、15、20
}
15
余顶点的入度均等于出度, 这两个特殊的顶点中,一个 顶点的入度比出度大1,另一 个顶点的入度比出度小1。
D 有欧拉回路( D为欧拉图) D 连通, D 中所有
顶点的入度等于出度。
}
6
例3、判断以下有向图是否欧拉图。
}
7
§15.2 哈密尔顿图
一、问题的提出
1859年,英国数学家哈密尔顿,周游世界游戏。
(2)
解:是哈密尔顿图,
存在哈密尔顿回路和通路。
}
11
例1、判断下图是否具有哈密尔顿回路,通路。
(3)
解:不存在哈密尔顿回路,
也不存在哈密尔顿通路。
}
12
例2、画一个无向图,使它
(1) 具有欧拉回路和哈密尔顿回路,
解:
(2) 具有欧拉回路而没有哈密尔顿回路, 解:
}
13
例2、画一个无向图,使它
G 中只有两个奇度 G 有欧拉通路 G 连通,
顶点(它们分别是欧拉通路的
两个端点)。
G有欧拉回路( G为欧拉图) G 连通, G 中均
欧拉图与哈密顿图
求欧拉图中欧拉回路的算法
Fleury算法;能不走桥就不走桥
1 任取v0∈VG;令P0=v0; 2 设Pi=v0e1v1e2…eivi已经行遍;按下面方法来从
EGe1;e2;…;ei中选取ei+1: a ei+1与vi相关联; b 除非无别的边可供行遍;否则ei+1不应该为
Gi=Ge1;e2;…;ei中的桥; 3当2不能再进行时;算法停止;
例15 1
例15 1 设G是非平凡的且非环的欧拉图;证明: 1λG≥2; 2对于G中任意两个不同顶点u;v;都存在简单回路C含u和v;
证明 1由定理15 5可知;e∈EG;存在圈C;e在C中; 因而pGe=pG;故e不是桥; 由e的任意性λG≥2;即G是2边连通图;
例15 1
例15 1 设G是非平凡的且非环的欧拉图;证明: 1λG≥2; 2对于G中任意两个不同顶点u;v;都存在简单回路C含u和v;
可以验证彼得松图满足定理中的条件;但不是哈密顿图;
若一个图不满足定理中的条件;它一定不是哈密顿图;
推论
推论 设无向图G=<V;E>是半哈密顿图;对于任意的V1V且 V1≠;均有 pGV1≤|V1|+1
证明 设P是G中起于u终于v的哈密顿通路; 令G =G∪u;v在G的顶点u;v之间加新边; 易知G 为哈密顿图; 由定理15 6可知;pG V1≤|V1|; 因此;pGV1 = pG V1u;v ≤ pG V1+1 ≤ |V1|+1
若vi与vj有哈共密同语顿言图;就是在v能i;vj将之间图连中无向所边有vi;v顶j; 由此组成点边都集合能E;安则G排为8在阶无某向个简单初图级; 回路 vi∈V;上dvi为的与图vi有;共同语言的人数;
第十五章欧拉图与哈密顿图
定理15.5 G是非平凡的欧拉图当且仅当G是 连通的且为若干个边不重的圈的并.
本定理的证明可用归纳法. 例15.1 设G是非平凡的且非环的欧拉图,证明:
(1)λ(G)≥2. (2)对于G中任意两个不同顶点u, v,都存在 简单回路C含 u 和 v.
证 (1)由定理15.5可知,e E(G), 存在圈C, e 在C中,因而 p(G - e) p(G), 故 e 不是桥。 由 e 的任意性λ(G)≥2,即G是2边-连通图。
在这里做个规定: 平凡图是欧拉图.
例1 下列各图中 是否有欧拉回路、欧位通路? 图15.1
解:e1 e2 e3 e4 e5 为(1)中的欧拉回路,所以(1)图为欧拉图. e1 e2 e3 e4 e5 为(2)中的一条欧拉通路,但图中不存在 欧拉回路(为什么?),所以(2)为半欧拉图。
(3)中既没有欧拉回路也没有欧拉通路(为什么?), 所以(3)不是欧拉图,也不是半欧拉图。
设(2)中图为G2,则 G2 V1,V2 , E , 其中 V1 {a, g,h,i,c},V2 {b,e, f , j,k,d }, 易知, p(G2 -V1) |V2 | 6 |V1 | 5,由定理15.6可知, G2不是哈密顿图,但G2是半哈密顿图,其实, baegjckhfid 为G2中一条哈密顿通路.
图示:
(a)
“周游世界” 智力题
(b)
哈密顿图
一、哈密顿通路、哈密顿回路、 哈密顿图、 半哈密顿图的定义
定义15.2 经过图(有向图或无向图)中所有 顶点一次且仅一次的通路称为哈密顿通路;
经过图中所有顶点一次且仅一次的回路称为哈密 顿回路;
具有哈密顿回路的图称为哈密顿图; 具有哈密顿通路但不具有哈密顿回路的图称为半哈 密顿图.
离散数学--第十五章 欧拉图和哈密顿图
13
实例
在上图中, (1),(2) 是哈密顿图; (3)是半哈密顿图; (4)既不是哈密顿图,也不是半哈密顿图,为什么?
14
无向哈密顿图的一个必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,对于任意V1V且 V1,均有 p(GV1) |V1|
证 设C为G中一条哈密顿回路。
当V1顶点在C上均不相邻时, p(CV1)达到最大值|V1|,
求图中1所示带权图k29主要内容欧拉通路欧拉回路欧拉图半欧拉图及其判别法哈密顿通路哈密顿回路哈密顿图半哈密顿图带权图货郎担问题基本要求深刻理解欧拉图半欧拉图的定义及判别定理深刻理解哈密顿图半哈密顿图的定义
第十五章 欧拉图与哈密顿图
主要内容
➢ 欧拉图 ➢ 哈密顿图 ➢ 带权图与货郎担问题
1
15.1 欧拉图
大时,计算量惊人地大
27
例6 求图中(1) 所示带权图K4中最短哈密顿回路.
(1)
(2)
解 C1= a b c d a,
W(C1)=10
C2= a b d c a,
W(C2)=11
C3= a c b d a,
W(C3)=9
可见C3
(见图中(2))
是最短的,其权为9. 28
第十五章 习题课
主要内容 欧拉通路、欧拉回路、欧拉图、半欧拉图及其判别法 哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图 带权图、货郎担问题
点.
由vi 的任意性,结论为真. 充分性 对边数m做归纳法(第二数学归纳法). (1) m=1时,G为一个环,则G为欧拉图. (2) 设mk(k1)时结论为真,m=k+1时如下证明:
5
从以上证明不难看出:欧拉图是若干个边不重的圈之 并,见示意图3.
实例
在上图中, (1),(2) 是哈密顿图; (3)是半哈密顿图; (4)既不是哈密顿图,也不是半哈密顿图,为什么?
14
无向哈密顿图的一个必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,对于任意V1V且 V1,均有 p(GV1) |V1|
证 设C为G中一条哈密顿回路。
当V1顶点在C上均不相邻时, p(CV1)达到最大值|V1|,
求图中1所示带权图k29主要内容欧拉通路欧拉回路欧拉图半欧拉图及其判别法哈密顿通路哈密顿回路哈密顿图半哈密顿图带权图货郎担问题基本要求深刻理解欧拉图半欧拉图的定义及判别定理深刻理解哈密顿图半哈密顿图的定义
第十五章 欧拉图与哈密顿图
主要内容
➢ 欧拉图 ➢ 哈密顿图 ➢ 带权图与货郎担问题
1
15.1 欧拉图
大时,计算量惊人地大
27
例6 求图中(1) 所示带权图K4中最短哈密顿回路.
(1)
(2)
解 C1= a b c d a,
W(C1)=10
C2= a b d c a,
W(C2)=11
C3= a c b d a,
W(C3)=9
可见C3
(见图中(2))
是最短的,其权为9. 28
第十五章 习题课
主要内容 欧拉通路、欧拉回路、欧拉图、半欧拉图及其判别法 哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图 带权图、货郎担问题
点.
由vi 的任意性,结论为真. 充分性 对边数m做归纳法(第二数学归纳法). (1) m=1时,G为一个环,则G为欧拉图. (2) 设mk(k1)时结论为真,m=k+1时如下证明:
5
从以上证明不难看出:欧拉图是若干个边不重的圈之 并,见示意图3.
离散数学课件15欧拉图与哈密顿图
04
欧拉图与哈密顿图的应用 场景
欧拉图的应用场景
路径规划
欧拉图可以用于表示从一 个点到另一个点的路径, 常用于物流、交通和旅行 等领域。
网络流问题
欧拉图可以用于解决最大 流和最小割等问题,在网 络优化、资源分配和计划 制定等方面有广泛应用。
组合优化
欧拉图可以用于表示组合 优化问题,如旅行商问题、 排班问题等,是求解这些 问题的常用工具。
一个图存在哈密顿回路当且仅当其所有顶点的度都大于等于2 。
哈密顿图的性质
哈密顿图中的所有顶点的度都 大于等于2。
一个图存在哈密顿回路当且仅 当其所有顶点的度都大于等于2。回 路。
哈密顿图的构造方法
添加边法
在所有顶点的度都大于等于2的图 中,不断添加边,直到所有顶点的 度都大于等于2,最后得到的图就 是哈密顿图。
哈密顿图的应用场景
社交网络分析
哈密顿图可以用于表示社交网络 中的路径,分析人际关系和信息
传播路径。
生物信息学
哈密顿图可以用于表示基因组、蛋 白质组等生物信息数据,进行基因 序列比对、蛋白质相互作用分析等。
推荐系统
哈密顿图可以用于表示用户和物品 之间的关系,进行个性化推荐和智 能推荐。
欧拉图与哈密顿图在计算机科学中的应用
欧拉图的构造方法
欧拉图的构造方法1
总结词
通过添加一条边将所有顶点连接起来, 从而形成一个欧拉图。
详细描述了两种构造欧拉图的方法, 为实际应用中构造欧拉图提供了思路。
欧拉图的构造方法2
通过将两个欧拉图合并,并连接它们 的所有顶点,从而形成一个新的欧拉 图。
02
哈密顿图
哈密顿图的定义
哈密顿图(Hamiltonian Graph)是指一个图存在一个遍历其 所有边且每条边只遍历一次的路径,这个路径称为哈密顿路径, 如果该路径的起点和终点是同一点,则称这个路径为哈密顿回 路。
欧拉图与哈密顿图s
说明:该推论是充分条件但不是必要的。 例如:
该五边形是哈密顿图,但任意两个不相邻的顶点度 数之和为4,图形阶数为5。
座位问题
例 在某次国际会议的预备会中,共有8人参加,他 们来自不同的国家。如果他们中任两个无共同语言的人 与其余有共同语言的人数之和大于或等于8,问能否将这 8个人排在圆桌旁,使其任何人都能与两边的人交谈。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
例15.2(P296)
利用欧拉图可以解决哥尼斯堡七桥问题: 从某地出发,对每座跨河桥只走一次,而在遍历 了七座桥之后,却又能回到原地。
由定理15.1(无向欧拉图的判定定理)可知该问题无解。
思考 如下图所示,从一房间出发,问能否不重复地
(1)
(2)
(3)
(4)
(5)
(6)
(1)(2)(3)(4)为哈密顿图 (5)为半哈密顿图 (6)既不是哈密顿图,又不是半哈密顿图。
到目前为止,还没有找到判断哈密顿图简单的充分必 要条件。
下面介绍哈密顿图和半哈密顿图的必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,V1是V的任意 非空子集,则有p(G-V1)≤|V1|,其中p(G-V1)为G-V1的连 通分支数。
定义(哈密顿通路和哈密顿回路) 经过图(有向图或无向图)每个顶点一次
且仅一次的通路称为哈密顿通路。 经过图每个结点一次且仅一次的回路(初
级回路)称为哈密顿回路。 定义(哈密顿图和半哈密顿图)
存在哈密顿回路的图称为哈密顿图。 存在哈密顿通路但不存在哈密顿回路的图 称为半哈密顿图。 平凡图是哈密顿图。
由两判定定理,立即可知 (4)为欧拉图, (5)、(6)即不是欧拉图,也不是半欧拉图。
该五边形是哈密顿图,但任意两个不相邻的顶点度 数之和为4,图形阶数为5。
座位问题
例 在某次国际会议的预备会中,共有8人参加,他 们来自不同的国家。如果他们中任两个无共同语言的人 与其余有共同语言的人数之和大于或等于8,问能否将这 8个人排在圆桌旁,使其任何人都能与两边的人交谈。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
例15.2(P296)
利用欧拉图可以解决哥尼斯堡七桥问题: 从某地出发,对每座跨河桥只走一次,而在遍历 了七座桥之后,却又能回到原地。
由定理15.1(无向欧拉图的判定定理)可知该问题无解。
思考 如下图所示,从一房间出发,问能否不重复地
(1)
(2)
(3)
(4)
(5)
(6)
(1)(2)(3)(4)为哈密顿图 (5)为半哈密顿图 (6)既不是哈密顿图,又不是半哈密顿图。
到目前为止,还没有找到判断哈密顿图简单的充分必 要条件。
下面介绍哈密顿图和半哈密顿图的必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,V1是V的任意 非空子集,则有p(G-V1)≤|V1|,其中p(G-V1)为G-V1的连 通分支数。
定义(哈密顿通路和哈密顿回路) 经过图(有向图或无向图)每个顶点一次
且仅一次的通路称为哈密顿通路。 经过图每个结点一次且仅一次的回路(初
级回路)称为哈密顿回路。 定义(哈密顿图和半哈密顿图)
存在哈密顿回路的图称为哈密顿图。 存在哈密顿通路但不存在哈密顿回路的图 称为半哈密顿图。 平凡图是哈密顿图。
由两判定定理,立即可知 (4)为欧拉图, (5)、(6)即不是欧拉图,也不是半欧拉图。
欧拉图和哈密而顿图
15.1 欧拉图 欧拉(1707-1783):瑞士著名的数学家。13岁进入 欧拉 :瑞士著名的数学家。 岁进入 巴塞尔大学, 岁取得哲学硕士学位 岁取得哲学硕士学位。 巴塞尔大学,16岁取得哲学硕士学位。1736年, 年 他证明了欧拉定理, 他证明了欧拉定理,并解决了哥尼斯堡桥的问 从而成为图论的创始人。 题,从而成为图论的创始人。 定义15.1 通过图(无向图或有向图)中每一条边 通过图(无向图或有向图) 定义 一次且仅一次行遍图中所有顶点的通路称为欧 拉通路。通过图(无向图或有向图) 拉通路。通过图(无向图或有向图)中每一条 边一次且仅一次行遍图中所有顶点的回路称为 欧拉回路。具有欧拉回路的图称为欧拉图, 欧拉回路。具有欧拉回路的图称为欧拉图,具 有欧拉通路而无欧拉回路的图称为半欧拉图。 有欧拉通路而无欧拉回路的图称为半欧拉图。
16
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.2 哈密顿图
到目前为止, 到目前为止,还没有找到哈密尔顿通路存在的充 分必要条件。下面介绍一个必要定理。 分必要条件。下面介绍一个必要定理。 定理15.6:设无向图 G=<V , E> 是哈密尔顿 G=<V, 定理 : 设无向图G=<V E>是哈密尔顿 图,则对V的每个非空真子集 均成立: 则对 的每个非空真子集S均成立: 的每个非空真子集 均成立 w(G-S) ≤|S| 其中, 中的顶点数, 表示G删去 其中, |S| 是S中的顶点数, w(G-S)表示 删去 中的顶点数 表示 删去S 顶点集后得到的图的连通分图的个数。 顶点集后得到的图的连通分图的个数。
9
15.欧拉图与哈密顿图 欧拉图与哈密顿图
例:用定理解决哥尼斯堡桥的问题
15.1 欧拉图
个结点为奇次数, 有4个结点为奇次数, ∴不存在欧拉回路,也不存在欧拉路径。 不存在欧拉回路,也不存在欧拉路径。 故要从一点出发经过桥一次且仅一次的路径, 故要从一点出发经过桥一次且仅一次的路径 , 再回到出发点是不可能的。 再回到出发点是不可能的。
16
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.2 哈密顿图
到目前为止, 到目前为止,还没有找到哈密尔顿通路存在的充 分必要条件。下面介绍一个必要定理。 分必要条件。下面介绍一个必要定理。 定理15.6:设无向图 G=<V , E> 是哈密尔顿 G=<V, 定理 : 设无向图G=<V E>是哈密尔顿 图,则对V的每个非空真子集 均成立: 则对 的每个非空真子集S均成立: 的每个非空真子集 均成立 w(G-S) ≤|S| 其中, 中的顶点数, 表示G删去 其中, |S| 是S中的顶点数, w(G-S)表示 删去 中的顶点数 表示 删去S 顶点集后得到的图的连通分图的个数。 顶点集后得到的图的连通分图的个数。
9
15.欧拉图与哈密顿图 欧拉图与哈密顿图
例:用定理解决哥尼斯堡桥的问题
15.1 欧拉图
个结点为奇次数, 有4个结点为奇次数, ∴不存在欧拉回路,也不存在欧拉路径。 不存在欧拉回路,也不存在欧拉路径。 故要从一点出发经过桥一次且仅一次的路径, 故要从一点出发经过桥一次且仅一次的路径 , 再回到出发点是不可能的。 再回到出发点是不可能的。
22 欧拉图与哈密顿图
2.若h1=G,则G是欧拉图,否则转下一步。 3.记H=G-h1,因为G是连通图,所以H与h1至少有一个节点重 合,不妨记为vi,又因为h1中d(vi)是偶数,故在H中d(vi)仍 是偶数,从而从图H的节点vi出发,重复步骤1的做法,又 可得简单回路h2: (vi,e’1,v1,e’2,…,vi)这里ei’≠ ej’(i≠j),那么h1∪ h2所对应的简单回路是:(v0,e1,v1,e2,…,vi, e1’,v1,e2’,…,vi, ei+1,…,ek+1,v0)。不妨将h1∪ h2仍记为h2,转步骤2。 对于有限图G,我们总可以在有限步骤中构造出简单回路 h1,使得h1=G,故G是欧拉图。
②现在我们来证明:若G中对于每一对不相邻的节点u,v, 有d(u)+d(v)≧n,则G是哈密顿图。因为若在G中每一对不 相邻节点u,v之间连一条无向边,得到图H,则H是n阶无 向完全图,从而H是哈密顿图,由引理,可知G是哈密顿 图。 ③由2,我们可直接推出若任一节点v满足d(v)≥n/2,则G是 哈密顿图。 例8 格雷码及其应用:构造长度为n的2进制编码的序列, 使相邻的码仅相差1位 用Qn来建模 (接下页)
例6 证明图7-35中的图没有哈密顿回路。
证明: 证明: G中没有哈密顿回路,因为G有1度顶点,即e。现 在考虑H。因为顶点a, b,d 和e 的度都为2,所以这些顶 点关联的每一条边都必然属于任意一条哈密顿回路。现在 容易看出H中不存在哈密顿回路,因为任何这样的哈密顿 回路都不得不包含4条关联c的边,这是不可能的。
解: 图G1具有欧拉回路,例如a, e, c, d, e, b, a。G2和G3都没 有欧拉回路。但是G3具有欧拉通路,即a, c, d, e, b, d, a, b。 G2没有欧拉通路。 图H2具有欧拉回路,例如a, g, c, b, g, e, d, f, a。H1和 H3都没有欧拉回路。H3具有欧拉通路,即c, a, b, c, d, b,但 是H1没有欧拉通路。
第十五章 欧拉图与哈密顿图
例:图中给出的二部图,哪些是哈密顿图, a 哪些是半哈密顿图? a e f
b
c f G1
d
e
b
g
h j k
i
d
c G2 (1)V1={a,f},V2={b,c,d,e},p(G1-V1)=4>|V1|,都不是 (2)V1={a,g,h,i,c},V2={b,e,f,j,k,d},
p(G2-V1)=|V2|=6>|V1|=5,半哈密顿图
a b g i h j
c
d
(3)V1={a,c,g,h,e},V2={b, f d,i,j,f},|V1|=|V2|, G3存在哈密顿回路: abcdgihjefa
G3 e 一般情况下,设二部图G=<V1,V2,E>,|V1||V2|,且 |V1|2, |V2|2,由定理15.6及其推论,可以得到以 下结论: (1)若G是哈密顿图,则|V1|=|V2|。 (2)若G是半哈密顿图,则|V2|=|V1|+1。 (3) |V2||V1|+2,则G不是(半)哈密顿图。
第十五章 欧拉图与哈密顿图
本章的内容 欧拉图 哈密顿图
本章的先行知识是第十四章
15.1 欧拉图
一、哥尼斯堡七桥问题
图论之父
瑞士数学家:列昂德· 欧拉(Leonhard Euler)
二、无向欧拉图
1.定义: 经过图中每条边一次且仅 一次行遍所有结点的通路
(1)欧拉通路 (2)欧拉回路
(3)欧拉图 (4)半欧拉图
充分性:
设G的两个奇度结点分别为u0和v0,令 G’=G(u0,v0),则G’连通且无奇度结点的图, 因此G’为欧拉图,因而存在欧拉回路C’,而 C=C’- (u0,v0)为G中一条欧拉通路,所以G为半 欧拉图。
离散数学15 欧拉图与哈密顿图
穿过每一道门,通过所有房间?
15.2 哈密顿图
1859年,爱尔兰数学家威廉·哈密尔顿发明 了一个旅游世界的游戏。将一个正十二面体的 20个顶点分别标上世界上大城市的名字,要求 玩游戏的人从某城市出发沿12面体的棱,通过 每个城市恰一次,最后回到出发的那个城市。
哈密尔顿游戏是在左图中如何 找出一个包含全部顶点的圈。
定义(哈密顿通路和哈密顿回路) 经过图(有向图或无向图)每个顶点一次
且仅一次的通路称为哈密顿通路。 经过图每个结点一次且仅一次的回路(初
级回路)称为哈密顿回路。 定义(哈密顿图和半哈密顿图)
存在哈密顿回路的图称为哈密顿图。 存在哈密顿通路但不存在哈密顿回路的图 称为半哈密顿图。 平凡图是哈密顿图。
由两判定定理,立即可知 (4)为欧拉图, (5)、(6)即不是欧拉图,也不是半欧拉图。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
◼ Fleury算法
◼ (1)任取v0V(G),令P0=v0。 ◼ (2)设Pi=v0e1v1e2…..eivi已经行遍,则按下面
判断所示两图是否为欧拉图、半欧拉图?
无向欧拉图与无向半欧拉图的判断方法
定理15.1(无向欧拉图的判定)无向图G是欧拉图当 且仅当G是连通图,且G中没有奇度顶点。
定理15.2(无向半欧拉图的判定)无向图G是半欧拉 图当且仅当G是连通图,且G中恰有两个奇度顶点。
(1)
(2)
(3)
有向欧拉图与有向半欧拉图的判断方法
(1)
(2)
(3)
(4)
(5)
(6)
(1)(2)(3)(4)为哈密顿图 (5)为半哈密顿图 (6)既不是哈密顿图,又不是半哈密顿图。
15.2 哈密顿图
1859年,爱尔兰数学家威廉·哈密尔顿发明 了一个旅游世界的游戏。将一个正十二面体的 20个顶点分别标上世界上大城市的名字,要求 玩游戏的人从某城市出发沿12面体的棱,通过 每个城市恰一次,最后回到出发的那个城市。
哈密尔顿游戏是在左图中如何 找出一个包含全部顶点的圈。
定义(哈密顿通路和哈密顿回路) 经过图(有向图或无向图)每个顶点一次
且仅一次的通路称为哈密顿通路。 经过图每个结点一次且仅一次的回路(初
级回路)称为哈密顿回路。 定义(哈密顿图和半哈密顿图)
存在哈密顿回路的图称为哈密顿图。 存在哈密顿通路但不存在哈密顿回路的图 称为半哈密顿图。 平凡图是哈密顿图。
由两判定定理,立即可知 (4)为欧拉图, (5)、(6)即不是欧拉图,也不是半欧拉图。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
◼ Fleury算法
◼ (1)任取v0V(G),令P0=v0。 ◼ (2)设Pi=v0e1v1e2…..eivi已经行遍,则按下面
判断所示两图是否为欧拉图、半欧拉图?
无向欧拉图与无向半欧拉图的判断方法
定理15.1(无向欧拉图的判定)无向图G是欧拉图当 且仅当G是连通图,且G中没有奇度顶点。
定理15.2(无向半欧拉图的判定)无向图G是半欧拉 图当且仅当G是连通图,且G中恰有两个奇度顶点。
(1)
(2)
(3)
有向欧拉图与有向半欧拉图的判断方法
(1)
(2)
(3)
(4)
(5)
(6)
(1)(2)(3)(4)为哈密顿图 (5)为半哈密顿图 (6)既不是哈密顿图,又不是半哈密顿图。
15欧拉图与哈密顿图
问题转化为在图中找一条哈密顿回路. ABDFGECA即可.
哈密顿图的判定 定理1(必要条件): 设无向图G=<V, E>是哈密顿 图, V1是V的任意非空子集, 则p(G-V1)≤V1. 推论: 设无向图G=<V, E>是半哈密顿图, V1是V 的任意非空子集, 则p(G-V1)≤V1+1.
在Peterson图中, 虽然对任意顶 点集V1, 都满足p(G-V1)|V1|,但 它不是哈密顿图.
基本思想:能不走桥就不走桥
15.2 哈密顿图 定义1. 经过无向(有向)图中所有顶点恰好一次 的路(圈)称为哈密顿路(圈). 定义2. 具有哈密顿圈的图称为哈密顿图. 定义3. 具有哈密顿路但不具有哈密顿圈的图 称为半哈密顿图. 例1. 判断下列图形是否哈密顿图或半哈密顿图.
半哈密顿图 哈密顿图
都不是
例4. 判断下列有向图是否欧拉图或半欧拉图.
都不是 半欧拉图
欧拉图
一笔画问题:从某点出发,不间断地画完整个图. 即在图中找出欧拉通路(回路).
Fleury算法: (1) 任取v0∊V(G), (2) 设Pi=v0e1v1e2eivi,
若E(G)-{e1,e2,ei}中没有与vi关联的边, 则计 算停止; 否则在vi关联的边中优先选择非桥的边 添加. (3) 令i=i+1, 返回(2).
定理2(充分条件): 设G=<V, E>是无向简单图. 若对任意两个不相邻顶点u,vV, 均有 d(u)+d(v)|V|-1, 则G中存在哈密顿路; 若对任意两个不相邻顶点u,vV, 均有 d(u)+d(v)|V|, 则G是哈密顿图.
推论: n阶无向简单图G中, n>2, (G)n/2, 则G是
哈密顿图的判定 定理1(必要条件): 设无向图G=<V, E>是哈密顿 图, V1是V的任意非空子集, 则p(G-V1)≤V1. 推论: 设无向图G=<V, E>是半哈密顿图, V1是V 的任意非空子集, 则p(G-V1)≤V1+1.
在Peterson图中, 虽然对任意顶 点集V1, 都满足p(G-V1)|V1|,但 它不是哈密顿图.
基本思想:能不走桥就不走桥
15.2 哈密顿图 定义1. 经过无向(有向)图中所有顶点恰好一次 的路(圈)称为哈密顿路(圈). 定义2. 具有哈密顿圈的图称为哈密顿图. 定义3. 具有哈密顿路但不具有哈密顿圈的图 称为半哈密顿图. 例1. 判断下列图形是否哈密顿图或半哈密顿图.
半哈密顿图 哈密顿图
都不是
例4. 判断下列有向图是否欧拉图或半欧拉图.
都不是 半欧拉图
欧拉图
一笔画问题:从某点出发,不间断地画完整个图. 即在图中找出欧拉通路(回路).
Fleury算法: (1) 任取v0∊V(G), (2) 设Pi=v0e1v1e2eivi,
若E(G)-{e1,e2,ei}中没有与vi关联的边, 则计 算停止; 否则在vi关联的边中优先选择非桥的边 添加. (3) 令i=i+1, 返回(2).
定理2(充分条件): 设G=<V, E>是无向简单图. 若对任意两个不相邻顶点u,vV, 均有 d(u)+d(v)|V|-1, 则G中存在哈密顿路; 若对任意两个不相邻顶点u,vV, 均有 d(u)+d(v)|V|, 则G是哈密顿图.
推论: n阶无向简单图G中, n>2, (G)n/2, 则G是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)
(5)
(6)
由两判定定理,立即可知 (4)为欧拉图, (5)、(6)即不是欧拉图,也不是半欧拉图。
欧拉图的性质:欧拉图可以分解成若干个边不重的圈。
定理15.5(欧拉图的判定) G是非平凡的欧拉图当 且仅当G是连通的且为若干个边不重的圈的并。
中国的“一笔画”的问题
从图某一点出发,线可以相交但不能重合 将图画完的问题。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
例15.2(P296)
利用欧拉图可以解决哥尼斯堡七桥问题: 从某地出发,对每座跨河桥只走一次,而在遍历 了七座桥之后,却又能回到原地。
由定理15.1(无向欧拉图的判定定理)可知该问题无解。
思考 如下图所示,从一房间出发,问能否不重复地
可以看出在“一笔画”的问题中,终点与 始点重合的图对应着欧拉图,不重合的对应半 欧拉图。
例15.2(P296) v2e2v3e3v4e14v9e10v2e1v1e8v8e9v2
Fleury算法
(1)任取v0V(G),令P0=v0。 (2)设Pi=v0e1v1e2…..eivi已经行遍,则按下面
具有欧拉回路的图称为欧拉图 具有欧拉通路无欧拉回路的图称为半欧拉图 规定平凡图是欧拉图
判断所示两图是否为欧拉图、半欧拉图?
有向欧拉图与有向半欧拉图的判断方法
定理15.3 (有向欧拉图的判定)有向图D是欧拉图 当且仅当D是强连通的且每个顶点的入度都等于出度。
定理15.4(有向半欧拉图的判定)有向图D是半欧拉 图当且仅当D是单向连通的,且D中恰有两个奇度顶点, 其中一个的入度比出度大1,另一个的出度比入度大1, 而其余顶点的入度都等于出度。
亚瑟王和他的骑士们
亚瑟王一次召见他的p个骑士,已知每一个 骑士在骑士中的仇人不超过p/2-1个。证明:能让 这些骑士围坐在圆桌旁,使每个人都不与他的仇 人相邻。
15.3 带权图及其应用
定义15.3(带权图) 给定G=<V,E>(G为有 向图或无向图),对G中任意的边e=(vi,vj)(或< vi,vj >),有一实数wij与之相对应,称该实数 wij为边e上的权,并将wij标注在边e上,称G为带 权图,此时将带权图G记为<V,E,W>。
说明:该推论是充分条件但不是必要的。 例如:
该五边形是哈密顿图,但任意两个不相邻的顶点度 数之和为4,图形阶数为5。
座位问题
例 在某次国际会议的预备会中,共有8人参加,他 们来自不同的国家。如果他们中任两个无共同语言的人 与其余有共同语言的人数之和大于或等于8,问能否将这 8个人排在圆桌旁,使其任何人都能与两边的人交谈。
方法来从E(G)-{e1,e2,….,ei}中选取ei+1: (a)ei+1与vi相关联; (b)除非无别的边可供选择,否则ei+1不应
该为 G-{e1,e2,….,ei}中的桥。 (3)当(2)不能再进行时,算法停止,得到
的Pn=v0e1v1e2…..envn为G中的一条欧拉回路。
桥:设eE(G),若p(G-e)>p(G), 则称e为G中的桥。
第十五章欧拉图与哈密顿图s-精选
15.1 欧拉图
1736年数学家欧拉发表了第一篇图论论文, 解诀了哥尼斯堡七桥问题。
定义(欧拉通路和欧拉回路) 通过图(无向图或有向图)中所有边一次且
仅一次行遍图中所有顶点的通路称为欧拉通路 通过图中所有边一次并且仅一次行遍所有顶
点的回路称为欧拉回路 定义(欧拉图和半欧拉图)
定义(哈密顿通路和哈密顿回路) 经过图(有向图或无向图)每个顶点一次
且仅一次的通路称为哈密顿通路。 经过图每个结点一次且仅一次的回路(初
级回路)称为哈密顿回路。 定义(哈密顿图和半哈密顿图)
存在哈密顿回路的图称为哈密顿图。 存在哈密顿通路但不存在哈密顿回路的图 称为半哈密顿图。 平凡图是哈密顿图。
例如
彼得松图 彼得松图满足定理15.6,但不是哈密顿图。
下面给出哈密顿图和半哈密顿图的充分条件 定理15.7 设G=<V,E>为n阶无向简单图,如G中任
意两个不相邻的顶点vi,vj,均有d(vi)+d(vj)n-1, 则G中存在哈密顿通路,即G为半哈密顿图。
推论 设G=<V,E>为n(n3)阶无向简单图,如G中 任意两个不相邻的顶点vi,vj,均有d(vi)+d(vj)n, 则G是哈密顿图。
解:将这8个人看为平面上的8个点,设为 v1,v2,v3,v4,v5,v6,v7,v8。
如果vi和vj有共同语言,就在vi和vj之间连无向边 (vi,vj)。
这样得到一个8阶无向简单图G。 viV,d(vi)为与vi有共同语言的人数。 由 已 知 条 件 可 知 , vi,vjV 且 ij, 均 有 d(vi)+d(vj)8。 由定理15.7的推论可知,G中存在哈密顿回路, 条回路设的C=顺vi序1v安i2排…座v次i7v即i8可为。G中一条哈密顿回路,按这
(1)
(2)
(3)
(ቤተ መጻሕፍቲ ባይዱ)
(5)
(6)
(1)(2)(3)(4)为哈密顿图 (5)为半哈密顿图 (6)既不是哈密顿图,又不是半哈密顿图。
到目前为止,还没有找到判断哈密顿图简单的充分必 要条件。
下面介绍哈密顿图和半哈密顿图的必要条件
定理15.6 设无向图G=<V,E>是哈密顿图,V1是V的任意 非空子集,则有p(G-V1)≤|V1|,其中p(G-V1)为G-V1的连 通分支数。
推论 设无向图G=<V,E>是半哈密顿图,V1是V的任意非 空子集,则有p(G-V1)≤|V1|+1。
注意:
(1)定理15.6和推论是必要条件。
(2)两定理可以证明一个图不是哈密尔顿图或半哈 密顿图。
例如
G
G-{v1,v2}
易见p(G-{v1,v2})=3,|{v1,v2}|=2 p(G-{v1,v2})|{v1,v2}| 不满足定理15.6,所以图G不是哈密顿图。
穿过每一道门,通过所有房间?
15.2 哈密顿图
1859年,爱尔兰数学家威廉·哈密尔顿发 明了一个旅游世界的游戏。将一个正十二面体 的20个顶点分别标上世界上大城市的名字,要 求玩游戏的人从某城市出发沿12面体的棱,通 过每个城市恰一次,最后回到出发的那个城市。
哈密尔顿游戏是在左图中如何 找出一个包含全部顶点的圈。