傅里叶级数 讲解资料教程
傅立叶(Fourier)级数的展开方法
快速傅立叶变换(FFT)法
定义
FFT法是一种基于数学和计算机技术的快速计算傅立叶级数展开式的 方法。
步骤
首先,将函数进行离散化处理,然后利用分治策略将问题分解为多个 子问题,最后通过递归和数学公式计算出傅立叶级数的系数。
优点
FFT法计算速度快,适用于大规模数据的傅立叶变换计算。
缺点
对于非周期函数,FFT法可能存在误差和稳定性问题。
图像处理
在图像处理中,傅立叶变换是常用的工具,通过将图像分解为不同 频率的成分,可以实现图像的滤波、去噪、压缩等操作。
控制系统
在控制工程中,傅立叶级数可以用于分析系统的频域响应,从而优 化控制系统的设计和性能。
在金融问题中的应用
要点一
周期性分析
在金融领域,傅立叶级数可以用于分析具有周期性的金融 数据,如股票价格、汇率等,从而预测未来的走势。
唯一性证明
唯一性定理的证明涉及到数学分析中的一些高级技巧,如反证法、数学归纳法 等。
三角函数的正交性
正交性定义
在一定条件下,三角函数系中的函数都互相垂直,即它们的内积为0。这就是三角函数 的正交性。
正交性的应用
正交性是傅立叶级数展开的基础,因为只有当三角函数系是正交的时,我们才能将一个 周期函数表示为一个傅立叶级数。同时,正交性在解决物理问题、信号处理等领域也有
傅立叶级数的复数形式
傅立叶级数的复数形式是将函数表示 为复指数函数的线性组合,通过复数 运算,可以简化计算过程并方便地处 理函数的频域性质。
VS
复数形式的傅立叶级数在信号处理、 通信等领域中具有重要应用,可以用 于信号的频谱分析和滤波等操作。
02 傅立叶级数的性质
收敛性
傅立叶级数在$L^2$空间中收敛
十五章傅里叶级数
2
2
2
当只给出一种周期旳体现式时,傅里叶级数在两端点旳值
可用 上述公式求之.
例1:设
x, f (x) 0,
0 x x 0
求f
旳傅里叶级数展开式.
解: 函数f 及其周期延拓后的图象如图所示,
y
3 2 O 2 3 4
x
显然 f 是按段光滑旳,故由收敛定理,它能够展开成傅里叶级数。
因为
第十五章 傅里叶级数
§15.1 傅里叶级数
一、 三角级数 • 正交函数系
二、以 2 为周期旳函数旳傅里叶级数
三、收敛定理
§15.1 傅里叶级数
一、三角函数 正交函数系
在科学试验与工程技术旳某些现象中,常会遇到一种周期运动,最简
单旳周期运动,可用正弦函数 A sin(x ) 来描写。
所体现旳周期运动也称为简谐运动,其中 A 为振幅, 为初相角,
f (x) cos kxdx
a0 cos kxdx 2
(an cos nx cos kx bn sin nx cos kx)dx n1
cos2 kxdx
f (x) cos kxdx ak
ak
1
f (x) cos kxdx
(k 1, 2, )
同理可得:
bk
1
f (x) sin kxdx
f 的傅里叶级数收敛于f 在点x的左,右极限的算术平均值,即
f
(x
0) 2
f
(x 0)
a0 2
(an
n1
cos nx bn
sin nx)
其中an ,bn为f的傅里叶系数。
推论:
若f 是以2为周期的连续函数,且在[, ]上按段光滑,则 f 的
高等数学-第七版-课件-12-7 傅里叶级数
在 例3 将函数
上的傅里叶展开式
u
展开成傅里叶级数, 其中E 是正的常数 . O t
傅里叶级数
一、三角级数 二、函数展开成傅里叶级数
三、正弦级数和余弦级数
傅里叶级数
一、三角级数 二、函数展开成傅里叶级数
三、正弦级数和余弦级数
周期为2 的奇、偶函数的傅里叶级数 对周期为 2 的奇函数 f (x) , 其傅里叶系数为
a0 f ( x) an cos nx bn sin nx 2 n 1
①
② 定义 由公式 ② 确定的 称为函数f(x)
的傅里叶系数 ; 以f (x)的傅里叶系数为系数的三角级数 a0 an cos nx bn sin nx 称为f(x)的傅里叶级数 . 2 n 1
x
分别展开成正弦级数和余弦级数.
将定义在[0,]上的函数展开成正弦级数与余弦级数 展开思路 在
奇延拓 (偶延拓) 傅里叶展开 在
上有定义 上, 上为奇函数(偶函数)
定义在 在
(0, π] 上 F ( x ) f ( x ) 的正弦级数 (余弦函数) 展开式
y
例6 将函数
O 分别展开成正弦级数和余弦级数.
2) 在一个周期内至多只有有限个极值点, 则 f (x) 的傅里叶级数收敛 , 并且 当x 为f (x)的连续点时,级数收敛于 f ( x );
当x 为f (x)的间断点时,级数收敛于
1 [ f ( x ) f ( x )]. 2
例1 设 f (x) 是周期为 2 的周期函数 , 它在 上的表达式为
引言
简单的周期运动 ( A:振幅 :角频率
?
复杂的周期运动
:初相 )
傅里叶级数课件分解
与
在
上可积, 且
则称
与
在பைடு நூலகம்
上是正交的, 或在
上具有正
交性. 由此三角函数系(4)在
上具有正交性.
或者说(5)是正交函数系.
现应用三角函数系(5)的正交性来讨论三角级数(4)
的和函数 f 与级数(4)的系数
之间的关系.
定理12.2 若在[-π,π]上
且等式右边级数一致收敛, 则有如下关系式:
光滑弧段所组成,它至
收敛定理指出, f 的傅里叶级数在点 x 处收敛于 在
该点的左、右极限的算术平均值
而当 f 在点 x 连续时,则有
即此时f的傅里叶级数收敛于
. 这样便有
上按段光滑, 则 f 的傅里叶级数在
上收敛
于 f .
推论 若 f 是以 为周期的连续函数, 且在
上每一点都存在
, 如果在不连续
点补充定义
, 或
, 则
还有
(iii) 在补充定义
在
上那些至多有限个不存在
导数的点上的值后 ( 仍记为
),
在[a, b]上可积.
从几何图形上讲, 在
区间[a, b]上按段光滑
光滑函数,是由有限个
多有有限个第一类间
断点 (图15-1).
时,
于是当
当 时, 级数收敛到 0( 实际上级数每一项都为 0 ).
为进一步研究三角级数(4)的收敛性, 先讨论三角函
数系 (5) 的特性. 首先容易看出三角级数系(5)中所
定理 12.1 若级数
其次, 在三角函数系(5)中, 任何两个不相同的函数
数学分析课件 傅里叶级数
03
工程学
在工程学中,傅里叶级数可以用于分析和设计各种周期性结构,例如在
机械工程和土木工程等领域中,可以通过傅里叶级数来描述和分析周期
性振动和波动等问题。
02
傅里叶级数的基本性质
三角函数的正交性
三角函数的正交性是指在一周期内,任何两个不同的三角函 数都不相交,即它们的乘积在全周期内的积分值为零。这一 性质在傅里叶级数的展开和重构中起到关键作用,确保了频 谱的纯净性和分离性。
三角函数的周期性使得我们能够将无限长的信号转化为有限长的频谱,从而方便 了信号的分析和处理。
傅里叶级数的收敛性
傅里叶级数的收敛性是指一个信号的傅里叶级数展开在一 定条件下能够无限接近原信号。这一性质保证了傅里叶级 数展开的精度和可靠性,使得我们能够通过有限项的级数 展开来近似表示复杂的信号。
收敛性的判定是数学分析中的重要问题,涉及到级数的收 敛半径、收敛域等概念。在实际应用中,我们需要根据信 号的特性和精度要求来选择合适的收敛域和级数项数,以 保证傅里叶级数展开的准确性。
首先,确定函数的周期和定义域;其次,计算正弦和余弦函数的系数;最后,将得到的系数代入正弦和余弦函数的线 性组合中,得到函数的傅里叶级数表示。
傅里叶级数的表示方法的优缺点
傅里叶级数具有简洁、易计算等优点,能够将复杂的周期函数分解为简单的正弦和余弦函数。然而,傅 里叶级数也存在着一些缺点,例如在非周期函数的情况下,傅里叶级数可能无法得到正确的结果。
图像增强
利用傅里叶级数,可以对图像进行增 强处理,如锐化、降噪等,提高图像 的视觉效果。
数值分析中的傅里叶级数
数值逼近
傅里叶级数可以用于求解某些函数的 数值逼近问题,如求解函数的零点、 极值等。
《傅里叶级数》课件
FFT的出现极大地促进了数字信号处理领域的发展,尤其在实时信号处理 和大数据分析方面。
小波变换与傅里叶级数的关系
01
小波变换是一种时间和频率的局部化分析方法,用于多尺度信 号处理和分析。
02
小波变换与傅里叶级数都是信号的频域表示方法,但小波变换
频域处理
傅里叶变换将图像从空间域转换到频域,使得图 像的频率特征更加明显,便于进行滤波、增强等 操作。
图像压缩
通过分析图像的频谱,可以去除不重要的频率成 分,从而实现图像的压缩,节省存储和传输资源 。
图像去噪
傅里叶变换在图像去噪中发挥了重要作用,通过 滤除噪声对应的频率成分,可以有效去除图像中 的噪声。
傅里叶级数提供了一种将 复杂信号分解为简单正弦 波的方法,有助于理解和 处理信号。
频谱分析
通过傅里叶变换,可以分 析信号的频率成分,这在 通信、音频处理等领域有 广泛应用。
滤波器设计
利用傅里叶级数或其变换 形式,可以设计各种滤波 器,用于提取特定频率范 围的信号或抑制噪声。
图像处理中的应用
1 2 3
数值分析中的应用
求解微分方程
傅里叶级数在数值分析中常用于 求解初值问题和偏微分方程,通 过离散化和变换,将复杂问题转 化为易于处理的简单问题。
数值积分与微分
傅里叶级数在数值积分和微分中 也有应用,可以将复杂的积分或 微分运算转换为易于计算的离散 形式。
插值与拟合
傅里叶级数可以用于多项式插值 和函数拟合,通过选取适当的基 函数,可以构造出精度较高的插 值函数或拟合模型。
04
傅里叶级数的扩展知识
离散傅里叶变换
离散傅里叶变换(DFT)是连续傅里叶变换的离 散化形式,用于将时域信号转换为频域信号。
§4.2 傅里叶级数
2.f(t)为奇函数——对称于原点
f (t ) f (t )
an =0,展开为正弦级数。
▲ ■ 第 10 页
3.f(t)为奇谐函数——f(t) = –f(t±T/2) 其傅里叶级数中只含 奇次谐波分量,不含 偶次谐波分量;即 a0=a2=…=b2=b4=…=0
2 an T
T 2 T 2
2 f (t ) cos( nt ) d t bn T
T 2 T 2
f (t ) sin( nt ) d t
an是n的偶函数,bn是n的奇函数。
▲ ■ 第 3页
将上式同频率项合并
A0 f (t ) An cos( nt n ) 2 n 1 bn 2 2 n arctan 式中,A0 = a0 An a n bn an An是n的偶函数, n是n的奇函数。
T , cosnt cosmt dt 2 0, T T , 2 T2 sin nt sin mt dt 2 0,
▲
T 2 T 2 T 2 T 2
cosnt sin mt dt 0
mn mn
f (t )
n
Fn e j nt
T 2 T 2
系数Fn 称复傅里叶系数
1 Fn T
f (t )e j nt d t
用cosx =(ejx + e–jx)/2从三角形式推出: 推导
▲ ■ 第 12 页
指数形式付氏级数推导
A0 f (t ) An cos( nt n ) 2 n 1
§4.2
傅里叶级数
• 傅里叶级数的三角形式 • 波形的对称性与谐波特性 • 傅里叶级数的指数形式 • 周期信号的功率——Parseval等式
9.7.傅里叶级数ppt
①
f (x)dx
1 2
a0dx
[
(ak cos kx bk sin kx)]dx
k 1
1 2
a0dx
ak cos kxdx k 1
bk sin kxdx k 1
a0
1 2
2
,
a0
1
f (x)dx
(2) 求an .
f
( x)cos nxdx
a0 2
cos nxdx
an n , bn n .
练习题
一、设周期为2 的周期函数f ( x) 在[ , ) 上的表达式
为
f
(
x
)
bx ax
, ,
0
x
x
0
(常数a b 0)试将
其展开成傅里叶级数 .
二、将下列函数 f ( x) 展开成傅里叶级数:
1、
f
(x)
e x ,
x
0;
1,0 x
2、 f ( x) sin(arcsin x).
1) 在一个周期内连续或只有有限个第一类间断点; 2) 在一个周期内只有有限个极值点, 则 f (x) 的傅里叶级数收敛 , 且有
f (x) ,
f (x) f (x) , 2
x 为连续点 x 为间断点
其中 an , bn 为 f (x) 的傅里叶系数 .
特别地,当 x为端点 x 时, 收敛于 f ( 0) f ( 0). 2
n1
令
an An sinn , bn An cosn ,
得函数项级数
a0 2
(an
n1
cos nx
bn
sin nx)
称上述形式的级数为三角级数.
20-1傅里叶级数word资料6页
§20-1 傅里叶级数一、三角函数系的正交性三角级数: )sin cos (210nwx b nwx a a n n ++∑∞=∧ wT π2=三角函数系: ΛΛ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nwx nwx wx wx wx wx (线性组合) 正交性:(1) ⎰-=220cos T T nwxdx (2) ⎰-=220sin T T nwxdx (3) ⎰-=220sin cos T T mwxdx nwx(4) ⎰-=⋅220cos cos T T mwxdx nwx n m ≠(5) ⎰-=⋅220sin sin T T mwxdx nwx n m ≠ 验证另易验证,三角函数亦中两相同函数的乘积在⎥⎦⎤⎢⎣⎡-2,2T T 上的积分不等于零.① T dx TT =⎰-2221 ②2sin 222T nwxdx T T =⎰- ③⎰-=2222cos TT Tnwxdx )2(w T π=二、(函数展开成)傅里叶级数 条件: 已知)(x f 周期T,在⎥⎦⎤⎢⎣⎡-2,2T T 上可积,且可展开成逐项可积的三角级数.即 ∑∞=++=1)sin cos (2)(n n n nwx b nwx a a x f结论⎰⎰--==22220cos )(22TT n TT nwxdxx f T a fxdxT a ),2,1(Λ=n ⎭⎬⎫⎰-==22),1,0(cos )(2TT n n nwxdx x f T a Λ过程:①T anwxdx b nwxdx a dx a dx x f n T T T T n n T T T T 2sin cos 2)(01222222022正交性∑⎰⎰⎰⎰∞=----⎥⎦⎤⎢⎣⎡++=② ⎰-22cos )(TT nwxdx x f⎰∑⎰⎰-∞=--⎥⎥⎦⎤⎢⎢⎣⎡++=22122220sin cos cos cos cos 2T T K T T TT K K kwxdx nwx b kwxdx nwx f a nwxdx a2cos 222T a nwxdx aTT n n ⋅=⎰-正交性 ③同②傅里叶级数: )(x f ~)sin cos (21nwx b nwx a a n n n ++∑∞=其中 =0a =n a =n b提问: 给一函数)(x f =)(x f 傅里叶级数. 问题解决了?傅里叶级数收敛性? 收敛的话,其和函数)(?)(x f x S定理(狭里克雷(Dirichlet)收敛定理) 设)(x f 在⎥⎦⎤⎢⎣⎡-2,2T T 上满足 (1)连续,或还多有有限个第一类间断点(2)分段单调,且单调区间的个数还多只有有限个则)(x f 的傅里叶级数∑∞=++1)sin cos (2n n n nwx b nwx a a 收敛,且其和函数[]⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡-++-++-=)02()02(21)0()0(21)()(T f T f x f x f x f x S 2,2)2,2()2,2(T T x T T x TT x -=-∈-∈ )(第一类间断点连续点推论:1.,2π=T 12==Tw π取[]ππ,- ⎪⎩⎪⎨⎧==⎰⎰--ππππππnxdx x f b nxdxx f a n n sin )(1cos )(1 ),2,1,0(),2,1,0(ΛΛ==n n)(x f ~∑∞=++1)sin cos (2n n n nx b nx a a2.l T 2= )0(>l , l T w ππ==2 取[]l l ,- ⎪⎩⎪⎨⎧==⎰⎰--ll n l ln xdx ln x f l b xdx l n x f l a ππsin )(1cos )(1 ),2,1,0(),2,1,0(ΛΛ==n n )(x f ~∑∞=++10)sin cos(2n n n x ln b x l n a a ππ 3. )(x f 在⎥⎦⎤⎢⎣⎡-2,2T T 上是奇函数, 即)()(x f x f -= ⎥⎦⎤⎢⎣⎡-∈2,2T T x ⎪⎩⎪⎨⎧==⎰0cos )(420n T n b nwxdx x f T a ),2,1,0(),2,1,0(ΛΛ==n n)(x f ~∑∞=+1cos 2n n nwx a a -----余弦(傅里叶)级数4. )(x f 在⎥⎦⎤⎢⎣⎡-2,2T T 上是奇函数, 即)()(x f x f -= ⎥⎦⎤⎢⎣⎡-∈2,2T T x ⎪⎩⎪⎨⎧==⎰20sin )(40Tn n nwxdx x f T b a ),2,1,0(),2,1,0(ΛΛ==n n)(x f ~nwx b n n sin 1∑∞= -----正弦(傅里叶)级数例1:得⎩⎨⎧=xx f 0)( ππ≤<≤<-x x 00展开成傅里叶级数.解:① 图示② π2=T 12==Tw π③ )(x f 在[]ππ,-上满中收敛定理的条件,在端点π±=x 处)(x f 的傅里叶级数在端点=x π处收敛于2202)0()0(ππππ=+=-++-f f ,而在连续点),(ππ-∈x 处收敛于)(x f .(和函数的图形见上)(x S )④ 计算傅里叶系数: ⎰⎰===-ππππππ0021)(1xdx dx x f a⎪⎩⎪⎨⎧-=-==⎰⎰-2)1(cos 1cos 1cos )(1220ππππππππn n n nxdx x nxdx x f a n 分部 偶奇n n⎪⎩⎪⎨⎧-=-===⎰⎰-nn n nxdx x nxdx x f b n 11cos sin 1sin )(10πππππππ偶奇n n⑤ 因此)(x f 的傅里叶级数展开式为)sin cos (2)(1nwx b nwx a a x f n n n ++=∑∞=)3sin 313cos 32(2sin 21)sin cos 2(42x x x x x +-+-+-+=πππΛ+-x 4sin 41 ),(ππ-∈x例2.设)(x f 是周期为4的周期函数,在[)2,2-上的表达式为⎩⎨⎧-=11)(x f 2002<≤≤≤-x x将)(x f 展开成傅里叶级数.解: 图示 4=T 22ππ==T w )(x f 满足狭氏条件,在),1,0(2Λ±==k K x 处不连续,因此)(x f 的傅里叶数在K x 2=处收敛于0,而在连续点K x 2≠处,收敛于)(x f . 计算傅里叶系数:0=n a Λ,2,1,0=n (∵)(x f 是奇函数)xdx n x f nwxdx x f T b TT n ⎰⎰--==22222sin )(21sin )(2πxdx n dx x n ⎰⎰+-=-20022sin 21)2sin (21ππ ⎪⎩⎪⎨⎧⋅=-=014)cos 1(2n n n πππ 偶奇n n 因此, )(x f 的傅里叶级数展开式为x n b x f n n 2sin)(1π∑∞== )25sin 5123sin 312sin 11(4Λ+++=x x x ππππ ),(+∞-∞∈x K x 2≠ Λ,2,1,0±±=K 作业: 206P 1(1) 2(1)希望以上资料对你有所帮助,附励志名言3条: 1、理想的路总是为有信心的人预备着。
《高数傅里叶级数》课件
参考文献
• 相关教材及论文 • 傅里叶分析 • 数学分析 • 信号与系统
傅里叶级数的应用
声音信号的分析
探索傅里叶级数在声音信 号分析中的应用。
图像处理文化礼仪
了解傅里叶级数在图像处 理和文化礼仪中的意义。
信号压缩
学习傅里叶级数在信号压 缩中的基本原理和方法。
总结和展望
1 傅里叶级数的重要性
总结傅里叶级数在数学和科学领域中的重要性。
2 未来傅里叶级数的发展趋势
展望傅里叶级数在未来的发展方向和应用领域。
傅里叶级数的性质
周期性
了解傅里叶级数的 周期性特点。
偶函数与奇 函数
探索傅里叶级数在 偶函数和奇函数中 的应用。
线性性
了解傅里叶级数的 线性运算和叠加性 质。
对称性
了解傅里叶级数的 对称性和相关推论。
傅里叶级数的收敛性
1 一致收敛
学习傅里叶级数的一致收敛性质及其应用。
2 其他收敛性质
了解傅里叶级数的其他收敛性质和相关定理。
高数傅里叶级数
欢迎来到《高数傅里叶级数》PPT课件!本课程将介绍傅里叶级数的概念、 推导、性质、应用等内容,帮助您更好地理解和应用傅里叶级数。
傅里叶级数的定义与推导
1
正弦函数与余弦函数
了解正弦函数和余弦函数的特点和性质。
2
傅里叶级数的定义
学习傅里叶级数的基本定义和公式。
3
傅里叶级数的求解
掌握傅里叶级数的求解方法和技巧。
《傅里叶级数》课件
傅里叶系数: a_n和b_n,可 以通过积分计算 得到
傅里叶级数的收 敛性:对于满足 一定条件的函数, 傅里叶级数收敛 于该函数
傅里叶级数的计算步骤
傅里叶级数的计算实例
实例:计算正弦函数的傅里 叶级数
计算步骤:确定周期、确定 频率、确定振幅、确定相位
傅里叶级数的定义:将周期函 数分解为无穷多个正弦和余弦 函数的和
傅里叶级数未来的研究方向与挑战
傅里叶级数的快速算法研究 傅里叶级数的应用领域拓展 傅里叶级数的理论研究与证明 傅里叶级数的计算复杂性与优化
感谢您的观看
汇报人:PPT
实例:计算余弦函数的傅里 叶级数
实例:计算三角函数的傅里 叶级数
实例:计算复杂函数的傅里 叶级数
傅里叶级数的应 用实例
信号处理中的应用
滤波器设计:傅里叶级数可以用于设计各种滤波器,如低通滤波器、高通滤波器等。 信号分析:傅里叶级数可以用于分析信号的频率成分,如分析信号的频谱、功率谱 等。
信号处理:傅里叶级数可以用于处理信号,如信号的压缩、增强、去噪等。
傅里叶级数的周期性
傅里叶级数是一种周期函数 周期性是傅里叶级数的基本性质之一 周期性是指函数在一定区间内重复出现 周期性是傅里叶级数在信号处理、图像处理等领域里叶级数的展开式
傅里叶级数的定 义:将周期函数 分解为无穷多个 正弦函数和余弦 函数的线性组合
傅里叶级数的展 开式:f(x) = a_0 + Σ[a_n * cos(nωx) + b_n * sin(nωx)]
数值分析中的应用
傅里叶级数在信号处理中的应用 傅里叶级数在图像处理中的应用 傅里叶级数在音频处理中的应用 傅里叶级数在金融数据分析中的应用
其他应用领域
傅里叶级数基础知识
傅里叶级数基础知识傅里叶级数是数学中的一个重要概念,它在信号处理、图像处理、物理学等领域有着广泛的应用。
本文将介绍傅里叶级数的基础知识,包括傅里叶级数的定义、性质以及应用。
一、傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦函数和余弦函数的无穷级数的方法。
对于一个周期为T的函数f(t),它可以表示为以下形式的级数:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an、bn是系数,ω是角频率,n是正整数。
二、傅里叶级数的性质1. 周期函数的傅里叶级数是收敛的,即级数的和可以无限接近于原函数。
2. 傅里叶级数是唯一的,即给定一个周期函数,它的傅里叶级数是唯一确定的。
3. 傅里叶级数具有线性性质,即两个周期函数的线性组合的傅里叶级数等于它们各自的傅里叶级数的线性组合。
4. 傅里叶级数的系数可以通过积分计算得到,具体的计算公式为:an = (2/T) * ∫[0,T] f(t)*cos(nωt) dtbn = (2/T) * ∫[0,T] f(t)*sin(nωt) dt三、傅里叶级数的应用1. 信号处理:傅里叶级数可以将一个信号分解为不同频率的正弦波的叠加,从而实现信号的频域分析和滤波处理。
2. 图像处理:傅里叶级数可以将一个图像分解为不同频率的正弦波的叠加,从而实现图像的频域滤波和压缩等处理。
3. 物理学:傅里叶级数在物理学中有着广泛的应用,例如在波动现象、振动现象、电磁场等方面的研究中都可以使用傅里叶级数进行分析和计算。
四、总结傅里叶级数是一种将周期函数表示为正弦函数和余弦函数的无穷级数的方法。
它具有收敛性、唯一性和线性性质等基本性质,可以通过积分计算得到系数。
傅里叶级数在信号处理、图像处理、物理学等领域有着广泛的应用。
通过傅里叶级数的分析和计算,我们可以更好地理解和处理周期函数的特性,从而在实际应用中发挥作用。
以上就是傅里叶级数的基础知识的介绍。
希望本文能够帮助读者对傅里叶级数有一个初步的了解,并对其在实际应用中的重要性有所认识。
信号与系统课件-42傅里叶级数
3
收敛性分析
讨论级数收敛的条件和特性。
傅里叶级数的性质
探索傅里叶级数的性质,例如线性性、平移性、尺度性和共轭对称性。了解这些性质对信号分析 和处理的影响。
线性性
傅里叶级数具有线性叠加的性质,方便对信号进行分析和处理。
平移性
对原始信号进行平移,傅里叶级数的频谱也发生相应的平移。
尺度性
对原始信号进行尺度变换,傅里叶级数的频谱也发生相应的尺度变换。
正弦波
简单而优雅的波形,具有周期性和平滑性。
余弦波
与正弦波相似的周期波形,具有平移和相位差。
傅里叶级数的求解过程
了解将周期函数展开为傅里叶级数的计算方法。使用欧拉公式、积分和级数展开进行求解,并理解级数收敛的条 件。
1
系数计算
使用特定的公式和积分求解傅里叶系数。
2
级数展开
将傅里叶系数代入级数展开公式,得到傅三角函数的形式 表示,充分展示信号的谐波成 分。
欧拉公式表示
以指数函数表达傅里叶级数, 展示复指数的优雅性和简洁性。
傅里叶级数的性质和应用
了解傅里叶级数的奇偶性质、能量守恒定理以及实数和虚数展开形式。探索傅里叶级数在信号处理和通信系统 中的应用。
奇偶性质 能量守恒定理 实数和虚数展开
傅里叶级数的应用举例
探索傅里叶级数在实际应用中的例子。了解如何利用傅里叶级数进行信号压缩、滤波、频谱分析等。
音乐信号分析
使用傅里叶级数分析音乐的频谱特性,探索不同乐 器和音符的波形展示。
图像压缩
通过傅里叶级数对图像进行频谱分析,实现图像的 高效压缩和恢复。
傅里叶级数与信号重构
了解如何使用傅里叶级数进行信号重构和合成。通过选取不同的傅里叶系数,重建具有不同特性的信号。
《高数-傅里叶级数》课件
02
该公式将复杂的函数f(x)表示为简单的三角函数之和,便于分析函数的性质和求 解相关问题。
03
展开公式中的系数a0、an、bn可以通过函数的积分得到。
傅里叶级数的展开步骤
01
第一步是将待展开的函数f(x)进行傅里叶级数的展开,得到展开式。
02
第二步是求解展开式中的系数a0、an、bn,可以通过函数的积分得 到。
傅里叶级数的应用领域
傅里叶级数在数学、物理、工程等领 域有广泛的应用。
在信号处理、图像处理、振动分析、 量子力学等领域,傅里叶级数被用于 分析信号和系统的频率成分,以及进 行频域分析和处理。
02
傅里叶级数的性质
傅里叶级数的收敛性
收敛的条件
傅里叶级数在满足一定条件下收敛, 如狄利克雷条件和黎曼条件等。这些 条件限制了周期函数的波形和振幅, 以确保级数收敛。
傅里叶级数的对称性可以通过数学证明得到。证明过程中需要利用三角函数的 性质和级数的运算规则。
傅里叶级数的周期性
周期性的应用
周期性在信号处理、图像处理等领域中有着广泛的应用。例如,在信号处理中, 可以利用周期性来分析信号的频率成分和周期性变化。
周期性的证明
傅里叶级数的周期性可以通过数学证明得到。证明过程中需要利用三角函数的周 期性和级数的运算规则。
03
第三步是将求解出的系数代入展开式中,得到函数的傅里叶级数展开 式。
04
第四步是利用傅里叶级数的性质和公式,对展开后的函数进行分析和 求解相关问题。
04
傅里叶级数的应用实例
信号处理中的傅里叶级数
信号分析
傅里叶级数提供了一种将复杂信号分解为简单正弦波的方法,有 助于信号的频谱分析和特征提取。
傅里叶级数课程及知识题讲解
第 15 章 傅里叶级数§15.1 傅里叶级数一 基本内容一、傅里叶级数f (x)a n x n在幂级数讨论中 n 1 ,可视为 f (x)经函数系 1, x, x 2 , L , x n , L线性表出而得.不妨称{1,x,x ,L ,x ,L } 为基,则不同的基就有不同的级数.今用三角函数 系作为基,就得到傅里叶级数.1 三角函数系函数列 1, cosx, sinx, cos2x, sin 2x, L , cosnx, sin nx, L称为三角函数系. 其有下 面两个重要性质. (1) 周期性 每一个函数都是以 2 为周期的周期函数;(2) 正交性 任意两个不同函数的积在 [ , ]上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在 [ u n (x),u m (x) 为 , ] 可积的函数系 u n (x): x [a, b], n 1,2,L ,定义两个函数的内积 b u n (x) u m ( x)d x ,u n (x),u m (x) 如果 mn m n ,则称函数系 u n (x): x [a, b], n 1,2,L 为正交系. 由于 1, sinnx sin nxd x m sin mx,sinnx sinmx 0 m cosnxdx m cosmx, cosnx cosmx 0 m sin mx,cosnx sinmx cosnxdx 0 ;1, 1 12dx 21 n n ; ; n ; ; sin nx d x 1 cosnxdx 0 所以三角函数系在 上具有正交性,故称为正交系. 利用三角函数系构成的级数f ?(x)称为三角级数,其中 a 0 , a 1, b 1 ,L ,a n ,b n ,L 为常数2 以 2 为周期的傅里叶级数称为函数 f (x)的傅里叶系数,而三角级数 a 0 称为 f (x) 的傅里叶级数,记作这里之所以不用等号,是因为函数其是否收敛于 f(x) . 二、傅里叶级数收敛定理定理 1 若以 2 为周期的函数 f (x) 在[ , ]上按段光滑,则 其中 a n ,b n 为 f ( x)的傅里叶系数. 定义 2 如果 f (x) C[a, b] ,则称 f(x) 在[a,b] 上光滑.若x [a,b), f ( x 0),f (x 0)存在; x (a,b], f (x 0), f (x 0) 存在,几何解释如图.按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个 第一类间断点与角点.推论 如果 f(x)是以 2 为周期的连O 续函数,且在 [ ,x ]上按 段光滑,则 x R ,f (x) 0 a n cosnx b n sin nx 2 n 1定义 3 设 f(x)在( , ] 上有定义,函数x ( , ]x (2k ,2k ],k 1, 2,La 0 2 n1 a n cosnxb n sinnx 定义 1 设函数 f (x) 在 a k 上可积, 1 f ( x),cos kx 1 f (x)coskxdx k 0,1,2,L ;b k 1 f (x),sin kx f(x)sinkxdx k 1,2,L, a 0 f (x) ~ 2a n cosnxb n sinnx 1 且至多存在有限个点的左、右极限不相等,则称 f (x) 在[a,b]上按段光滑. a n cosnx b n sinnxf (x) 按定义 1 所得系数而获得的傅里叶级数并不知a 02a n cosnxb n sinnx n1 f(x 0) f (x 0) 2f(x) f(x 2k )y称 f (x)为的周期延拓.习题解答1 在指定区间内把下列函数展开为傅里叶级数(1) f(x) x, (i) x , (ii) 0 x 2sin nxd x 0由系数公式得1 2 1 2a0 f (x)d x xdx 20 0当n其按段光滑,故可展开为傅里叶级数.由系数公式得11a0 f (x)d x xdx 01时,a n x cosnx d xnx d(sin nx)b n x sin nx dxx d(cosnx)x cosnx|cosnx d x ( 1)n 12 n,所以f(x) 2 (n1(ii)1)n 1 sin nxn ,x (, )为所求.其按段光滑,故可展开为傅里叶级数.当n 1 时,x cosnx d x 2 32a n 0 2 x d(sin nx)b n 所以 (2) xsin 2 nx |0 12 n 0sin nx d x 0 xsinnxdxx cos nx n f(x)f (x)= 2 x d(cosnx) 2 |20 sinnx cosnxdx ,x n , (0,2 ) 为所求. 2 x, - π< x< π,(ii) 0 < x< 2π; ; 1 n (i) 由系数公式得22 a 0 f (x)d x 1 dx 1时, x 2 cosnxdxx 2 d(sin nx) b n所以 x 2 sin nx | xd(cosnx) xcosnx | 2x sin nx dx x 2 sin nxd x 2 cosnx | x d(sin nx) xsin nx |f(x) cosnx d x ( x 2 d(cosnx) xcosnxdx 1) n 4 2 n , 1)n sinnxdx sinnx 2 n , ) 为所求.a 0 当 n 1 时,a 0 当nb n所以 解:其按段光滑,故可展开为傅里叶级数. 由系数公式得 12 0 1时, 12 0 f (x)d x 2 x 2 dx 82 3 x 2 cosnx d x 12 x n 2 sin nx | 2 x d(sin nx) 2xsin nxd x xd(cosnx) 2 xcosnx | x 2 sin nx d x 12 x n 2 cosnx | 0 f (x) f (x) 42 2 cosnxdx 42 0 n 2 , 22 x d(cosnx) 2 x cosnx d x 0 x d(sin nx) 2 xsinnx |0 2 sin nxd x 0n , cosnx sinnx x (0,2 ) 为所求. ax bx (3) 解:函数 f(x), x (a b,a 0,b 0) ( , ) 作周期延拓的图象如下. y 3O 其按段光滑3 ,故可展开为傅里叶级数. 由系数公式得 1f (x)d x 1 0 axdx 1 bxdx (b a)02a n 1 0 ax 2 cosnxdx1 111135740 bxcosnxdx [1 ( 1)n ]a 2 bn1 0 1 b n axsin nx d x bxsinnxdxn 0 n 1 sinnx1)n I n , x ( , ) 为所求.2 设f 是以2 为周期的可积函数,证明对任何实数 c ,有 1 c 2 1 a nc f(x)cosnxdx f ( x)cos nxd x,n 0,1,2,L 1 c 2 1 b nf (x)sin nxdx f (x)sin nxdx,n 1,2,L cf (x)f (x)cos nxd x同理可得b n 1 f (x)sin nxd x f ( x)sin nxdx3 把 函数 0x4 展开成傅里叶级 数,并由 它推出(1)( 1)f(x)所以n (b a) 4 2(b a) 1 2 cos(2n 1)x1 (2n 1)2 (a b) ( n1 证: 因为 f(x),sin nxcosnx 都是以 2 为周期的可积函数,所以令 1 f (x)cos nxd x c 2 f (t 2 )cos n(t 2 )d(t 2 )从而 a n a n 1 c+2 1 f (t)cosntdtc2f (x)cosnxdx cf (x)cosnxdx 1 f ( x)cosnx dx c1 f (x)cos nxd xc+2 c+2 f ( x)cos nxd x f (x)cos nxd x11 1 (3)1时,(2)什么特性.(2)1 1 1 L13 17 11(3)111L11 13 17解:(, )作周期延拓的图象如下.x其按段光滑,故可展开为傅里叶级数. 函数f (x),由系数公式得a 0f (x)d xdx 14dx4a nb n[1f (x)(1)cosnx d x 4sinnxdx41)n 1]21nn11sin(2n 2n 12 ,则 4cosnxdx 0 04sin nxd x41)x, 2k 2k,0) U(0,)为所求.1215 21121113 17所以x取36 3 ,则1154 设函数1111 13 1713 17f ( x)满足条件 f (xf (x) ,问此函数在内的傅里叶级数具有11解: 因为 f(x)满足条件所以f(x 2 ) f (xf(x ) f(x),) f(x),即 f (x)是以 2 为周期的函数.于是由系数公式得1af (x)d x 1f (x)d x 1f (x)d xf (t )dt0 f (x)d xf (t )dt 10 f(x)d xf (t)dt0 f (x)d x 0当n1时,10a nf (x)cos nx d x f (x)cos nxd x b n故当 b 2k 0 .1f (t )cos(nx1)d x f(x)cosnxdx1 ( 1)n 1f(x)cosnxdx2f (x)cosnxdx10f(x 2k 1 2kf ( x)sin nx d x0 f (x)sin nxd x ) f(x) 时,函数 5 设函数 f ( x)满足条件: f (x 什么特性.解: 因为所以 f (x 1 f(x) 满足条件 2 ) f (x a 0f (x)d x 1f (t )dt f (tf (x)sin nx d x2k 1 2k , f(x) 在 内的傅里叶级数的特性是 a 2k 0 , ) f (x) ,问此函数在 内的傅里叶级数具有 f(x), f(x),即 f(x)是以 2 为周期的函数.于是由系数公式得 1 f (x)d x f (x)d x f (x ) 2 )dt0 f (x)d x 10 f(x)d x1 1 20 f(t )dt 0 f(x)dx 0 f(x)d x1 ( 1)nf (x)cosnxd x2k 12k 1 ,当n a n1时,1 01f (x)cos nx d x 0f (x)cos nxd x1f (t )cos( nx n )d x1f (x)cos nx d x2 f ( x)cos nxdx2k b n10f ( x)sin nx d xf (x)sin nx d xf (x)sin nxd x 2k故当 0 f(x f (x) 时,函数 f(x)在 内的傅里叶级数的特性是 a 2k 1 0 , cosnx, n 0,1,2,L 和sin nx, n 1,2,L 都是[0, ]上的正交函数系,但 [0, ] 上的正交函数系. 证:就函数系 {1, cosx,cos2x,L , cosnx, L 6 试证函数系 他们合起来的却不是 }, 因为 n ,1,1 0 dx , cosnx,cos nx 0 cos2nxdx 10 (cos2 nx1)dx2,1,cosnx cosnxdx 0 又0;m, n ,m n时,cosmx,cosnx cosmxcosnx d x 11cos(m n)xdx cos(m n)xdx所以{1, cosx, cos2 x, L , cosnx, L } 在[0,就函数系{sinx, sin 2x, L , sin nx, L } ,因为 n ,]上是正交系.sin nx,sin nx210sin 2nxdx 2 0 (1 cos2nx)d x 2又m, n,m n 时所以{sin x, sin 2x, L , sinnx, L } 在[0, ]上是正交系.但{1, sin x, cosx, sin 2x,cos2 x, L , sinnx, cosnx, L } 不是[0,7 求下列函数的傅里叶级数展开式xf (x) , 0 x 2(1) 2 ;xf (x) , 0 x 2解: 2 y作周期延拓的图象如下.2其按段光滑,故可展开为傅里叶级数.由系数公式得12a0 f (x)d x xdx 02当n 1时,12x cosnxdx21 2 xd(sin nx)n02b n所以(2)解:x2n122nf (x)2 sin nx|12nxsin nxd x2x cosnx |2sinnx2sinnxdx 02xd(cosnx)12ncosnxdxn,xf (x) 1 cosx,(0,2 )为所求.x;f (x) 1 cosx,x作周期延拓的图象如下.sin mx,sin nx 0 sin mxsin nxd x0 cos(m n)xdx cos(m n)xdx 0]上的正交系.实因:1,sin x 0 sin xdx 1 0b)sin nxdx其按段光滑,故可展开为傅里叶级数.f(x) 1 cosx 2sin2 x2sin2xx0因为 2sin x2所以由系数公式得 1a0 f (x)d x sin x dx2sin 2xd x42当n 1时, 2 x sin cosnx d x2b n 22 f(x) 所以 而x f (x)故(3)解: a 0 当n a n b nsin xcosnxdx2 sin xsin nx d x2n1x sin cosnxdx2 42 2 (4n 21) .2sin xsinnxdx 0212 cosnx 4n 2 1f ( 0) 2时, 2 2 4 2f(x) ax 2bx (i) 由系数公式得 11时,1f (x)d2(ax (ax 2(ax2n 4a 2 nbx bx f ( 0)1 n 14n 2c, (i) 0 c)d x,xf(,)cosnx 1 ,x]为所求. , (ii)x;2b 2cc)cos nxd xbx c)sin nx |20 (2ax22(ax 2 bx c)sin nxdx212n,(ii)由系数公式得当 n 1 时, 12a n(ax bx c)cos nx d x(ax2bx c)cos nx(2ax b)cos nxd xn 0当n 1时, an 1chxcosnxdx11 ch xsin nx | nn sh xsin nx dx1 2 sh xd(cosnx) n 2chxdx2shf (x) ax 2 bx c 故4 2a4a 2 cosnxn1n4 a 2b sin nx, x n (0,2)为所求.a 0f (x)d x(ax 2 bx c)d x2cb n1(ax 2 bx n( 1) (ax2bx (ax 2bx1 2bn2 axbx c)sin nx |(2ax (2ax b)sin nxdxb)cos nxd x2 2a31)n4a 2 cosnx( 1)n 2bsin nx,n)为所求.(4) f (x) chx,解: 由系数公式得11 a 0 f (x)d x x;c)sin nxdx1 c)cos nx|nf (x)c( 1)n 4a 2 n,sh xsin nxd xsh xd(sin nx)1sh x cos nxchxcosnxdxn 12nshx 1)n 1(n 22nsh 1x)1)n 1)n1)n2sh n 2shn1 2sh nch x d(sinnx)21 ch xsin nx | n 212 b n n,所以b nn 1 112 shxcosnx|chxcosnxdx( 1) n2sh 2n12 a nna n1)n2sh (n 2 1)chxsinnxdx ch x d(cosnx) chxcosnx |shxcosnxdx所以b nf (x) 故(5)解: a 0shxsinnx |chxsinnxdx 1shxsinnx |chxsinnxdx12 b n n,,chx 2sh f (x) shx,由系数公式得f (x)d x(n11)n12 cosnx n 21x ( , )为所求.sh xdx所以b n1f ( x)sin nx d x4a 4 a 2b2 cosnx sin nx, n 2故由收敛定理得f (x) shx1)n 1 2nsh (n 21)sinnx x(, )为所求.解:求函数f(x)1 12(3x2)的傅里叶级数展开式并应用它推出122 n1nf (x)ax 2 bx c4 2a3f(x)1(3x 2 6 x122)n1 12 cosnxn 2n1n12 cosnx (0,2 ) 而f (0 0) f (20)6,x (0,2f (0 0)f (20)12 cos0 1 n 2f (x)cos nx d x b n1f ( x)cos nx|f ( x)sin nxdx nb n1f (x)sin nx |f ( x)cos nxd x na n1f ( x)sin nx d x当 n 1 时,故结论成立.9设f (x)为,上光滑函数, f ( ) f( ).且 a n , b n为 f (x)的傅里叶系数,a n ,b n 为 f(x) 的导 函数f (x)的傅里叶系数 .证明a 0 0,a n nb n , b nna n(n 1,2,L ) .证:因为f(x) 为上光滑函数,所以f (x) 为,上的连续函数,故可积.由系数公式得a 01f (x)d x1f( ) f ( )0a n115. 2 以2l为周期的函数的展开基本内容、以2l 为周期的函数的傅里叶级数x lt设 f (x)是以2l 为周期的函数,作替换x,则F(t)f lt是以 2 为周期的函数,且 f (x) 在( l, l) 上可积F(t)在( , ) 上可积F(t) : a0a n cosnt b n sinnt于是 2 n1其中1 a n 1F (t )cos nt d t , b nF (t)sin ntdt3na证:, n3b nu0(x) 设0Ma02,(x) 在M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数u n(x) a n cosnx b n sin nx ,n 1,2,L .R上连续,且n 0,u nu0 (x) 0,u n(x) na n sin nx nb n cosnx亦在R上连续.又x R,u n(x) n a n sinnx n b n cosnxn a n n b n2M2 n.2M而2 n收敛,所以u n(x)nb n cos nx na n sin nx在R上一致收敛.s(x) a0 (a n cosnx b n sin nx)故设2 n1 ,则s(x) ( na n cosnx nb n sin nx) u n (x)n1 n 1s(x) (na n cosnx nb n sin nx)且n 1 在R 上连续.a0supn(a n cosnx b n sin nx)10 证明:若三角级数2 n 1 中的系数a n,b n 满足关系f (x) x (0,l) f ( x) x ( l,0)习题解答1 求下列周期函数的傅里叶级数展开式t 令x l 得F(t)f lt f (x) n x n xsinnt sin ,cosnt cos ll: a 0nxnxf (x)an cosb n sin从而2n1l l.a n1lf (x)cosnx dx,其中l llb n1lf (x)sin nxdxl ll .上式就是以 2l 为周期的函数 f (x)的傅里叶系数.在按段光滑的条件下,亦有f(x 0) f(x 0) a 0n x n x a n cos b nsin n l nl其只含余弦项,故称为余弦级数. f(x)是以 2l 为周期的奇函数,则 f( x)cos nx奇,同理,设f ( x)sin nx偶.lla nl f (x)cos n l x dx是f %(x) f (x) x (0,l)偶延拓 f(x) f( x) x ( l,0) 函数 f(x),x (0,l) 要展开为正弦级数必须作奇延拓.奇延拓lyO l xf %(x)(1)f (x) cosx(周期 ) ;解: f (x) 按段光滑,所以可展开为傅里叶级数,又 由于 级数. f (x)是偶函数, 故其展开式为余弦2 ,所以由系数公式得 a 02 2 cosx dx 4 2cosxdx 4 20 当n1时,22cosx cos2nxdx 422cosxcos2nxdxb n222[cos(2n 1)x cos(2n1sin(2n 1)x(2n 1)( 1)n 2 ( 1)n 1 2 (2n 1) (2n 1)1)x]d x 1sin(2n 1)x | 02 (2n 1)141)n2 (4n 21)222cosx sin nx d xf (x) cosx 故24( 1)n 1n121 cos2nx 4n 21( , )为所求.(2)f (x) x1 1解:f (x)按段光滑,所以可展开为傅里叶级数.12 ,所以由系数公式得[x](周期 1) ;由于1223 48a 0 2 21 x [x]2dx 2 10 x [x] dx1 xdx 1a n1时,121 x [x]2 cos2n 1xdx 2 x0 [x] cos2n xdxb n1 x cos2n 0xsin2n 1 22 1 2x [x]xdx1x |101x d(sin 2n x)1 sin2n xdx 0sin2n xdx10 x d(cos2n1xcos2n x |0f (x) x[x]1 xsin2n 0xdx(3)f (x)4sin 解: 由于 级数. a 0a nx)x(周期4函数f (x) sin x,0 cos2n 1sin2n n);xdx,x222 )为所求.延拓后的函数如下图.f (x) 按段光滑,所以可展开为傅里叶级数,又 ,所以由系数公式得2sin 4xdx4 1时,42f (x)是偶函数,故其展开式为余弦2sin 4xdx4 2 1 cos2x2dx1cos2x2 1cos2x 21 cos4 x dx 3841cos4x cos2nxd x 821,n 2bn 2 2cosx sin nx d x 04f (x) sin 4 x 故3 1cos2x 1cos4x x (8 2 8 , x ()为所求.(4)解:f (x) sgn(cosx) (周期2 ).函数 f(x) sgn(cosx) ,x ( , )延拓后的函数如下图.y3322Ox22f (x)按段光滑,所以可展开为傅里叶级数,又 由于 级数.因l f (x)是偶函数,故其展开式为余弦a 0,所以由系数公式得2sgn(cosx)d x 0 sgn(cosx)d x 0 当n1时,a nsgn(cosx)cos nx d x02cosnxdxcosnxdx24n sin n2kb n 4n sin2f (x) 1)k(2k 1)2ksgn(cosx)sin nx d x 0sgn(cosx)4(n11)ncos(2n 1)x 2n 1,xf (x)求函数 解:函数 f(x),3的傅里叶级数并讨论其收敛性.yOx (0,3)延拓后的函数如下图.1由于 f (x) 按段光滑,所以可展开为傅里叶级数,又 f (x) 是偶函数,故其展开式为余弦 级数. 2 ,所以由系数公式得 a 0 2332 0 f(x)d x 1 xdx 0 2 dx 13 2 (3 x)d x 1时,12n xcos 0x dx 32 cos12n xd x b n1 xd 02n 1 sin n31 4n sin n332 (3 2n x)cos xdx32n xsin2n2 2 cos 2n 2 2 33 2n2cos 23sin sin2n32 (3 x)d2n x sin 32n x dx 3 1 2n sinn3 2 2 cos2n2 23222n 322n.f (x)sin nxdx3222n x32n 2 21 4n sin n cos2n31 (3 n 32n 2 22n x x)sin 31 4n sin n34n cos 31 2n 2n x2 cos cos n 23 3 ,x ()为所求.1 3 2n x sin dxn 22n x2 2 cos2n 2 2 33 将函数 f (x) 2 x 在 [0, ]上展开成余弦级数.由于 f (x)按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦 级数.由系数公式得1时,22a 022dx12x 2n2 sinnxsinnxdxn 022 cosnx n 2b n级数. 4 2n 02k 2kf (x) 21 2cos(2n 1)x, n 1 (2n 1)2x [0, ]解:函数,故其展开式为正弦由于 由系数公式得 a n 0, n x cos[0, ]2在 [0, ]上展开成正弦级数.将函数f (x) 0,1,2,L b n 2 0 n 0cos x sin nx d x2sin sinx dx cos1 x2 1 n2cos1 21 n 2当ncosnx d x18n2(4n 2 1)f (x)5 把函数 在(0, 4)上展开成余弦级数.2x 1在(0, 1)上展开成余弦级数,并推出6 1 22 312 L解:函数 f(x),x (0,1)延拓为以 2为周期的函数如下图.由于 级数.因la 0当n所以解:f (x)按段光滑,所以可展开为傅里叶级数,又,所以由系数公式得 4f(x)d20 (1 x)d x 42(x3)d x1时,a n40 f ( x)cos nx4dxn (1x)sin nx42 sin822 nf (x)nx cos 42cos n2 cosnx 4 1)nf (x)是偶函数, 20 (1 x)cosnx dx4故其展开式为余弦42(x3)cos n xdx4x dx20 16 22 n2 (x n3)sin4422n4n x sin dx 242 cos 1(2n 1)24k 4k(2n 1) x 2为所求.6 把函数 f (x)f(x)故在[0, ] 上x cos 2n2 sinnx 1 4n 1为所求.22由于 f (x)按段光滑,所以可展开为傅里叶级数,又f (x)是偶函数,故其展开式为余弦级数.因 l=0.5 ,所以由系数公式得122 0(x 1)3 4dx1 cosn xdx422nb n12 n 1 n,即1 n 1 n2 67 求下列函数的傅里叶级数展开式(1) f(x) arcsin(sin x) ;由于 f (x)按段光滑,所以可展开为傅里叶级数,又f (x)是奇函数,故其展开式为正弦级数.由系数公式得 a n 0, n 0,1,2,L .2b narcsin(sin x)sin nxdx3 令 x 0得4xsinnxdx21当n1时, a n10(x1) 2cosn xdx2(x n1)2sin n x1(x 1)sin n xdx(x所以 1)212cosnx, 1nx [0,1]12 0 f (x)d xa 0222 n (x 1)cos n 解:函数f(x) arcsin(sin x)是以 2 为周期的函数如下图.x)sin nxdx222x cos nxn 02cosnxdx220 arcsin(cosx)cos nx d x 0 2 x cosnxdx2cos nxd x4n 2 sinn 22k 所以(2) 由于 级数. x)cos nx2 cosnxd xn 22( 1)kn42 n2k 14f (x) arcsin(sin x)( 1)n 2 sin(2n1(2n 1)21)x, x Rf(x) arcsin(cosx)解: f (x) 按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦由系数公式得 a 02 0 arcsin(cosx)d x 0当n1时,b n2 sinnxn0, n f (x)所以1,2,L 2sin nxd x2k 2k4arcsin(cosx)1 2 cos(2n 1)x1(2n 1)2,x R0,8 试问如何把定义在 2叶级数为如下的形式上的可积函数 f (x)延拓到区间内,使他们的傅里a2n 1 cos(2n 1)x b2n 1 sin(2 n 1)x(1) n 1;(2) n 1解:(1)先把 f (x)延拓到[0, ]上,方法如下:f (x) 0 x2f (x) 2f ( x) x2再把 f (x)延拓到[0,2 ]上,方法如下:f?(x) f (x) 0 xf(2 x) x 2 其图象如下.y y f(x)2 O3 2 x232由于 f (x)按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦级数由系数公式得20 f (x)d xa0当n1b n1时,n20 f(x)cosnxd x2f (x)sin nxdx 02 2 22 f (x)cosnxdx f (x)cos nx d x2222 f (x)[cos nx cos(n nx)]d x422 f ( x)cos nx d x n 2k 1n 2k所以f (x) a2n 1 cos(2n 1)x x 0,n 1 2(2) 先把 f (x)延拓到[0, ]上,方法如下.f (x) f (x)f ( x) 0x2再把 f (x)延拓到[0,2 ]上,方法如下.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理 1 设 f(x) 在 [ , ] 上可积,则2a 022 21 a n2 b n 2f 2(x)d x2 n 1其中a n ,b n 为f (x)的傅里叶系数.推论 1设f(x) 在 [ , ] 上可积,则lim f (x)cos nxd x 0 limf ( x)sin nxdx 0f (x)是偶函数,故其展开式为余弦级数.由系数公式得 a0 f (x)d x当nb n1时, 21a n20 f (x)cos nx d x 0f ( x)sin nxdx222f (x)sin nxdx f ( x)sin nxdx22f (x)[sin nx sin(nnx)]d x 42f ( x)sin nxdx n2k 2kf (x) 所以b 2n 1 sin(2 n 1)x x n10,2由于 f (x)按段光滑, 所以可展开为傅里叶级数,又推论 2 设 f(x)在[ , ]上可积,则k11t t 2 tdt2sin 2t此称为 f (x)的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理 3 (收敛性定理 ) 设以 2 为周期的函数 f(x)在[ , ]上按段光滑,则 limf (x 0) f(x 0)S n (x) 0 n 2 2 n,定理 4 如果 f(x)在[ , ]上有有限导数,或有有限的两个单侧导数,则f(x 0) f (x 0) a 0a n cosnxb n sinnx n122定理 5 如果 f(x)在[, ]按段单调,则f(x 0) f (x 0) a 0a n cosnxb n sinnx22n1习题解答1 设 f (x)以 2 为周期且具有二阶连续的导函数,证明( , )上一致收敛于 f(x).证:由题目设知 f(x)与 f (x)是以2 为周期的函数,且光滑,f (x) a 0(a n cosnx b n sin nx)故21f (x)a 0(a n cosnxb n sin nx)2n111a 0 1f (x)d x 1f( ) f ( ) 0 且1 a n f (x)cos nx d x当 n 1 时,lim f (x)sin nn 01xdx 0 2limn1f ( x)sin n xdx 02定理 2 设以 2 n为周期的函数 f (x) 在 [ ]上可积,则S n (x)a 0a k coskxb k sinkxsinf(x t)f (x)的傅里叶级数在1 nf ( x)sin nxdx nb nf ( x)cos nx|b n1nf ( x)sin nx d x1f (x)sin nx| f ( x)cos nxd x nana n 是a nnb n 122an2b n212(a nb n2)由贝塞尔不等式得a0 从而2a nn1(an1b n2)收敛,又12n 1 n收敛,bn收敛,(a n cosnx b n sin nx)n在(2 设f为,上可积函数,证明:若f的傅里叶级数在[, ]上一致收敛于则成立贝塞尔(Parseval) 等式1 f2 (x)d x2a02 2an2b n2 2 n1这里a n ,b n 为f的傅里叶系数.S m a0a n cosnx b n sinnx证:设 2 n 1,因为 f (x)的傅里叶级数在[ , ]上一致收敛于f(x),所以0, N 0 ,“m N, x [ , ]f(x) S m ”.)上一致收敛.1na0故22.而于是f(x) S m, f(x) S mf(x) S m,f (x) S m f (x), f ( x)f 2(x)dx 2 a02 m a n2 n12 f ( x), S m S m,S ma022n1a n2b n2nna n2b n2n12f 2(x)d x所以m N 时,2f2(x)d x 22 a n b n2n11 f 2(x)d x4 其中 an , bn 为 f的傅里叶系数,n , n为 g 的傅里叶系数.2a 022a n 2b n 2 故2 n 13 由于贝塞尔等式对于在, ]上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.2(1) 8n 1(2n11); (2)121n 2(3) 90f (x)解: (1) 取由贝塞尔等式得212即8 n 1 (2n 1)(2) 取 f(x) x, xf(x)2dx16f (x)x 2dx,由§1 习题 3 得sin(2 n 1)x , x ( 2n 1 ,0) U(0, )1 1 (2n 1)2,由§1 习题 1 (1) 得 2 ( 1)n 1 sinnx, x n 1 n( 1)n 12由贝塞尔等式得212故6 n 1nn1(3) 取f (x) 2x,], 2由§1 习题 1 (2) 得x 21)ncosx 2 , x n,)x 4dx由贝塞尔等式得 4( 1)n 4n190收敛于 证明: f和 g,则若 f,g 均为 []上可积函数,且他们的傅里叶级数在[ , ]上分别一致f(x)g(x)d x a020(a n n b n n )n1f (x)f (x)g(x)df(x),g(x)当 n 1 时,a 0证: 由题设知(a n cosnx b n sin nx)1g(x) ( n cosnx n1 nsin nx)f (x), 所以f(x), 20 f (x), 20(n1ncosnx n sin nx)f (x), n cosnx f (x), n sin nx1n 2f (x),a n cosnx na 0 0f (x), 而cosnx b n sin nx, 02b n sinnx ,ncosnxa n cosnx,ncosnxan n,n sinnxa 0a n cosnx 2 n 1 nb n cosnx, n cosnxf (x)g(x)d xa 0 02n(a n1b n sinnx ,n sinnxb nn,b nn)f (x) 2 dxf (x) 2dx .证: 因为 f(x)、f (x) 在,上可积,f(x)dx 0,f( ) f( )f (x) a 0(a n cosnx b n sin nx)设2 n 1a 0f (x)(a n cosnx b n sin nx)2n1由系数公式得a 01f (x)d x 1 f () f ( ) 05 证明若 f 及其导函数 f 均在[ , ]上可积 ,f(x)dx 0 f( ) f( ),且成立贝塞尔等式,则1f (x)cos nx d x1 nf ( x)sin nxdx nb nf ( x)cos nx |傅里叶级数,由系数公式得a 0T n (x),1A2n (A k coskx k1B k sin kx),1A 0当ka k1时, T n (x),coskxn(A k coskx B k sin kx),cos kx k1A kn,b kT n (x),sin kxA20n(A k coskx B k sin kx),sin kx k1B k 0n,故在 () ,T n (x) A 20k(A k coskx B k sinkx) 1的傅里叶级数就是其本身.a 0,a k ,b k (k 1,2,L ,n)为f的傅里叶系数,试证明,当A 0 a 0,A k a k ,B k b k (k 1,2,L ,n) 时,2 设 f为[ , ]上可积函数,b n1nf ( x)sin nx d x1f (x)sin nx |f ( x)cos nxd xna n于是由贝塞尔等式得2f (x) 2dx2 a n 2b n 2 n122n 2an 22an2b n 2n12f (x)2 dx总练习题 151 试求三角多项式A 0T n (x)2n(A k coskx B k sin kx) k1的傅里叶级数展开式.A 0T n (x) 20 解: 因为 2(A k coskx k1B k sin kx)是以 2为周期的光滑函数,所以可展为2f (x) T n(x) dx积分n取最小值,且最小值为2 a 2 nf (x) d x 0(a k2 b k2 )2 k 1上述T n (x)是第1题中的三角多项式, A0, A k ,B k为它的傅里叶系数.f(x) 证:设a02 a n cosnxn1b n sinnxT n(x) A02 (A k coskxk1B k sin kx)且A0a0, A k a k , B k b k (k 1,2,L ,n) ,因为2 f (x) T n(x) dx所以22f 2 (x)d x 2 f ( x)T n ( x)d x T n2(x)d xA anf (x)T n(x)d x A k a k B k b k2 k 1 ,T n2(x)d x A0nA k2B k2n2 k 1,2f (x) T n (x) d x而故当A0积分f 2 (x)d x 2 A0a0222nA k a kk1 B k b kA0n2 2A k2B k22 k12 2 nf(x) dx a0 (a k2b k2)2 k1(A0 a0)2n(A k2 k12 a2 nf (x) dx a0 (a k2b k2)2 k1a0, A k a k,B k b k(k 1,2,L ,n)时,2(x) Tn(x) dx取最小值,且最小值为a k )2 (B kb k)22f (x) d x2 a02k1(a k2b k2)3 设f为以2 周期,且具有二阶连续可微的函数,11b n f ( x)sin nxdx, b n f (x)sin nxdx1 1若级数 bn 绝对收敛,则1b n2 2b nn 1 2 n 1证:因为 f(x)为以 2 周期,且具有二阶连续可微的函数, 1b n f ( x)sin nxdx 所以1 b nsinnx d f (x)1f ( x)sin nx ( x)cos nxd xn cosnx d f (x)b nn1故结论成立.(x)a 0a n cosnxb n sinnx解:设2 n1(x) 0ncosnxnsinnx2n1(1) 则当(x)(x) 时,n,11a n(x)cosnxdx ( t)cos( nt)d( t) 试问 的傅里叶系数a n ,b n与 的傅里叶系数( t)cos nt dt(t)cos nt d tnf ( x)cos nxf (x)sin nxdxn 2b n所以 1 n 1, b n2 n bn绝对收敛,n1b nn1b n ,从而12n 收敛,1, b n2 b nnbn收敛,且b n 1b n4 设周期为 (1)( x)的可积函数 (x);(x)与 (2)(x)满足以下关系式( x) (x).n , n有什么关系?nb n(2)b nn11(x)sin nxdx( t)cosntdt( t)sin( nt)d( t)(t)cos ntdtn1x) (x) 时,(x)cosnxdx( t)cosntdt(x)sin nxdx( t)cos nt dt0,设定义在[a,b]上的连续函数列( t)cos( nt)d( t)(t)cos ntdt( t)sin( nt)d( t)(t)cos nt d tn (x)满足关系bn(x)m(x)d x 1nm对于在[a,b]上的可积函数f,定义a n ba f(x) n(x)d x, n a 1,2,L ,2 a n2 证明n 1 b2 a[ f(x)]2dx a证:2a n2收敛,且有不等式n 1在[a,b]上的所有可积函数构成的集合中定义内积为bf (x)g(x)d xa,f (x), g(x)则函数列n (x)为标准正交系.m a n n (x), m 1,2,Ln 1,则S m(x) 令b2a[ f(x) S m(x)]2dx 又 a mn, a n f (x), n(x) ,2f 2 (x)d x 22f(x)S n(x)d x S n2(x)d xf 2(x)d x 2 f ( x), S n (x) S n(x),S n(x)m m1 x sin nx |f (x), S n ( x) f (x), a n n (x) 而 n 1 a n f (x), n (x) n1 m 2 a n 2n1 S n (x),S n (x) S n (x), a k k (x)k1 m ma k a k k (x), k (x) k1 所以 k 1 , 2 m 2b f 2(x)d x a n 2 a [ f(x) a n1 m m 1, n1 2 S m ( x)]2 dx 0 b 2 a [ f(x)]2dx a 2 2 b a n a n a 1 收敛,且 n 1 a ,即 S m (x) 有上界. [ f (x)]2dx。
12-1函数的傅里叶级数展开解析[精编文档]
更一般地,若对充分小的u,成立
|f (x u)-f (x 0)|<Lu (0<u h)(L,为常数, 1)
则f (x)的傅里叶级数在x点收敛于 f ( x+0)+f (x-0) . 2
一个重要推论
设 f (x)在 x 点有有限导数或有两个单侧的有限导
0( x
1)cos nxdx
0 4 n2
当n 2,4,6, 当n 1,3,5,
x
1
2
1
4
(cos
x
1 32
cos
3x
1 52
cos 5x
]
(0 x )
例5 应当如何把区间(0, )内的可积函数
2 延拓后,使它展开成的傅里叶级数的形如
f ( x) an cos(n 1)x ( x ) n1
3、以T为周期的函数傅里叶级数
设f(x) 周期为T,在(-T/2,T/2)可积和绝对可积,
令x T , 则( ) f ( T ) f ( x)为周期2的周期函数,
2
2
设f
(x)
~
a0 2
(an
n1
cos n x
bn
sin n x)
其中
2 an T
T/2
f ( x)cos n xdx,
2 sin
2
0
u
2 sin
u2
du =
1 n ( + cos ku)du
2 0 k =1
=1
2
1
sn(f(x)) - s=
sin 2n+1 u
(f (x u)+f ( x - u)-2s)
傅里叶级数课程及习题讲解共14页word资料
第15章 傅里叶级数 §15.1 傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系线性表出而得.不妨称2{1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1 三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin ,x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m au x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数称为三角级数,其中011,,,,,,n n a a b a b 为常数2 以2π为周期的傅里叶级数定义1 设函数()f x 在[],ππ-上可积, 称为函数()f x 的傅里叶系数,而三角级数 称为()f x 的傅里叶级数,记作这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1 若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则其中,n n a b 为()f x 的傅里叶系数.定义2 如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若 [,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条光滑曲线段组成,它至多有有限个第一类间断点与角点.推论 如果()f x 是以2π为周期的连续函数,且在[,]ππ-上按 段光滑,则x R ∀∈,有()01()c o s s i n 2n nn a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数 (1) (),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求. (ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时, 所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2) 2()(i) (ii) 02f x =x , -π<x <π,<x <π;解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)()2f x =x (0,2)x ∈当n ≥所以1n f =)为所求.(3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.由系数公式得 当1n ≥时,所以21()2()1()cos(21)4(21)n b a b a f x n xn ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有 从而2 1()cos d c n ca f x nx xππ+=⎰同理可得3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2) 111111357111317π=+--+-+;(3)11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时, 故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1) 取2x π=,则11114357π=-+-+; (2) 由11114357π=-+-+得于是111111341257111317πππ=+=+--+-+;(3) 取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,所以11111157111317=-+-+-+.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得 当1n ≥时,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得 当1n ≥时,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰, 又01,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时, 所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系. 就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,又,m n ∀,m n ≠时,所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是 [0, ]π上的正交系. 实因:1,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式(1)(),022xf x x ππ-=<<; 解:(),02x f x x ππ-=<<当n 所以1n n =,(0,2)x π∈为所求. (2) ()f x x ππ-≤≤;解:()f x x ππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为2()2xxf xxxππ-≤<=⎨⎪≤≤⎪⎩,所以由系数公式得当1n≥时,所以211()cos41nf x nxn∞==-,(,)xππ∈-.而xπ=±时,(0)(0)()2f ffπππ±-+±+±,故211()cos41nf x nxn∞==-,[,]xππ∈-为所求.(3) 2(), (i) 02, (ii)f x ax bx c x xπππ=++<<-<<;解:(i)由系数公式得当1n≥时,故224()3af x ax bx c b cππ=++=++21442cos sin,(0,2)na a bnx nx xn nππ∞=++-∈∑为所求.(ii)由系数公式得当1n≥时,故222()3af x ax bx c cπ=++=+2142(1)cos(1)sin,(,)n nna bnx nx xn nππ∞=+---∈-∑为所求.(4) ()ch,f x x xππ=-<<;解:由系数公式得当1n≥时,所以22sh(1)(1)nnanππ=-+.所以0nb=,故21211()ch sh(1)cos21nnf x x nxnππ∞=⎡⎤==+-⎢⎥+⎣⎦∑,(,)xππ∈-为所求.(5) ()sh,f x x xππ=-<<.解:由系数公式得当1n≥时,1sh cos d0na x nx xπππ-==⎰.所以122sh(1)(1)nnn xbnπ+=-+,故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑.解:由224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a b nx nx x n n ππ∞=++-∈∑得而2(00)(20)6f f ππ+=-=,故由收敛定理得9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得 当1n ≥时,1()cos d na f x nx xπππ-''=⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos nn n u x n a nx n b nx '≤+ 而22Mn∑收敛,所以()()cos sin nn n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积. 于是 ()01()c o s s i n2n n n a F t a nt b nt ∞=++∑, 其中 1()cos d ,n a F t nt t πππ-=⎰ 1()sin d n b F t nt tπππ-=⎰.令x t l π=得 从而 01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑.其中1()cos ,l n l n x a f x dx l l π-=⎰上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有 其只含余弦项,故称为余弦级数.同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是 1()cos d 0l n l n x a f x x l l π-==⎰, 从而01()sin2n n a n x f x a l π∞=+∑其只含正弦项,故称为由此可知,函数要展开为余弦级数必须作偶延拓.偶延拓() (0,)()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展开为正弦级数必须作奇延拓. 奇延拓二 习题解答1 求下列周期函数的傅里叶级数展开式 (1) ()cos f x x =(周期π);解:函数()cos f x x =,22x ππ⎡⎤∈-⎢⎥由于()f x )是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得2222故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2) ()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数.因12l =,所以由系数公式得 当1n ≥时,故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3) 4()sin f x x =(周期π);解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 当1n ≥时,故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.(4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得当1n ≥时,2sgn(cos )cos d n a x nx xππ=⎰故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞. 2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得故2221231122()cos cos333n n n x f x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求. 3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得 当1n ≥时,故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4 将函数()cos2xf x =在[0,]π上展开成正弦级数. 解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求. 5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得当1n ≥时,402()cos d 44n n xa f x x π=⎰所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n xn ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得当1n ≥时,1202(1)cos d n a x n x xπ=-⎰所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑. 7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2) ()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图.由于f 是偶函数,故其展开式为余弦级数.当n ≥所以2141()arcsin(cos )cos(21)(21)n f x x n xn π∞===--∑,x R ∈.8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑; (2) 211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:再把()f x 延拓到[0,2]π上,方法如下:其图象如下.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得 当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2) 先把()f x 延拓到[0,]π上,方法如下.再把()f x 延拓到[0,2]π上,方法如下.)x 是偶函数,故其展开式为余弦级数.由系数公式得 当1n ≥时,201()cos d 0n a f x nx x ππ==⎰所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. §15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则 其中,n n a b 为()f x 的傅里叶系数.推论1 设()f x 在[,]ππ-上可积,则推论2 设()f x 在[,]ππ-上可积,则定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则定理5 如果()f x 在[,]ππ-按段单调,则二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭由贝塞尔不等式得221()nn n a b ∞=''+∑收敛,又211n n ∞=∑收敛,从而()012n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,于是2(),()m m f x S f x S ε--<.而所以m N >时,故 ()2222011()d 2n n n a a b f x xπππ∞-=++=∑⎰.3 由于贝塞尔等式对于在[,]ππ-上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.(1) 22118(21)n n π∞==-∑;(2) 22116n n π∞==∑; (3) 44190n π=∑. 解:(1) 取04()04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩,由§1习题3得由贝塞尔等式得22111d 16(21)n x n ππππ∞-==-∑⎰, 即22118(21)n n π∞==-∑.(2) 取(),(,)f x x x ππ=∈-,由§1习题1 (1)得由贝塞尔等式得21211(1)2d n n x x n πππ+∞-=⎛⎫-= ⎪⎝⎭∑⎰,故22116n n π∞==∑.(3) 取2(),[,]f x x x ππ=∈-,由§1习题1 (2)得由贝塞尔等式得22242111(1)4d 23n n x x n ππππ∞-=⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭∑⎰,故44190n π=∑. 4 证明:若,f g 均为[,]ππ-上可积函数,且他们的傅里叶级数在[,]ππ-上分别一致收敛于f 和g ,则其中,n n a b 为f 的傅里叶系数,,n n αβ为g 的傅里叶系数.证:由题设知01()(cos sin )2n n n a f x a nx b nx ∞==++∑,于是 1()()d (),()f xg x x f x g x πππ-=⎰而001(),cos sin ,222n n n a f x a nx b nx αα∞==++∑ 所以 00 11()()d ()2n n n n n a f x g x x a b ππααβπ∞-==++∑⎰.5 证明若f 及其导函数f '均在[,]ππ-上可积,()d 0f x x ππ-=⎰, ()()f f ππ-=,且成立贝塞尔等式,则证:因为()f x 、()f x '在[],ππ-上可积,()d 0f x x ππ-=⎰,()()f f ππ-=,设01()(cos sin )2n n n a f x a nx b nx ∞==++∑,由系数公式得 当1n ≥时,1()cos d na f x nx xπππ-''=⎰于是由贝塞尔等式得 总练习题151 试求三角多项式的傅里叶级数展开式.解:因为01()(cos sin )2nn k k k A T x A kx B kx ==++∑是以2π为周期的光滑函数,所以可展为傅里叶级数,由系数公式得 当1k ≥时,故在(,)-∞+∞,01()(cos sin )2nn k k k A T x A kx B kx ==++∑的傅里叶级数就是其本身.2 设f 为[,]ππ-上可积函数,0,,(1,2,,)k k a a b k n =为f 的傅里叶系数,试证明,当00,,(1,2,,)k k k k A a A a B b k n ====时,积分[]2()()d n f x T x x ππ--⎰取最小值,且最小值为上述()n T x 是第1题中的三角多项式,0,,k k A A B 为它的傅里叶系数.证:设()01()cos sin 2n n n a f x a nx b nx ∞==++∑,且00,,(1,2,,)k k k k A a A a B b k n ====,因为[]2()()d n f x T x xππ--⎰而()001()()d 2nn k k k k k A a f x T x x A a B b ππππ-==++∑⎰,所以[]2()()d n f x T x x ππ--⎰故当00,,(1,2,,)k k k k A a A a B b k n ====时,积分[]2()()d n f x T x xππ--⎰取最小值,且最小值为3 设f 为以2π周期,且具有二阶连续可微的函数,若级数n b ''∑绝对收敛,则证:因为()f x 为以2π周期,且具有二阶连续可微的函数,所以1()sin d nb f x nx xπππ-''''=⎰即211,n nn b b n ''∀≥=⋅,从而2111,2n n b n ⎛⎫''∀≥+ ⎪⎝⎭又n b ''∑绝对收敛,21n ∑收敛,所以n ∞=故结论成立.4 设周期为2π的可积函数()x ϕ与()x ψ满足以下关系式(1) ()()x x ϕψ-=; (2) ()()x x ϕψ-=-. 试问ϕ的傅里叶系数,n n a b 与ψ的傅里叶系数,n n αβ有什么关系?解:设()01()cos sin 2n n n a x a nx b nx ϕ∞==++∑,(1) 则当()()x x ϕψ-=时, 0n ∀≥,(2) 当()()x x ϕψ-=-时,0n ∀≥,5 设定义在[,]a b 上的连续函数列{}()n x ϕ满足关系 对于在[,]a b 上的可积函数f ,定义 证明21nn a∞=∑收敛,且有不等式 22 1[()]d bn an a f x x∞=≤∑⎰.证:在[,]a b 上的所有可积函数构成的集合中定义内积为则函数列{}()n x ϕ为标准正交系.令1()(),1,2,mm n n n S x a x m ϕ===∑,则,(),()n n n a f x x ϕ∀=,又 2 [()()]d b m af x S x x-⎰而11(),()(),()(),()mmn n n n n n n f x S x f x a x a f x x ϕϕ====∑∑于是222 1()d [()()]d 0mbn m an f x x a f x S x x ππ-=-=-≥∑⎰⎰,所以22 11,[()]d mbn a n m a f x x=∀≥≤∑⎰,即{}()m S x 有上界.故21nn a∞=∑收敛,且22 1[()]d bn an a f x x∞=≤∑⎰.。
《傅里叶级数 》课件
信号处理:用于 分析信号的频率 成分,如音频、 视频信号等
工程领域:用于 分析机械振动、 电磁场等物理现 象
数学物理:用于 求解偏微分方程、 热传导等问题
计算机科学:用 于图像处理、数 据压缩等领域
03 傅里叶级数的基本原理
三角函数的定义与性质
三角函数:正弦、余弦、正切、余切、正割、余割 定义:以直角三角形的边长和角度为基础定义的函数 性质:周期性、奇偶性、对称性、单调性 应用:傅里叶级数、信号处理、工程计算等
傅里叶级数的历史背景
傅里叶级数是 由法国数学家 傅里叶在1807
年提出的
傅里叶级数是 傅里叶分析的 基础,是研究 信号处理、图 像处理等领域
的重要工具
傅里叶级数在 数学、物理、 工程等领域有 着广泛的应用
傅里叶级数在 信号处理、图 像处理等领域 的应用,推动 了这些领域的
发展
傅里叶级数的应用领域
06
傅里叶级数的扩展与展 望
傅里叶变换的推广与应用
傅里叶变换在信号 处理中的应用
傅里叶变换在图像 处理中的应用
傅里叶变换在语音 识别中的应用
傅里叶变换在金融 分析中的应用
傅里叶分析在其他数学领域的应用
信号处理:傅里叶变换在信号处理领域有着广泛的应用,如滤波、频谱分析等。 数值分析:傅里叶级数在数值分析中用于求解微分方程、积分等。 概率论与统计学:傅里叶变换在概率论与统计学中用于分析随机信号、随机过程等。 量子力学:傅里叶变换在量子力学中用于描述量子态的演化和测量。
傅里叶级数的收敛性:傅里叶级数在满足一定条件下是收敛的 收敛条件:傅里叶级数的收敛性取决于其系数的绝对值之和是否收敛 证明方法:可以通过积分法、极限法等方法进行证明 收敛速度:傅里叶级数的收敛速度可以通过其系数的绝对值之和的收敛速度来衡量
傅立叶(Fourier)级数的展开方法
在连续点上收敛于f (x) f ( x)
x
则
1
ak f ( x)cos kxdx 0
bk
1
f
( x)sinkxdx
4
k
0
(k 1,3,5...) (k 2,4,6..)
4 1
f (x)
k πξ
dξ
(k 1,2,L )
0
l
叫做傅里叶正弦级数,f(0)=f(l)=0
若f(x)是偶函数,则bk为0,展开式为
f ( x ) a 0
a k cos
kπx l
k1
ak
1 l
l
f (x )dx (k 1,2,L)
0
ak
2 l
l
f
(x ) cos kx
dx
(n 1,2,3,)
b f 1 l n l l
x s in nxdx
(n 1,2,3).
称为傅里叶系数
3、函数以傅立叶级数展开是在函数空间中以三角函数
为基进行分解
x
2x
kx
量 基 矢
1, cos , cos ,... cos ,...
l
l
l
x 2x
kx
f (x)
a
x
l
延拓到(- l,l)后再周期延拓,如图做偶延拓:
f (x)
a
l 0
l
x
所以
1l
x
a
a0
l
a(1
0
l
)dx
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期信号一般是功率信号,其平均功率为
T 10 Tf2(t)d t(A 2 0)2 n 11 2A n 2 n | F n|2
直流和n次谐波分量在1电阻上消耗的平均功率之和。
n≥0时, |Fn| = An/2。
证明
这是Parseval定理在傅里叶级数情况下的具体体现。
▲
■
第8 页
§2.2 傅里叶级数
• 傅里叶级数的三角形式 • 波形的对称性与谐波特性 • 傅里叶级数的指数形式 • 周期信号的功率——Parseval等式
■
第1 页
一、傅里叶级数的三角形式
1.三角函数集
{1,cos(nΩt),sin(nΩt),n=1,2,…}
在一个周期内是一个完备的正交函数集。
由积分可知
T
2Tconstsinmtdt0
推导
▲
■
第6 页
傅里叶系数之间关系
F nF nen1 2A nejn1 2(a njb n)
Fn
1 2
an2bn2 1 2An
anAncosn
n arctanabnn
bnAnsinn
n的偶函数:an , An , |Fn |
n的奇函数: bn ,n
▲
■
第7 页
四、周期信号的功率——Parseval等式
第5 页
三、傅里叶级数的指数形式
三角形式的傅里叶级数,含义比较明确,但运算常感 不便,因而经常采用指数形式的傅里叶级数。
虚指数函数集{ejnΩt,n=0,±1,±2,…}
f (t) Fn ejnt
n
系数Fn
称为复傅里叶系数
1
Fn
T
T 2 T
f (t)ejnt
dt
2
利用 cosx=(ejx + e–jx)/2可从三角形式推出:
f(t)a 2 0n 1anco n s t) (n 1b nsin n t)(
系数an , bn称为傅里叶系数
an
2 T
T
2 T
2
f(t)cons (t)dt
bn
2 T
T
2 T
2
f(t)sinn (t)dt
可见, an 是n的偶函数, bn是n的奇函数。
▲
■
第3 页
▲
■
第4 页
2
T
2Tcon stc 2
om s td t T 2,
0,
mn mn
T 2T 2sin tsin m td t T 2 0,,
mn mn
▲
■
第2 页
2.级数形式
设周期信号f(t),其周期为T,角频率=2/T,当满足 狄里赫利(Dirichlet)条件时,它可分解为如下三角级 数—— 称为f(t)的傅里叶级数
二、波形的对称性与谐波特性
an
2 T
T
2 T
2
f(t)cons (t)dt
bn
2 T
T
2 T
2
f(t)sinn (t)dt
1 .f(t)为偶函数——对称纵坐标
f (t) f (t)
bn =0,展开为余弦级数。
2 .f(t)为奇函数——对称于原点
f(t)f(t)
an =0,展开为正弦级数。
例
▲
■