数学中考二轮专题统计与概率试题
备考2023年中考数学二轮复习-统计与概率_数据收集与处理_条形统计图-综合题专训及答案
备考2023年中考数学二轮复习-统计与概率_数据收集与处理_条形统计图-综合题专训及答案条形统计图综合题专训1、(2020开封.中考模拟) 某汽车交易市场为了解二手轿车的交易情况,将本市场去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A、B、C、D、E五类,并根据这些数据由甲,乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手轿车辆.(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为度.2、(2011盐城.中考真卷) 为迎接建党90周年,某校组织了以“党在我心中”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共900份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?3、(2017南关.中考模拟) 网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,为了解市民对售后评价的关注情况,随机采访部分市民,对采访情况制作了如下统计图表:关注情况频数频率A.高度关注50 bB.一般关注120 0.6C.不关注 a 0.1D.不知道10 0.05(1)根据上述统计图可得此次采访的人数为人,a=,b=;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在6400名市民中,高度关注售后评价的市民约有多少人?4、(2019潮南.中考模拟) 某校积极开展“阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?.5、(2017永康.中考模拟) 学校计划在七年级学生中开设4个信息技术应用兴趣班,分别为“无人机”班,“3D打印”班,“网页设计”班,“电脑绘画”班,规定每人最多参加一个班,自愿报名.根据报名情况绘制了下面统计图表,请回答下列问题:七年级兴趣班报名情况统计表.兴趣班名称频率“无人机” a“3D打印”0.05“网页设计”0.25“电脑绘画”0.40a=;(2)将统计图补充完整;(3)为了均衡班级人数,在“电脑绘画”班中至少动员几人到“3D打印”班,才能使“电脑绘画”班人数不超过“3D打印”班人数的2倍?6、(2014金华.中考真卷) 九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数=7,方差=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?7、(2015南昌.中考真卷) 某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为(2)把条形统计图补充完整.(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?8、(2017青岛.中考真卷) 某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是度;(2)补全条形统计图;(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.9、(2017天门.中考模拟) 某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?10、(2016黄石.中考模拟) 某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?通过计算补全条形统计图;(2)在扇形统计图中,“公交车”部分所对应的圆心角是多少度?(3)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?11、(2017白银.中考模拟) 某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球 B.乒乓球C.羽毛球 D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人,在扇形统计图中“D”对应的圆心角的度数为;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).12、(2018遵义.中考模拟) 课外阅读是提高学生素养的重要途径.某校为了解本校学生课外阅读情况,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请根据图中提供的信息,解答下面的问题:(1)本次抽样调查的样本容量是;(2)在条形统计图补中,计算出日人均阅读时间在0.5~1小时的人数是,并将条形统计图补充完整;(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数度;(4)根据本次抽样调查,试估计该市15000名八年级学生中日人均阅读时间在0.5~1.5小时的人数.13、(2021黄石.中考模拟) 在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:;B档:;C档:;D档:.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.14、(2020张家界.中考真卷) 为保障学生的身心健康和生命安全,政府和教育职能部门开展“安全知识进校园”宣传活动.为了调查学生对安全知识的掌握情况,从某中学随机抽取40名学生进行了相关知识测试,将成绩(成绩取整数)分为“A:69分及以下,B:70~79分,C:80~89分,D:90~100分”四个等级进行统计,得到右边未画完整的统计图:D组成绩的具体情况是:分数(分) 93 95 97 98 99人数(人) 2 3 5 2 1根据以上图表提供的信息,解答下列问题:(1)请补全条形统计图;(2)D组成绩的中位数是________分;(3)假设该校有1200名学生都参加此次测试,若成绩80分以上(含80分)为优秀,则该校成绩优秀的学生人数约有多少人?15、从2021年秋季开学以来,全国各地中小学都开始实行了“双减政策”.为了解家长们对“双减政策”的了解情况,从某校1200名家长中随机抽取部分家长进行问卷调查,调直评价结果分为“了解较少”“基本了解”“了解较多”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.(1)本次抽取家长共有人,扇形图中“基本了解”所占扇形的圆心角是;(2)估计此校“非常了解”和“了解较多”的家长共有多少人?(3)学校计划从“了解较少”的家长中抽取1位初一学生家长,1位初二学生家长,2位初三学生家长参加培训,若从这4位家长中随机选取两人作为代表,请通过列表或面树状图的方法求所选出的两位家长既有初一家长,又有初二家长的概率.条形统计图综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
备考2023年中考数学二轮复习-统计与概率_概率_概率的简单应用-综合题专训及答案
备考2023年中考数学二轮复习-统计与概率_概率_概率的简单应用-综合题专训及答案概率的简单应用综合题专训1、(2019石家庄.中考模拟) 如图,把一个转盘分成四等份,依次标上数字:1,2,3,4,若连续自由转动转盘二次。
指针指向的数字分别记作a,b,把a,b作为点A的横、纵坐标。
(1)用列表法或树状图表示出A(a,b)所有可能出现的结果;(2)求点(a,b)在函数y=x的图象上的概率。
2、(2019秀洲.中考模拟) 一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有2个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,不放回,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)3、(2019.中考模拟) 某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).画树状图得:4、(2019天河.中考模拟) 已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.(1)求从袋中随机摸出一个球是红球的概率.(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.5、(2018广元.中考模拟) 现有一项资助贫困生的公益活动由你来主持,每位参与者需交赞助费5元,活动规则如下:如图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各自指向一个数字,(若指针在分格线上,则重转一次,直到指针指向某一数字为止),若指针最后所指的数字之和为12,则获得一等奖,奖金20元;数字之和为9,则获得二等奖,奖金10元;数字之和为7,则获得三等奖,奖金为5元;其余均不得奖;此次活动所集到的赞助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活;(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此次活动有2000人参加,活动结束后至少有多少赞助费用于资助贫困生?6、(2018遵义.中考模拟) 在“首届中国西部(银川)房·车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.7、(2020晋中.中考模拟) 现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)8、(2020韩城.中考模拟) 为庆祝2020年中国航天日,发扬中国航天精神,激发青少年崇尚科学探索未知和敢于创新的热情,某校举行班级歌咏比赛,歌曲有:《祖国不会忘记》,《飞天》,《仰望星空》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,九(1)班班长先从中随机抽取一张卡片放回后洗匀,再由九(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)九(1)班抽中歌曲《祖国不会忘记》的概率是________;(2)试用画树状图或列表的方法表示所有可能的结果,并求出九(1)班和九(2)班抽中不同歌曲的概率.9、(2020海陵.中考模拟) 有4张相同的卡片,上面分别写有数字1、2、3、5,将卡片洗匀后背面朝上.(1)从中任意抽取1张,抽得的卡片上数字为奇数的概率是________;(2)从中任意抽取1张,把上面的数字作为十位数,记录后不放回,再任意抽取1张把上面的数字作为个位数,求组成的两位数是3的倍数的概率.(用树状图或列表的方法)10、(2020张家港.中考模拟) 有四张正面分别标有数字0,1,2,3的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽出一张卡片,则抽到数字“2”的概率为________;(2)随机抽出一张卡片,记下数字后放回并搅匀,再随机抽出一张卡片,请用列表或画树状图的方法,求两次抽出的卡片上的数字之和是3的概率.11、(2020丹东.中考真卷) 在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是________;(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.12、(2020镇江.中考真卷) 智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“ ”有刚毅的含义,符号“ ”有愉快的含义.符号中的“ ”表示“阴”,“ ”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.(1)所有这些三行符号共有________种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.13、(2020柳州.中考真卷) 共享经济已经进入人们的生活.小沈收集了自已感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是________;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)14、(2021镇江.中考模拟) 某超市在“双十二”期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向B区域时,所购买物品享受8折优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受6折优惠,其他情况无优惠。
最新中考二轮专题统计与概率试题.doc
统计与概率专题测练一、选择题:1.把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是 ( ) A .21 B .51 C .361 D .3611 2.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A .32 B .21 C .41 D .313.已知一组数据2,2,3,x ,5,5,6的众数是2,则x 是( )A .5B .4C .3D .24.如图,两个用来摇奖的转盘,其中说法正确的是( ) A 、转盘(1)中蓝色区域的面积比转盘(2)中的蓝色区域面积要大,所以摇转盘(1)比摇转盘(2)时,蓝色区域得奖的可能性大 B 、两个转盘中指针指向蓝色区域的机会一样大C 、转盘(1)中,指针指向红色区域的概率是31 D 、在转盘(2)中只有红、黄、蓝三种颜色,指针指向每种颜色的概率都是31 5.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( ) A .21 B .31 C .41 D .51 6.沃尔玛商场为了了解本商场的服务质量,随机调查了本商场 的100名顾客,调查的结果如图,根据图中给出的信息,这 100名顾客中对该商场的服务质量表示不满意的有( ) A .6人 B .11人 C .39人 D .44人 二、填空题7.在体育测试中,2分钟跳160次为达标,小敏记录了她预测时2分钟跳的次数分别为145,155,140,162,164,则她在该次预测中达标的概率是________。
8.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________个。
9.某校九年级(2)班(1)组女生的体重(单位:kg )为:38,40,35,36,65,42,42,则这组数据的中位数是________.10.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是31,则摸出一个黄球的概率是________。
【人教通用版】2019年 九年级数学中考二轮 统计与概率 专题复习30题(含答案)
2019年九年级数学中考二轮统计与概率专题复习1.我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?2.九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”知识竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:请解答下列问题:(1)完成频数分布表,a=___________,b=___________;(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩在90≤x<100范围内的学生有多少人?3.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书.学校组织学生会随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类.根据调查结果绘制了统计图(未完成).请根据图中信息,解答下列问题:(1)此次共调查了____________名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为____________度;(4)若该学校共有学生2 500人,估计该校喜欢“社科类”书籍的学生人数.4.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有____________人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是____________度;(4)已知该校共有学生3 600人,请根据调查结果估计该校喜欢健美操的学生人数.5.某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2 300名,请估计该校“不重视阅读数学教科书”的初中生人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?6.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a=____________,b=____________;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2 000名学生中评为“阅读之星”的有多少人?7.联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了下面的两个统计图.其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类B:能将垃圾放到规定的地方,但不会考虑垃圾的分类C:偶尔会将垃圾放到规定的地方D:随手乱扔垃圾根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全条形统计图;(2)如果该校共有师生2 400人,那么随手乱扔垃圾的约有多少人?8.为了解某县初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有名;(2)表中x,y和m所表示的数分别为:x= ,y= ,m= ;(3)请补全条形统计图;(4)根据抽样调查结果,请你估计该县5400名初中毕业生实验考查成绩为D类的学生人数.9.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有__________人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是__________度.(4)已知该校共有学生3 600人,请根据调查结果估计该校喜欢健美操的学生人数.10. “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对某小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7 名,8 名,10 名,12 名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有_______个班级;各班留守儿童人数的中位数是_______;并补全条形统计图;(2)若该镇所有小学共有65 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.11.为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如下表:然后做上记号再放回鱼塘中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点);(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).12.某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表:(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,则谁将被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3∶5∶2的权确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.13.为了倡导“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数、众数和中位数;(3)根据样本数据,估计市直机关500户家庭中月平均用水量不超过12吨的约有多少户?14.九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是____________;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.15.我市民营经济持续发展,城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工月平均收入随机抽样调查,将抽样的数据按“2 000元以内”、“2 000元~4 000元”、“4 000元~6 000元”和“6 000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有____________人,在扇形统计图中x的值为____________,表示“月平均收入在2 000元以内”的部分所对应扇形的圆心角的度数是____________;(2)将不完整的条形统计图补充完整,并估计我市城镇民营企业20万员工中,每月的收入在“2 000元~4 000元”的约多少人?(3)统计局根据抽样数据计算得到,2013年我市城镇民营企业员工月平均收入为4 872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?16.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?17.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是,并补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中C等级所对应的圆心角为°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.18.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试(1)在表中,a= ,b= ,c= ;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?19.参与我市教育资源倍增工程的学校有A、B两个校区,为了加强融合,两个校区的学生特举办了以“弘扬校园真善美,文名礼仪在我心”为主题的演讲比赛.两校区参赛人数相等,比赛结束后,按分数进行分类统计,共有7分、8分、9分、10分(满分10分)四个等级.依据统计数据绘制了如下尚不完整的统计图表.(1)根据图表信息可知两个校区参加的人数为人,并将图2的统计图补充完整;(2)经计算,B校区的平均分是8.3分,中位数是8分,请计算A校区的平均分、中位数,并从平均数和中位数的角度分析哪个校区成绩较好;(3)如果该学校要组织8人的代表队参加学区内的演讲团体赛,决定从这两个校区中的一所挑选参赛选手,请你分析,应选哪个小区?20.某商场在今年“十·一”国庆节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客李老师参加此次摸奖活动时中奖的概率.21.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.22.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.23.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.24.把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.25.为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.26. “学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树状图)表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.27.在一个不透明的盒子里,装有三个分别写有数字6, 2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.28.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.29.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?参考答案1.解:(1)这次抽取的样本容量为24÷20%=120;(2)C等级人数为120×30%=36(份),D等级人数为120﹣(24+48+36)=12(份),补全条形图如下:(3)750×=450(份),答:估计参赛作品达到B级以上(即A级和B级)有450份.2.(1)4,4;(2)略.(3)50(人).答:估计该校成绩在90≤x<100范围内的学生约有50人.3.解:(1)200;(2)图略.(3)126;(4)2 500×=300(人).答:估计该校喜欢“社科类”书籍的学生人数约为300人.4.(1)500;(2)A的人数:500-75-140-245=40(人),统计图2补充略.(3)54;(4)245÷500×100%=49%,3 600×49%=1 764(人).答:估计该校喜欢健美操的学生有1 764人.5.解:(1)由统计表可知,样本容量为57÷0.38=150,∴a=150×0.3=45,c=1-0.3-0.38-0.06=0.26,b=150×0.26=39.补全统计图略.(2)2 300×0.26=598(人).答:估计该校“不重视阅读数学教科书”的初中生人数约为598人.(3)①从该校初中生重视阅读数学教科书的人数比例来看,该校初中生对阅读数学教科书的重视程度不够,建议数学教师在课内外加强引导学生阅读数学教科书,逐步提高学生数学阅读能力,重视数学教材在数学学习过程中的作用.②考虑到样本具有的随机性、代表性和广泛性,要了解全省初中生阅读数学教科书的情况,抽样时要选择城市、乡镇不同层次的学校.6.解:(1)25,0.10;(2)阅读时间为6<t≤8的学生有25人,补全频数分布直方图略.(3)2 000×0.10=200(人).答:估计该校2 000名学生中评为“阅读之星”的有200人.7.解:(1)由统计图可知B种情况的有150人,占总人数的50%,所以调查的总人数为150÷50%=300(人).D种情况的人数为300-(150+30+90)=30(人),补全统计图略.(2)随手乱扔垃圾的人约为240(人).8.解:(1)60÷30%=200名;(2)x=200×50%=100,y=200×15%=30,m=1﹣95%=5%; (3)(4)5400×5%=270名.答:估计2011年该县5400名初中毕业生实验考查成绩为D 类的学生人数为270名 9.解:(1)500(2)A 的人数:500-75-140-245=40,图略; (3)54(4)245÷500×100%=49%,3600×49%=1764(人). 答:估计该校喜欢健美操的学生有1764人. 10. (1) 16;9名;5个.(2) 解:1(617285106122)6516⨯⨯+⨯+⨯+⨯+⨯⨯585=. 答:该镇小学生中,共有585名留守儿童. 11.解:(1)补图略.(2)其质量落在0.5~0.8 kg 这一组的可能性最大. (3)质量落在0.8~1.1 kg 这一组内.(4)平均数x=0.904(kg ),50÷1002×0.904=2 260(kg ). ∴水库中成品鱼的总质量约为2 260 kg.(答案不唯一,合理即可) 12.解:(1)∵x 甲=84(分),x 乙=85(分),∴x 甲<x 乙.∴乙将被录用.(2)∵x 甲′=85.5(分),x 乙′=84.8(分),∴x 乙′<x 甲′.∴甲将被录用. (3)甲一定被录用,而乙不一定能被录用.理由如下:由直方图可知成绩最高一组分数段85≤x<90中有7人,公司招聘8人, 又因为x 甲′=85.5分,显然甲在该组,所以甲一定能被录用; 在80≤x<85这一组内有10人,仅有1人能被录用,而x 乙′=84.8分,在这一组内不一定是最高分,所以乙不一定能被录用. 由直方图知,应聘人数共有50人,录用人数为8人, 所以本次招聘人才的录用率为:16%.13.解:(1)月平均用水11吨的用户为:100-20-10-20-10=40(户).补图略.(2)平均数为11.6吨,众数为11吨,中位数为11吨. (3)样本中不超过12吨的有20+40+10=70(户),∴黄冈市直机关500户家庭中月平均用水量不超过12吨的约有:350(户). 14.解:(1)C 组;(2)图略.(3)小明的判断符合实际.理由:这次活动中做家务的时间的中位数所在的范围是1.5≤x<2,小明这一周做家务2小时,所在的范围是2≤x<2.5,所以小明的判断符合实际.15.解:(1)500 14 21.6°;(2)图略.估计我市城镇民营企业20万员工中,每月的收入在“2 000元~4 000元”的约:20×60%=12(万人).(3)用平均数反映月收入情况不合理.理由如下:从统计的数据来看,月收入在2 000元~4 000元的员工占60%,而在4 000元~6 000元的员工仅占20%,6 000元以上的员工占14%,因此,少数员工的月收入将平均数抬高到了4 872元.因此,用平均数反映月收入情况不太合理. 16.解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.17.解:(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,故答案为:50;补全条形图如图所示:(2)D等级学生人数占被调查人数的百分比=×100%=8%;在扇形统计图中C等级所对应的圆心角=8%×360°=28.8°,故答案为:8%,28.8;(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.18.解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400,即“优秀”等次的学生约有400人.19.解:(1)20;补充统计图如图所示;(2)A 校区的平均分为8.第10名与第11名都得7分,所以中位数为7分;由于两校区平均分相等,B 校区成绩的中位数大于A 校区的中位数, 所以B 校区的成绩较好.(3)因为选8名学生参加学区内的演讲团体赛, 20.解:P (两次摸出的小球的标号之和为“8”或“6”)=41. 21.解:这个游戏不公平,游戏所有可能出现的结果如下表:表中共有16种等可能结果,小于45的两位数共有6种.∴63168P ==(甲获胜),105168P ==(乙获胜).∵8583≠,∴这个游戏不公平. 22.解:树状图为:由上述树状图或表格知:所有可能出现的结果共有16种.∴P (小明赢)=63168=,P (小亮赢)=105168=.∴此游戏对双方不公平,小亮赢的可能性大. 23.解:(1)表中a 的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44;答:本次测试的优秀率是0.44;(4)用A 表示小宇B 表示小强,C 、D 表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有2种,则小宇与小强两名男同学分在同一组的概率是=.24.解:游戏规则不公平.理由如下:列表,由表可知,所有可能出现的结果共有9种,故3193)(==牌面数字相同P , 3296)(==牌面数字不同P .∵31<32,∴此游戏规则不公平,小李赢的可能性大.25.解:(1)本次抽样测试的学生人数是:=40(人),故答案为:40;(2)根据题意得:360°×=54°,答:图1中∠α的度数是54°;C 级的人数是:40﹣6﹣12﹣8=14(人),如图:故答案为:54°;(3)根据题意得:3500×=700(人),答:不及格的人数为700人.故答案为:700;(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P (选中小明)==.26.解:(1)画树状图分析如下:(2)九年级学生代表到社区进行义务文艺演出的概率为2163P ==. 27.解:(1)P (两数相同)=13.(2)P (两数和大于10)=49. 28.解:(1)10,50;(2)解:树状图如下:从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果, 因此P (不低于30元)=82123=. 29.答案为:三;104人;0.20 30 10 20 30 10 02030 10 30 40 010 30 20 20 30 50 2030 050 30 40 第一次第二次 和 树形图6 76 -276 7 7 6 -2 -2 -2。
2020年中考数学二轮专题复习专题:统计与概率(含答案)
2020年中考数学二轮专题:统计与概率一、选择题(每小题5分,共40分)1.下列说法错误的是()A.在一定的条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为()A.12B.310C.15D.7103.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12004.一组数据:1,2,1,4的方差为()A.1B.1.5C.2D.2.55.现有一组数据:1,4,3,2,4,x,若该组数据的中位数是3,则x的值为()A.1B.2C.3D.46.某企业1~6月份利润的变化情况如图1所示,以下说法与图中反映的信息相符的是()图1A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出的手指数之和为偶数时小李获胜,那么小李获胜的概率为()图2A.1325B.1225C.425D.128.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图3所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为()图3A.π-22B.π-24C.π-28D.π-216二、填空题(每小题5分,共30分)9.某中学为积极响应“全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是小时.时间(小时)0.511.522.5人数(人)1222105310.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球,已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为.11.已知一包糖果共有5种颜色(糖果只有颜色差别),如图4是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.图412.在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1,3,4,2,2,那么这组数据的众数是分.13.从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.下表是甲、乙两名同学近五次数学测试(满分为100分)成绩的统计表:第一次第二次第三次第四次第五次甲9088929491乙9091939492根据上表数据,成绩较好且比较稳定的同学是.三、解答题(共30分)15.(8分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品;若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)16.(10分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.图517.(12分)某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.请结合图中相关信息解答下列问题:(1)扇形统计图中,三等奖所在扇形的圆心角的度数是度;(2)请将条形统计图补全;(3)获得一等奖的同学中有14来自七年级,有14来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学,又有九年级同学的概率.图6参考答案1.C2.A3.C4.B [解析]这组数据的平均数为x =2,根据方差的计算公式得:s 2=[(1-2)2+(2-2)2+(1-2)2+(4-2)2]×14=1.5,故选B .5.C [解析]除x 外,把这组数据由小到大排列为:1,2,3,4,4,因为数据1,4,3,2,4,x 的中位数是3,所以12(3+x )=3,因此x=3,故选C .6.D [解析]A .1~6月份利润的众数是120万元,故A 错误; B .1~6月份利润的中位数是125万元,故B 错误; C .1~6月份利润的平均数约是128万元,故C 错误; D .1~6月份利润的极差是40万元,故D 正确.故选D .7.A [解析]画树状图如下:共有25种等可能的结果,两人出的手指数之和为偶数的结果有13种, ∴小李获胜的概率为1325,故选A .8.A [解析]因为正方形ABCD 的面积为4,阴影部分的面积为四个半圆的面积与正方形ABCD 的面积之差,即4×12π×222-4=2π-4,所以米粒落在阴影部分的概率为2π-44=π-22. 9.1 [解析]本题考查了中位数的定义,∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.10.22 [解析]设袋中黑球的个数为x ,则摸出红球的概率为523+5+x =110,所以x=22. 11.12 [解析]棕色糖果所占的百分比为1-20%-15%-30%-15%=1-80%=20%, 所以P (糖果的颜色为绿色或棕色)=30%+20%=50%=12. 故答案为12.12.90 [解析]∵这组数据中出现次数最多的数是90,∴这组数据的众数是90分.13.13 [解析]本题考查了概率的计算.从2,3,4,6中任选两个数记作a 和b (a<b )共有6种可能:(2,3),(2,4),(2,6),(3,4),(3,6),(4,6), 点(a ,b )在直线y=2x 上的情况有2种:(2,4),(3,6), 因此概率为26=13.14.乙 [解析]x ̅甲=15×(90+88+92+94+91)=91,x ̅乙=15×(90+91+93+94+92)=92,s 甲2=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s 乙2=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定. 15.解:(1)12(2)根据题意,画出树状图如下:∴共有12种等可能的结果,两次均摸出红球的结果有2种, ∴获得2份奖品的概率P=16.16.解:(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90. (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售量不低于278(平均数)的有2人,月销售量不低于180(中位数)的有8人,月销售量不低于90(众数)的有15人,所以,如果想让一半左右的营业员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 17.解:(1)16÷40%=40, 360°×1240=108°. 故填108. (2)如图所示,(3)七年级一等奖人数:4×14=1,九年级一等奖人数:4×14=1, 八年级一等奖人数为2, 画树状图如下:或列表如下:七 八1 八2 九 七 八1,七 八2,七 九,七 八1 七,八1 八2,八1九,八1 八2 七,八2 八1,八2 九,八2 九七,九八1,九八2,九由上可知共有12种等可能的结果,其中选出的两名同学既有八年级同学又有九年级同学的结果共有4种, ∴P (既有八年级同学又有九年级同学)=412=13.。
备考2024年中考数学二轮复习-统计与概率_概率_简单事件概率的计算-单选题专训及答案
备考2024年中考数学二轮复习-统计与概率_概率_简单事件概率的计算-单选题专训及答案简单事件概率的计算单选题专训1、(2022朝阳.中考模拟) 不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A .B .C .D .2、(2018本溪.中考真卷) 小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A .B .C . 1D .3、(2018泰州.中考模拟) 不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别.某同学从布袋里任意摸出一个球,则他摸出红球的概率是( )A .B .C .D .4、(2020江阴.中考模拟) 下列说法中,正确的是()A . 为检测我市正在销售的酸奶质量,应该采用普查的方式B . 若两名同学连续五次数学测试的平均分相同,则方差较大的同学数学成绩更稳定 C . 抛掷一个正方体骰子,朝上的面的点数为奇数的概率是 D . “打开电视,正在播放广告”是必然事件5、(2019宁波.中考模拟) 如图,在4×4的正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( )A .B .C .D .6、(2019海.中考模拟) 在一个不透明的口袋里有3个红球,2个黄球,4个蓝球,这些球除颜色外全部相同,搅匀后随机从中摸出一个球,不是红球的概率是()A .B .C .D .7、(2019乐清.中考模拟) 一个不透明的盒子里有3个红球、5个白球,它们除颜色外其他都一样。
现从盒子中随机取出一个球,则取出的球是白球的概率是( )A .B .C .D .8、(2018拱墅.中考模拟) 四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )A .B .C .D .9、(2019海南.中考模拟) 从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A .B .C .D .10、(2019博罗.中考模拟) 一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A .B .C .D .11、(2020宜城.中考模拟) 不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A .B .C .D .12、(2018深圳.中考模拟) 抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .B .C .D .13、(2019桂林.中考模拟) 同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A .B .C .D .14、(2018贵港.中考真卷) 笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A .B .C .D .15、(2019毕节.中考真卷) 在平行四边形ABCD中,AC,BD是两条对角线,现从以下四个关系:①AB=BC,②AC=BD,③AC⊥BD,④AB⊥BC中任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为( )A .B .C .D . 116、(2018官渡.中考模拟) 下列说法不正确的是()A . 某种彩票中奖的概率是,买1000张该种彩票一定会中奖B . 了解一批电视机的使用寿命适合用抽样调查C . 若甲组数据方差 =0.39,乙组数据方差 =0.27,则乙组数据比甲组数据稳定 D . 在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件17、(2018青海.中考真卷) 用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A .B .C .D .18、(2019路南.中考模拟) 下列说法正确的是()A . 调查某班学生的身高情况,适宜采用抽样调查B . “若m、n互为相反数,则mn=0”,这一事件是必然事件C . 小南抛挪两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1D . “1,3,2,1的中位数一定是2”,这一件是不可能事件19、(2020绍兴.中考模拟) 小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A .B .C .D .20、(2020平阳.中考模拟) 九年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率()A .B .C .D .21、(2020武汉.中考模拟) 若一个口袋中装有2个红球和一个黑球,对于“从中摸出一个球是红球”这个事件,下列说法正确的是()A . 发生的可能性为B . 是不可能事件C . 随机事件D . 必然事件22、(2020北京.中考模拟) 2019年10月20日,第六届世界互联网大会在浙江乌镇举行,会议发布了15项“世界互联网领先科技成果”,其中有5项成果属于芯片领域.小飞同学要从这15项“世界互联网领先科技成果”中任选1项进行了解,则他恰好选中芯片领域成果的概率为()A .B .C .D .23、(2020龙湾.中考模拟) 一个不透明的袋中装有3个黄球、4个白球和2个黑球,它们除颜色外都相同.从袋中任意摸出一个球,是黄球的概率是()A .B .C .D .24、(2021瓯海.中考模拟) 在同一副扑克牌中抽取5张“方块”,3张“梅花”,2张“黑桃”.将这10张牌背面朝上,从中任意抽取1张,是“黑桃”的概率为()A .B .C .D .25、(2021攸.中考模拟) 在九张质地都相同的卡片上分别写有数字1,2,3,4,5,6,7,8,9,在看不到数字的情况下,从中随机抽取一张卡片,则这张卡片上的数字是3的倍数的概率是()A .B .C .D .26、(2021广西壮族自治区.中考真卷) 如图,小明从入口进入博物馆参观,参观后可从,,三个出口走出,他恰好从出口走出的概率是()A .B .C .D .27、在六张卡片上分别写有6,,3.1415,,0,六个数,从中随机抽取一张,卡片上的数为无理数的概率是()A .B .C .D .28、一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同从中任意摸出一个球是红球的概率是()A .B .C .D .29、在一个不透明的布袋里装有3个白球,2个黑球,它们除颜色外其余都相同.现随机从布袋中摸出1个球,是白球的概率为()A .B .C .D .30、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为().A .B .C .D .简单事件概率的计算单选题答案1.答案:D2.答案:A3.答案:B4.答案:C5.答案:D6.答案:D7.答案:C8.答案:B9.答案:C10.答案:A11.答案:B12.答案:A13.答案:A14.答案:C15.答案:B16.答案:A17.答案:D18.答案:D19.答案:A20.答案:21.答案:22.答案:23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。
备考2023年中考数学二轮复习-统计与概率_数据收集与处理_频数(率)分布表-综合题专训及答案
备考2023年中考数学二轮复习-统计与概率_数据收集与处理_频数(率)分布表-综合题专训及答案频数(率)分布表综合题专训1、(2018吉林.中考模拟) 在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表:服务类别频数频率文明宣传员 4 0.08文明劝导员10义务小警卫8 0.16环境小卫士0.32小小活雷锋12 0.24请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.2、(2018玄武.中考模拟) 某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:请根据所给信息,解答下列问题:(1) a=,b=;(2)请补全频数分布直方图;(3)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?3、(2017昆山.中考模拟) 国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:获奖等次频数频率一等奖10 0.05二等奖20 0.10三等奖30 b优胜奖 a 0.30鼓励奖80 0.40请根据所给信息,解答下列问题:(1) a=,b=,(2)补全频数分布直方图;(3)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(4)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.4、(2019南浔.中考模拟) 为了庆祝中国人民海军成立70周年,某市举行了“海军知识”竞赛,为了了解竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示。
备考2024年中考数学二轮复习-统计与概率_概率_概率公式-综合题专训及答案
备考2024年中考数学二轮复习-统计与概率_概率_概率公式-综合题专训及答案概率公式综合题专训1、(2012阜新.中考真卷) 自开展“学生每天锻炼1小时”活动后,我市某中学根据学校实际情况,决定开设A:毽子,B:篮球,C:跑步,D:跳绳四种运动项目.为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请结合图中信息解答下列问题:(1)该校本次调查中,共调查了多少名学生?(2)请将两个统计图补充完整;(3)在本次调查的学生中随机抽取1人,他喜欢“跑步”的概率有多大?2、(2018苏州.中考真卷) 如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).3、(2019泸西.中考模拟) 一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.4、(2016苏州.中考真卷) 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.5、(2017满洲里.中考模拟) 有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.(1)写出k为负数的概率;(2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)6、(2019兰州.中考模拟) 2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b是两份口语材料,它们的难易程度分别是易、难.(1)从四份听力材料中,任选一份是难的听力材料的概率是.(2)用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.7、(2019张家港.中考模拟) 一只不透明的口袋里装有1个红球、1个黄球和若干个白球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个是白球的概率为(1)试求袋中白球的个数(2)搅匀后从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,试用画树状图或列表格的方法,求两次摸出的2个球恰好是1个白球、1个红球的概率,8、(2019金华.中考模拟) 某校5月份举行了八年级生物实验考查,有A和B两个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验,小明、小丽、小华都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率;(3)他们三人都参加实验A考查的概率是.9、(2013温州.中考真卷) 一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?10、(2018合肥.中考模拟) 小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.11、(2017北.中考模拟) 某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?12、(2017金乡.中考模拟) 一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.13、(2017贵州.中考真卷) 由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.14、(2020云南.中考模拟) 如图,可以自由转动的转盘被平均分成了三等分标有数字﹣2,3,﹣1的扇形区域转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是3的概率;(2)转动转盘两次,设第一次得到的数字为x,第二次得到的数字为y,点M的坐标为(x,y),请用树状图或列表法求点M在反比例函数y=﹣的图象上的概率.15、(2017罗平.中考模拟) 现有A,B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外完全一样.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?若不公平,你认为怎样制定游戏规则,对甲乙双方才公平?概率公式综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
备考2023年中考数学二轮复习-统计与概率_数据收集与处理_扇形统计图-单选题专训及答案
备考2023年中考数学二轮复习-统计与概率_数据收集与处理_扇形统计图-单选题专训及答案扇形统计图单选题专训1、(2015兴安盟.中考真卷) 某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 2002、(2015扬州.中考真卷) 如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A . 音乐组B . 美术组C . 体育组D . 科技组3、(2017西城.中考模拟) 某大型文体活动需招募一批学生作为志愿者参与服务,已知报名的男生有420人,女生有400人,他们身高均在150≤x<175之间,为了解这些学生身高的具体分别情况,从中随机抽取若干学生进行抽样调查,抽取组别身高(cm)A 150≤x<155B 155≤x<160C 160≤x<165D 165≤x<170E 170≤x<175根据图表提供的信息,有下列几种说法①估计报名者中男生身高的众数在D组;②估计报名者中女生身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计身高在160cm至170cm(不含170cm)的学生约有400人其中合理的说法是()A . ①②B . ①④C . ②④D . ③④4、(2017新野.中考模拟) 如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为()A . 3万元B . 万元C . 2.4万元D . 2万元5、(2019乐清.中考模拟) 某校在开展“爱阅读”活动中,学生某一个月的课外阅读情况的统计图如图所示.若该校的学生有 600 人,则阅读的数量是4本的学生有()A . 人B . 人C . 人D . 人6、(2019温州.中考模拟) 某校欲举办“校园吉尼斯挑战赛”,对该校全体学生进行“你最喜欢的挑战项目”的问卷调查(每人都只选一项),并将结果绘制成如图所示统计图,则学生最喜欢的项目是()A . 足球B . 篮球C . 踢毽子D . 跳绳7、(2018温州.中考模拟) 某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A . 被调查的学生有60人B . 被调查的学生中,步行的有27人C . 估计全校骑车上学的学生有1152人D . 扇形图中,乘车部分所对应的圆心角为54° 8、(2017滨江.中考模拟) 某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”选修课 A B C D E F人数20 30根据图标提供的信息,下列结论错误的是()A . 这次被调查的学生人数为200人B . 扇形统计图中E部分扇形的圆心角为72°C . 被调查的学生中最想选F的人数为35人D . 被调查的学生中最想选D的有55人9、(2017乐清.中考模拟) 小明对某校九年级所有同学校本课程选修情况进行了调查,把所得数据绘制成如图所示的扇形统计图.已知参加巧手园地的为30人,则参加趣味足球的人数是()A . 35B . 48C . 52D . 7010、(2019温州.中考真卷) 对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A . 20人B . 40人C . 60人D . 80人11、(2020百色.中考模拟) 某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A . 75人B . 100人C . 125人D . 200人12、(2014嘉兴.中考真卷) 小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A . 各项消费金额占消费总金额的百分比B . 各项消费的金额C . 消费的总金额D . 各项消费金额的增减变化情况13、(2015温州.中考真卷) 某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有()A . 25人B . 35人C . 40人D . 100人14、(2011温州.中考真卷) 某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是()A . 排球B . 乒乓球C . 篮球D . 跳绳15、(2016安徽.中考真卷) 自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A . 18户B . 20户C . 22户D . 24户16、(2020新野.中考模拟) 根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A . 扇形统计图能反映各部分在总体中所占的百分比B . 每天阅读30分钟以上的居民家庭孩子超过50%C . 每天阅读1小时以上的居民家庭孩子占20%D . 每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°17、(2017岱岳.中考模拟) 某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1 )接受这次调查的家长人数为200人(2 )在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3 )表示“无所谓”的家长人数为40人(4 )随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()A . 4B . 3C . 2D . 118、(2017泰安.中考真卷) 为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A,B,C,D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是()A . 本次抽样测试的学生人数是40B . 在图1中,∠α的度数是126°C . 该校九年级有学生500名,估计D级的人数为80D . 从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.219、(2016泰安.中考真卷) 某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课 A B C D E F人数40 60 100根据图表提供的信息,下列结论错误的是()A . 这次被调查的学生人数为400人B . 扇形统计图中E部分扇形的圆心角为72°C . 被调查的学生中喜欢选修课E,F的人数分别为80,70D . 喜欢选修课C的人数最少20、(2017邵阳.中考真卷) “救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A . 认为依情况而定的占27%B . 认为该扶的在统计图中所对应的圆心角是234°C . 认为不该扶的占8%D . 认为该扶的占92%21、(2019顺德.中考模拟) 在一次捐书活动中,A、B、C、D分别表示“名人传记”、“科普图书”、“小说”、“其它图书”某校九年级学生捐书情况如下:图书种类 A B C D数目(本) A 175 100 d下列哪个选项是错误的()A . 共捐书500本B . a=150C . “C”所占的百分比是20%D . “扇形D”的圆心角是50°22、(2015梧州.中考真卷) 为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A . 100人B . 200人C . 260人D . 400人23、(2019巴中.中考真卷) 如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有()A . 120人B . 160人C . 125人D . 180人24、(2018云南.中考真卷) 2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个不符合题意的是()A . 抽取的学生人数为50人B . “非常了解”的人数占抽取的学生人数的12%C . a=72°D . 全校“不了解”的人数估计有428人25、(2019贵阳.中考模拟) (2019·海曙模拟) 小刚家2017年和2018年的家庭支出情况如图所示,则小刚家2018年教育方面支出的金额比2017年增加了()A . 0.216万元B . 0.108万元C . 0.09万元D . 0.36万元26、(2020遵化.中考模拟) 计算的结果为()A .B .C . 1D . 027、(北京.中考模拟) 如图所示是小刚一天中的作息时间分配的扇形统计图如果小刚希望把自己每天的阅读时间调整为2.5小时,那么他的阅读时间需增加A . 48分钟B . 60分钟C . 90分钟D . 105分钟28、(2020贵阳.中考模拟) 如图是张亮、李娜两位同学零花钱全学期各项支出的统计图.根据统计图,下列对两位同学购买书籍支出占全学期总支出的百分比作出的判断中,正确的是()A . 张亮的百分比比李娜的百分比大B . 张娜的百分比比张亮的百分比大C . 张亮的百分比与李娜的百分比一样大D . 无法确定29、(2020威海.中考真卷) 为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是()A . 本次调查的样本容量是B . 选“责任”的有人C . 扇形统计图中“生命”所对应的扇形圆心角度数为D . 选“感恩”的人数最多30、某校操场上学生体育运动情况的统计图如图所示.若该校操场上跳绳的学生有45人,则踢足球的学生有()A . 90人B . 75人C . 60人D . 30人扇形统计图单选题答案1.答案:A2.答案:C3.答案:B4.答案:D5.答案:C6.答案:A7.答案:C8.答案:D9.答案:D10.答案:D11.答案:D12.答案:A13.答案:C14.答案:C15.答案:D16.答案:C17.答案:A18.答案:C19.答案:D20.答案:D21.答案:D22.答案:D23.答案:B24.答案:D25.答案:A26.答案:C27.答案:C28.答案:A29.答案:30.答案:。
备考2023年中考数学二轮复习-统计与概率_数据收集与处理_用样本估计总体-单选题专训及答案
备考2023年中考数学二轮复习-统计与概率_数据收集与处理_用样本估计总体-单选题专训及答案用样本估计总体单选题专训1、(2015兴安盟.中考真卷) 某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 2002、(2012辽阳.中考真卷) 一段时间内,某商场销售某品牌的女装30件,各种尺码的销售量如下表:尺码(cm)155 160 165 170 175销售量(件) 2 10 12 4 2则这30件女装尺码的众数和中位数分别是()A . 175cm,165cmB . 165cm,165cmC . 165cm,175cmD . 165cm,170cm 3、(2012葫芦岛.中考真卷) 某校关注学生的用眼健康,从九年级500名学生中随机抽取了30名学生进行视力检查,发现有12名学生近视眼,据此估计这500名学生中,近视的学生人数约是()A . 150B . 200C . 350D . 4004、(2017苏州.中考真卷) 为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有名学生中随机征求了名学生的意见,其中持“反对”和“无所谓”意见的共有名学生,估计全校持“赞成”意见的学生人数约为()A .B .C .D .5、(2015镇江.中考真卷) 有4万个不小于70的两位数,从中随机抽取了3000个数据,统计如下:数据x 70<x<79 80<x<89 90<x<99个数800 1300 900平均数78.1 85 91.9请根据表格中的信息,估计这4万个数据的平均数约为()A . 92.16B . 85.23C . 84.73D . 77.976、(2019朝阳.中考模拟) 小宁同学根据全班同学的血型绘制了如图所示的扇形统计图,该班血型为A型的有20人,那么该班血型为AB型的人数为()A . 2人B . 5人C . 8人D . 10人7、(2016镇江.中考模拟) 我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A . 1365石B . 388石C . 169石D . 134石8、(2018嘉兴.中考模拟) 某科研小组为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼()A . 8000条B . 4000条C . 2000条D . 1000条9、(2017杭州.中考模拟) 为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A . 9B . 10C . 12D . 1510、(2017乐清.中考模拟) 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A . 134石B . 169石C . 338石D . 1365石11、(2015舟山.中考真卷) 质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是()A . 5B . 100C . 500D . 1000012、(2012丽水.中考真卷) 为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A . 12B . 48C . 72D . 9613、(2017合肥.中考模拟) 为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼记上标记,然后放回池塘去,经过一段时间,待有标记的鱼完全混合后,第二次再捕捞200条鱼,发现有5条鱼有标记,那么你估计池塘里大约有()鱼.A . 1000条B . 4000条C . 3000条D . 2000条14、(2017全椒.中考模拟) 积极行动起来,共建节约型社会!我市某居民小区400户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整节水量(单位:吨)0.5 1 1.5 2家庭数(户) 2 3 4 1估计该小区400户家庭这个月节约用水的总量是()A . 360吨B . 400吨C . 480吨D . 720吨15、(2016龙岩.中考真卷) 在一个密闭不透明的袋子里有若干个白球.为估计白球个数,小何向其中投入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球400次,其中88次摸到黑球,则估计袋中大约有白球()A . 18个B . 28个C . 36个D . 42个16、(2017泰安.中考真卷) 为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A,B,C,D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是()A . 本次抽样测试的学生人数是40B . 在图1中,∠α的度数是126°C . 该校九年级有学生500名,估计D级的人数为80D . 从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.217、(2016日照.中考真卷) 积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整节水量(单位:0.5 1 1.5 2吨)家庭数(户) 2 3 4 1请你估计该200户家庭这个月节约用水的总量是()A . 240吨B . 360吨C . 180吨D . 200吨18、(2018毕节.中考模拟) 某家庭搬进新居后又添置了新的电冰箱、电热水器等家用电器,为了了解用电量的大小,该家庭在6月份初连续几天观察电表的度数,电表显示的度数如下表:日期1日2日3日4日5日6日7日8日电表显示度数(度) 115 118 122 127 133 136 140 143 估计这个家庭六月份用电度数为( )A . 105度B . 108.5度C . 120度D . 124度19、(2017天门.中考模拟) 质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是()A . 5B . 100C . 500D . 1000020、(2016安陆.中考模拟) 如图所示,反映的是九(1)班学生外出乘车、步行、骑车的人数直方图的一部分和圆形分布图,下列说法①①九(1)班外出步行有8人;②在圆形统计图中,步行人数所占的圆心角度数为82°;③九(1)班外出的学生共有40人;④若该校九年级外出的学生共有500人,那么估计全年级外出骑车的人约有150人,其中正确的结论是()A . ①②③B . ①③④C . ②③D . ②④21、(2017龙岗.中考模拟) 周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生去过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有()个学生去过该景点.A . 1000人B . 800人C . 720人D . 640人22、(2019广西壮族自治区.中考模拟) 某校对学生“一周课外阅读时间”的情况进行随机抽样调查,调查结果如统计图所示.若该校有2000名学生,则根据调查结果可估算该校学生一周阅读时间不足3小时的人数是第()A . 280人B . 400人C . 660人D . 680人23、(2012崇左.中考真卷) 崇左市江州区太平镇壶城社区调查居民双休日的学习状况,采取了下列调查方式;a:从崇左高中、太平镇中、太平小学三所学校中选取200名教师;b:从不同住宅楼(即江湾花园与万鹏住宅楼)中随机选取200名居民;c:选取所管辖区内学校的200名在校学生.并将最合理的调查方式得到的数据制成扇形统计图和部分数据的频数分布直方图.以下结论:①上述调查方式最合理的是b;②在这次调查的200名教师中,在家学习的有60人;③估计该社区2000名居民中双休日学习时间不少于4小时的人数是1180人;④小明的叔叔住在该社区,那么双休日他去叔叔家时,正好叔叔不学习的概率是0.1.其中正确的结论是()A . ①④B . ②④C . ①③④D . ①②③④24、(2013贺州.中考真卷) 为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A . 500名B . 600名C . 700名D . 800名25、(2018毕节.中考模拟) 为了解某市初中生视力情况,有关部门进行了一次抽样调查,数据如下表,若该市共有初中生15万人,则全市视力不良的初中生的人数大约是()A . 2160人B . 7.2万人C . 7.8万人D . 4500人26、(2017贵州.中考真卷) 为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A . 1250条B . 1750条C . 2500条D . 5000条27、(2015酒泉.中考真卷) 下列命题中,假命题是()A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x2=y2,则x=y28、(2020中.中考模拟) 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有()A . 1200名B . 450名C . 400名D . 300名29、(2021如皋.中考模拟) 某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A .B .C .D .30、某校950名七年级学生参加跳绳测试,随机抽取部分学生成绩并绘制频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,若校方规定次数达到130次(包括130次)的成绩为“优良”,则该校成绩“优良”的学生人数约为()A . 35B . 65C . 350D . 650用样本估计总体单选题答案1.答案:A2.答案:B3.答案:B4.答案:C5.答案:B6.答案:B7.答案:C8.答案:B9.答案:C10.答案:B11.答案:C12.答案:C13.答案:B14.答案:C15.答案:B16.答案:C17.答案:A18.答案:C19.答案:C20.答案:B21.答案:A22.答案:D23.答案:A24.答案:B25.答案:B26.答案:A27.答案:D28.答案:29.答案:30.答案:。
四川省达县中学2020年九年级数学中考第二轮压轴题复习:统计和概率(包含答案,教师版)
四川省达县中学2020年九年级数学中考第二轮压轴题复习:统计和概率1、下表是博文学校初三•一班慧慧、聪聪两名学生入学以来10次数学检测成绩(单位:分).慧慧116 124 130 126 121 127 126 122 125 123 聪聪122 124 125 128 119 120 121 128 114 119 回答下列问题:(1)分别求出慧慧和聪聪成绩的平均数;(2)分别计算慧慧和聪聪两组数据的方差;(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;(4)由于初三•二班、初三•三班和初三•四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三•二班和初三•三班的概率.【解答】解:(1)慧慧的平均分数=125+(﹣9﹣1+5+1+6+2+1﹣3+0﹣2)=125(分),聪聪的平均分数=125+(﹣3﹣1+0+3﹣6﹣5+6+3﹣11﹣6)=123(分);(2)慧慧成绩的方差 S2= [92+12+52+12+42+22+12+32+02+22]=14.2,聪聪成绩的方差S2= [12+12+22+52+42+32+82+52+92+42]=24.2,(3)根据(1)可知慧慧的平均成绩要好于聪聪,根据(2)可知慧慧的方差小于聪聪的方差,因为方差越小越稳定,所以慧慧的成绩比聪聪的稳定,因此选慧慧参加全国数学竞赛更合适一些.(4)画树状图为:共有6种等可能的结果数,其中两名学生分别在初三•二班和初三•三班的结果数为2,所以两名学生分别在初三•二班和初三•三班的概率==.2、某校学生会为了解环保知识的普及情况,从该校随机抽取部分学生,对他们进行了垃圾分类了解程度的调查,根调查收集的数据绘制了如下的扇形统计图,其中对垃圾分类非常了解的学生有30人(1)本次抽取的学生有人;(2)请补全扇形统计图;(3)请估计该校1600名学生中对垃圾分类不了解的人数.【解答】解:(1)30÷10%=300,故答案为:300;(2)如图,了解很少的人数所占的百分比1﹣30%﹣10%﹣20%=40%,故答案为:40%,(3)1600×30%=480人,该校1600名学生中对垃圾分类不了解的人数480人.3、某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?【解答】解:(1)设本次测试共调查了x名学生.由题意x•20%=10,x=50.∴本次测试共调查了50名学生.(2)测试结果为B等级的学生数=50﹣10﹣16﹣6=18人.条形统计图如图所示,(3)∵本次测试等级为D所占的百分比为=12%,∴该中学八年级共有900名学生中测试结果为D等级的学生有900×12%=108人.4、为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【解答】解:(1)80÷40%=200(人).∴此次共调查200人.(2)×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图,(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人.5、国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B 组:0.5≤t≤1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生数为人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是;(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有人.【解答】解:(1)60÷20%=300(人)答:此次抽查的学生数为300人,故答案为:300;(2)C组的人数=300×40%=120人,A组的人数=300﹣100﹣120﹣60=20人,补全条形统计图如图所示,(3)该生当天在校体育活动时间低于1小时的概率是=40%;(4)当天达到国家规定体育活动时间的学生有1200×=720人.故答案为:40%,720人.6、深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况[来频数频率源:学|科|网]A.高度关注M 0.1B.一般关注100 0.5C.不关注30 ND.不知道50 0.25(1)根据上述统计图可得此次采访的人数为人,m= ,n= ;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有人.【解答】解:(1)此次采访的人数为100÷0.5=200(人),m=0.1×200=20,n=30÷200=0.15;(2)如图所示;(3)高度关注东进战略的深圳市民约有0.1×15000=1500(人).7、为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.8、为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.体育锻炼时间人数4≤x≤6 622≤x<4 430≤x<2 15(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.【解答】解:(1)由题意可得:样本扇形图中体育成绩“良好”所对扇形圆心角的度数为:(1﹣15%﹣14%﹣26%)×360°=162°;(2)∵体育成绩“优秀”和“良好”的学生有:200×(1﹣14%﹣26%)=120(人),∴4≤x≤6范围内的人数为:120﹣43﹣15=62(人);故答案为:62;(3)由题意可得:×14400=7440(人),答:估计课外体育锻炼时间不少于4小时的学生人数为7440人.9、为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:组别分数段频数(人)频率1 50≤x<30 0.1602 60≤x<70450.153 70≤x<8060 n4 80≤x<90m 0.45 90≤x<100450.15请根据以图表信息,解答下列问题:(1)表中m= ,n= ;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.【解答】解:(1)由表格可得,全体参赛的选手人数有:30÷0.1=300,则m=300×0.4=120,n=60÷300=0.2,故答案为:120,0.2;(2)补全的频数分布直方图如右图所示,(3)∵35+45=75,75+60=135,135+120=255,∴全体参赛选手成绩的中位数落在80≤x<90这一组;(4)由题意可得,,即这名选手恰好是获奖者的概率是0.55.10、某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【解答】解:(1)20÷40%=50(人)15÷50=30%答:本次调查的学生共有50人,在扇形统计图中,m的值是30%.(2)50×20%=10(人)50×10%=5(人).(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,男男男女女男/ (男,男)(男,男)(男,女)(男,女)男(男,男)/ (男,男)(男,女)(男,女)男(男,男)(男,男)/ (男,女)(男,女)女(女,男)(女,男)(女,男)/ (女,女)女(女,男)(女,男)(女,男)(女,女)/所有等可能的情况有20种,所抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)==答:所抽取的2名同学恰好是1名男同学和1名女同学的概率是.故答案为:50、30%.11、甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:中位数/环众数/环方差平均成绩/环甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.12、为了解学生的艺术特长发展情况,某校音乐组决定围绕在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图。
中考数学二轮专题复习试卷:统计与概率(含答案)
中考数学二轮专题复习试卷:统计与概率(时间:120分钟 满分:120分)一、选择题(本大题共15个小题,每小题3分,共45分) 1.(四川遂宁)以下问题,不适合用全面调查的是( ) A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.(山东菏泽)在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如表所示:这些运动员跳高的中位数和众数分别是( )A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,4 3.(山东济宁)下列说法正确的是( ) A.中位数就是一组数据中最中间的一个数 B.8,9,9,10,10,11这组数据的众数是9 C.如果x 1,x 2,x 3,…,x n 的平均数是x,那么()12n x x (x x x x 0-+-+⋯+-=())D.一组数据的方差是这组数据的极差的平方4.(山东青岛)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )个.A.45B.48C.50D.555.(四川内江)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是( ) A.这1 000名考生是总体的一个样本 B.近4万名考生是总体C.每位考生的数学成绩是个体D.1 000名学生是样本容量6.(重庆)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽出50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是 3.5、10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐7.(浙江温州)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是( )A.羽毛球B.乒乓球C.排球D.篮球8.(山东日照)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是( )A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占该学校全体教职工总人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组9.(陕西)我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( )A.71.8B.77C.82D.95.710.(山东枣庄)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球为白球的概率是23,则黄球的个数为( )A.16B.12C.8D.411.(福建漳州)某日福建省九地市的最高气温统计如下表:针对这组数据,下列说法正确的是( )A.众数是30B.极差是1C.中位数是31D.平均数是2812.(山东泰安)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选出20名同学统计了各自家庭一个月的节水情况,见表:请你估计这400名同学的家庭一个月节约用水的总量大约是( )A.130 m3B.135 m3C.65 m3D.260 m313.(甘肃天水)一组数据:3,2,1,2,2的众数,中位数,方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2 D.2,1,0.214.(山东淄博)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是( )1352A. B. C. D.688315.(辽宁铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个二、填空题(本大题共6个小题,每小题3分,共18分)16.(浙江湖州)某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是_______t.17.(山东青岛)某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:,,,2===x1.69 m x1.69 m s0.000 6甲乙甲,则这两名运动员中________的成绩更稳定.2s0.003 15=乙18.(浙江宁波)如图是七(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的是12人,那么参加绘画兴趣小组的人数是______人.19.(湖南株州)市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如表.请你根据表中数据选一人参加比赛,最合适的人选是_______.20.甲乙丙丁平均数8.28.08.08.2方差2.11.81.61.420.(湖南岳阳)如图所示的3×3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下来落在草地上的概率为______.21.(浙江温州)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.三、解答题(本大题共5个小题,共57分)22.(本小题满分10分)(浙江嘉兴)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.23.(本小题满分10分)(宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.24.(本小题满分10分)(浙江温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现在袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于1.3问至少取出了多少黑球?25.(本小题满分12分)(四川雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有_____人;(2)请你将条形统计图(2) 补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率( 用树状图或列表法解答).26.(本小题满分15分)(浙江衢州)据衢州市国民经济和社会发展统计公报显示,衢州市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生,如果对新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果新开工廉租房建设的套数比增长10%,那么新开工廉租房有多少套?参考答案1.D2.A3.C4.A5.C6.A7.D8.D9.C10.D 11.A 12.A 13.B 14.B 15.D16.5.8 17.甲 18.5 19.丁 20.1321.2722.解:(1)∵扇形图中空气质量为良所占比例为64%,条形图中空气质量为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天);(2)轻微污染天数是50-32-8-3-1=5天,表示优的圆心角度数为:850×360°=57.6°. 补全条形统计图,如图所示:(3)∵样本中优和良的天数分别为8和32天, ∴一年(365天)达到优和良的总天数:832365292().50+⨯=天 23.解:(1)一班的方差=110[(168-168)2+(167-168)2+(170-168)2+…+(170-168)2]=3.2; 二班的极差为171-165=6; 二班的中位数为168; 补全表格如下:(2)选择方差做标准,∵一班方差<二班方差, ∴一班可能被选取.24.解:(1)摸出一个球是黄球的概率:51P .513228==++(2)设取出x 个黑球.由题意,得:5x 1,403+≥ 解得:25x ,3≥∴x 的最小正整数解是x=9. 答:至少取出9个黑球. 25.解:(1)200 (2)C:60人(3) 所有情况如表所示:由上表可知, 所有结果为 12 种, 其中符合要求的只有2种, ∴P(恰好选中甲、乙)=21.126=26.解:(1)根据题意得:住房总数为1 500÷24%=6 250(套),则经济适用房的数量为6 250×7.6%=475(套),所以经济适用房共有475套.补全直方图(2)老王被摇中的概率为:4751.9502(3)廉租房共有6 250×8%=500(套). 500(1+10%)=550, 所以新开工廉租房550套.。
初三数学二轮复习统计与概率练习题课改实验区 试题
心尺引州丑巴孔市中潭学校初三数学二轮复习统计与概率练习题课改实验区说明:本卷练习时间120分钟,总分150分一、填空题〔每题3分,共36分〕2. 为了解某校初三年级300名学生的身高状况,从中抽查了50名学生,所获得的样本容量是______________.3. 假设1000张奖券中有200张可以中奖,那么从中任抽1张能中奖的概率为_________.4. 一射击运发动在一次射击练习中打出的成绩〔单位:环〕是:5. 一口袋中放有3只红球和4只黄球,这两种球除颜色外没有任何区别.(第7题) 随机从口袋中任取一只球,取到黄球的概率是________.6. 如果一组数据3,x,1,7的平均数是4,那么x=__________.7. 某班的联欢会上,设有一个HY节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上〔转盘被均匀等分为四个区域,如图〕.转盘可以自由转动。
参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,那么获得钢笔的概率为____________.8. 下表给出了某2005年5月28日至6月3日的最高气温,那么这些最高气温的极差是___________℃9. 掷一枚各面分别标有1,2,3,4,5,6的普通的正方体骰子,掷出的数字为偶数的概率是_______________.10. 某学生在一次考试中,语文、数学、英语三门学科的平均成绩是80分,物理、化学两门学科的平均成绩为85分,那么该学生这五门学科的平均成绩是___________分.11. 对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下: 机床甲:x 甲=10,2S 甲=0.02;机床乙:x 乙=10,2S 乙=0.06, 由此可知:________〔填甲或乙〕机床性能好.12. 掷一枚均匀的硬币两次,两次正面都朝上的概率是__________. 二、选择题〔每题4分,共24分〕13. 六个学生进行投篮比赛,投进的个数分别为2、3、10、5、13、3, 这六个数的中位数为〔 〕 〔A 〕3 〔B 〕4 〔C 〕5 〔D 〕614. 以下事件中,为必然事件是〔 〕. 〔A 〕翻开电视机,正在播广告.〔B 〕从一个只装有白球的缸里摸出一个球,摸出的球是白球. 〔C 〕从一定高度落下的图钉,落地后钉尖朝上. 〔D 〕今年5月1日,的天气一定是晴天. 15. 以下调查方式适宜的是〔 〕 〔A 〕了解炮弹的杀伤力,采用普查的方式. 〔B 〕了解全国生的睡眠状况,采用普查的方式. 〔C 〕了解人们保护水资源的意识,采用抽样调查的方式.〔D 〕对载人航天器“神舟六号〞零部件的检查,采用抽样调查的方式.16. HY 电视台“幸运52”栏目中的“百宝箱〞互动环节,是一种竞猜游戏,游戏规那么如下:在20个商标中,有5个商标牌的反面注明了一定的奖金额,其余商标的反面是一张苦脸,假设翻到它就不得奖.参加这个游戏的观众有三次翻牌的时机.某观众前两次翻牌均得假设干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是 〔A 〕41 〔B 〕61 〔C 〕51 〔D 〕20317. 一位卖“运动鞋〞的经销商到一所对9位学生的鞋号进行了抽样调查,其号码为:24,22,21,24,23,20,24,23,24. 经销商最感兴趣的是这组数据中的〔〕〔A〕中位数〔B〕众数〔C〕平均数〔D〕方差18. 如图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形了.乙:只要指针连续转六次,一定会有一次停在6号扇形.丙:指针停在奇数号扇形的概率和停在偶数号扇形的概率相等.丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.其中你认为正确的见解有〔〕(A)1个 (B)2个 (C)3个 (D)4个三、解答题〔共90分〕19. 〔8分〕为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 l 95 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.20. 〔8分〕一个口袋中有10个红球和假设干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.21. 〔8分〕甲、乙两位同学五次数学测验成绩如下表:测验(次) 1 2 3 4 5 平均数方差请你在表中的空白处填上适当的数,用学到的统计知识对两位同学的成绩进行分析,并写出一条合理化建议.22. 〔8分〕四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张〔不放回〕,再从桌子上剩下的3张中随机抽取第二张.〔1〕用画树状图或列表的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;〔2〕计算抽得的两张卡片上的数字之积为奇数的概率是多少?23.〔8分〕某单位对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面总分值20分,最后的打分情况如下表所示.〔1〕如果专业知识、工作经验、仪表形象三个方面的重要性之比为10∶7∶3,那么作为人事主管,你应该录用哪一位应聘者?为什么?〔2〕在〔1〕的条件下,你对落聘者有何建议?24. 〔8分〕有一个抛两枚硬币的游戏,规那么是:假设出现两个正面,那么甲赢;假设出现一正一反,那么乙赢;假设出现两个反面,那么甲、乙都不赢.(1)这个游戏是否公平?请说明理由;(2)如果你认为这个游戏不公平,那么请你改变游戏规那么,设计一个公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规那么,设计一个不公平的游戏.25. 〔8分〕学习了统计知识后,小刚就本班同学的上学方式进行了一次调查统计.图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)求该班共有多少名学生?(2)在图〔1〕中,将表示“步行〞的局部补充完整.(3)在扇形统计图中,计算出“骑车〞局部所对应的圆心角的度数. (4)如果全年级共500名同学,请你估算全年级步行上学的学生人数.26. 〔8分〕某同学根据2005年某五个城商品房销售均价〔即销售平均价〕的数据,绘制了如下统计图:〔1〕这五个城2005年商品房销售均价的中位数、极差分别是多少? 〔2〕假设2003年A 城的商品房销售均价为1600元/平方米,试估计A 城从2003年到2004年商品房销售均价的年平均增长率约是多少〔要求误差小于1%〕? 27. 〔13分〕某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望要从甲、乙两种品牌电脑中各选购一种型号的电脑.〔1〕写出所有选购方案(利用树状图或列表方法表示);〔2〕假设(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?〔3〕现知希望购置甲、乙两种品牌电脑共36台(价格如下列图),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购置的A 型号电脑有几台.28. 〔13分〕如下列图,A 、B 两个旅游点从2001年至2005年“五、一〞的旅游人数变化情况分 别用实线和虚线表示,根据图中所示解答以下问题:〔1〕B 旅游点的旅游人数相对上一年,增长最快的是哪一年?〔2〕求A 、B 两个旅游点从2001到2005年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;〔3〕A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的平安,A 旅游点的最正确接待人数为4万人,为控制游客数量,A 旅游点决定提高门票价格.门票价格x (元)与游客人数y 〔万人〕满足函数关系5100xy =-.假设要使A 旅游点的游客人数不超过4万人,那么门票价格至少应提高多少? 人数2016 128 4乘车 步行 骑车 上学方式图⑴ 乘车 50%步行骑车图⑵65 4万人 A〔第26题〕[参考答案]一、填空题 1.247, 0, , , 5.74, , 7.41, , 9.21, 10.82, 11.甲, 12. 41. 二、选择题13.B, 14.B, 15.C, 16. B, 17.B,18.A.19.由题中7周的数据.可知小亮家平均每周日常生活消费的费用为:17(230+195+180+250+270+455+170)=250(元)∴小亮家每年日常生活消费总赞用为: 250×52=13000(元) 20.设口袋中有x 个白球, 由题意,得200501010=+x , 解得x =30. 口袋中约有30个白球. 21.甲:8 5,5 3.2.乙:8 5,7 0.4.建议例如:从上述数据可以看出,乙同学的数学成绩不够稳定,波动较大,希望乙同学在学习上补缺补漏,加强能力训练. 22.〔1〕〔2〕P 〔积为奇数〕=6123.×1020+17×720+12×320=2952018×1020+15×720+11×320=3182016×1020+15×720+14×320=30720∴应录用乙〔2〕建议例如:对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力,重点在专业知识和工作经验 . 24.〔1〕∵P(出现两个正面)=41,P(出现一正一反)=21两者概率不同, ∴这个游戏不公平.(2)略. 〔2〕∵P(和大于7)=125 < P(和小于或等于7)=127∴这个游戏对双方不公平13412341231234第一次第二次25.〔1〕40人〔2〕见右图 〔3〕圆心角度数=︒⨯36010030=108º 〔4〕估计该年级步行人数=500×20%=100 26.〔1〕中位数是2534〔元/平方米〕;极差是3515-2056=1459〔元/平方米〕.〔2〕设A 城2003年到2005年的年平均增长率为x ,由题意,得: 1600(1+x )2=2119.(1+x )2=24375,∵x >0,∴1+ x >0, ∴1+x ≈51 x ≈0.15 即平均增长率约为15% 27.〔1〕树状图或列表法: 〔2〕A 型号电脑被选中的概率是13〔3〕购置的A 型号电脑有7台.〔设购置A 型号电脑x 台,可列出6000x+5000(36-x)=100000,解得x=-80(不合舍去);或6000x +2000(36-x)=100000,解得x=7〕 28.(1)B 旅游点的旅游人数相对上一年增长最快的是2004年. (2)A X =554321++++=3〔万元〕 B X =534233++++=3〔万元〕2A S =51[(-2)2+(-1)2+02+12+22]=2 2B S =51[02+02+(-1)2+12+02]=52从2001至2005年,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大.乘车 步行骑车(3)由题意,得 5-100x≤4 解得x ≥100 100-80=20 那么A 旅游点的门票至少要提高20元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计与概率专题测练
一、选择题:
1.把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是 ( )
A .
21 B .51 C .361 D .36
11 2.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面
向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )
A .
32 B .21 C .41 D .3
1 3.已知一组数据2,2,3,x ,5,5,6的众数是2,则x 是( )
A .5
B .4
C .3
D .2 4.如图,两个用来摇奖的转盘,其中说法正确的是( )
A 、转盘(1)中蓝色区域的面积比转盘(2)中的蓝色区域面积要大, 所以摇转盘(1)比摇转盘(2)时,蓝色区域得奖的可能性大
B 、两个转盘中指针指向蓝色区域的机会一样大
C 、转盘(1)中,指针指向红色区域的概率是
3
1 D 、在转盘(2)中只有红、黄、蓝三种颜色,指针指向每种颜色的概率
都是
3
1 5.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )
A .
21 B .31 C .41 D .5
1 6.沃尔玛商场为了了解本商场的服务质量,随机调查了本商场 的100名顾客,调查的结果如图,根据图中给出的信息,这 100名顾客中对该商场的服务质量表示不满意的有( ) A .6人 B .11人 C .39人 D .44人 二、填空题
7.在体育测试中,2分钟跳160次为达标,小敏记录了她预测时2分钟跳的次数分别为145,155,140,162,164,则她在该次预测中达标的概率是________。
8.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________个。
9.某校九年级(2)班(1)组女生的体重(单位:kg )为:38,40,35,36,65,42,42,则这组数据的中位数是________.
10.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是
3
1
,则摸出一个黄球的概率是________。
11.在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________ 三、解答题
12.小明、小华用四张扑克牌玩游戏(方块2、黑桃4、红桃5、梅花5),他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回。
小明、小华约定:
A 44%
B 39%
C 11%
D A :很满意
B :满意
C :说不清
D :不满意
若小明抽到的牌的牌面数字比小华的大,则小明胜,反之则小明负;若牌面数字一样,则不
分胜负,你认为这个游戏是否公平?说明你的理由。
(列表或树形图)
13.某商场设立了一个可以自由转动的转盘,并做如下规定:顾客购物80元以上就获得一
次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动
进行中的一组统计数据。
转动转盘的次数m 100 150 200 500 800 1000 落在“洗衣粉”区域的次数n 68 111 136 345 564 701
n
落在“洗衣粉”区域的频率
m
(1)计算并完成表格;
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该盘一次,你获得洗衣粉的概率约是多少?
(4)在该转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少?(精确到1°)
14.“五·一”假期,梅河公司组织部分员工到A、B、C三地旅游,公司购买前往各地
的车票种类、数量绘制成条形统计图.根据统计图回答下列问题:
(1)前往A地的车票有_____张,前往C地的车票占全部车票的________%;
(2)若公司决定采用随机抽取的方式把车票分配给100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),
那么员工小王抽到去B 地车票的概率为______;
(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各
面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每
人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车
票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则
对双方是否公平?
地点
15.小刘对本班同学的业余兴趣爱好进行了一次调查,她根据采集的数据,绘制了下面图1
和图2。
请你根据图中提供的信息,解答下列问题:
(1)在图1中,将“书画”部分的图形补充完整;
(2)在图2中,求出“球类”部分所对应的圆心角的度数,并分别写出爱好“音乐”、“书
画”、“其它“的人数占本班学生数的百分数;
(3)观察图1和图2,你能得出哪些结论?(只要写出一条结论)
16.某中学结合“八荣八耻”德育计划,开展了一次“诚信做人”的教育主题演讲比赛。
赛程共分为“预赛、复赛和决赛”三个阶段,预赛有各班举行,全员参加,按统一标准评分。
统计后已分年级制成“预赛成绩统计表(未画完整)”,从预赛中各年级产生10名选手进行复赛,成绩见“复赛成绩记载表”。
(采用100制记分,得分都为60分以上的整数)
(1)如果将九年级预赛成绩制成扇形统计图,则“90分以上的人数”对应的圆心角度数是___________。
(2)如果八年级复赛成绩在90分以上的人数是预赛时同类成绩人数的0.5%,请补全预赛成绩统计图,则这次全校参加预赛的人数共有_______________。
(3)复赛成绩中,七年级的总数是_______________;八年级的中位数是______________;九年级的平均数是_______________。
(4)若在每个年级参加复赛的选手中分别选出3人参加决赛,你认为哪个年级实力最强?说说理由。
图2
2
468101214人数球类
书籍音乐
其它图1
50年级 第6题图。