计数原理及排列组合典型问题 -(含答案)
两个原理及排列组合经典例题
计数原理排列组合小节与复习一、 学习目标:进一步掌握计数原理、排列、组合的常规题型及综合问题,注意两个原理的区别,排列与组合的区别,积累解决排列组合应用问题的思想方法。
二、 典型示例:例1.(染色问题)有4种颜色(供选),给下列图形中各区域染色,要求相邻区域不同色,有多少种染色方法?(1)(2)(3)(4)例2.(排数字问题)有0,1,2,3,4,5,6,七个数字。
(1) 可组成多少个无重复数字的三位偶数;(2) 可组成多少个无重复数字且能被5整除的三位数;(3) 可组成多少个无重复数字且能被3整除的三位数;(4) 可组成多少个无重复数字且比315小的三位数。
例3.(排队照相问题)解决下列问题,掌握解决问题的方法。
(1)7名学生站成一排照相,其中甲不站左端,乙不站右端,有多少种站法?(2)7名学生站成一排照相,其中甲、乙相邻且都与丙不相邻,有多少种站法?(3)7名学生站成一排照相,其中甲、乙在丙的同侧,有多少种站法?(4)7名学生站成一排照相,7人身高各不相同,要求中间高两边低,有多少种站法?(5)8名学生站成两排照相,要求后排4人都比前排对应的4人高,有多少种站法?例4.(小球分配问题)解决下列问题,注意它们的区别并掌握解决问题的方法。
(1)把3个不同的小球放入4个不同的盒子中,有多少种不同放法?(2)把3个不同的小球放入4个不同的盒子中,每个盒子最多放1个,有多少种不同放法?(3)把4个不同的小球放入3个不同的盒子中,有多少种不同放法?(4)把4个不同的小球放入3个不同的盒子中,每个盒子最少放一个,有多少种不同放法?(5)把4个相同的小球放入3个不同的盒子中,每个盒子最少放一个,有多少种不同放法?(7个小球呢?)(6)把4个相同的小球放入3个不同的盒子中,盒子可空,有多少种不同放法?(7)把4个不同的小球放入3个相同的盒子中,有多少种不同放法?三、 补充练习:(1) (2013山东理)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279(2) (2013福建理)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10(3) (2013四川理)从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .20(4) (2013大纲文)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)(5) (2013上海春)36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22(122)(133)91++++=参照上述方法,可求得2000的所有正约数之和为_________.(6) (2013浙江理)将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同 的排法共有________种(用数字作答) .(7) (2013北京理)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.(8) (2013大纲理)6个人排成一行,其中甲、乙两人不相邻的不同排法共有_______种.(用数字作答).(9) 以正方体的顶点为顶点的四面体有 个.(10) 如图,用四种不同的颜色给图中的,,,,,A B C D E F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有________种(用数字作答).四、总结: B C F E D A。
计数原理排列组合精简题型
6
七、环排问题 ——线性排列
例7. 8人围桌而坐,共有多少种坐法?
五、小集团问题——先整体后局部
例5. 用1、2、3、4、5组成没有重复数字的五位数,其中恰有
两偶数夹在1、5两个奇数之间,这样的五位数有多少个? 解:把1、5、2、4当作一个元素(小集团)与3排队 A2 A A ,共有 种排法,再排小集团内部,共有 种排法, 2 2 2 A2 由分步计数原理,共有 种排法。 2 A2 A2
解:围桌而坐与坐成一排的不同点是:坐成圆形没有首尾 之分,所以先固定一人,并从此位置把圆形展成直线, 其余7人任意排列,共有(8-1)!种排法,即7!
C D E F G H B A A B C D E F G H A
环排问题:一般地,n个不同元素作圆形排列,共有(n-1)!种 排法。
7
八、分排问题 ——直排法
例2. 5个男生3个女生排成一排,3个女生要排在一起, 有多少种不同的排法? 解: 因为女生要排在一起,所以可以将3个女生看成是 一个人,与5个男生作全排列,有A66 种排法,其中女生 内部也有A33 种排法,根据乘法原理,共有A66A33种不同 的排法.
捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来 解决问题.即将需要相邻的元素合并为一个元素,再与其它元素 一起作排列,同时要注意合并元素内部也必须进行排列!
例10. 6本不同的书平均分成3堆,每堆2本共有多少分法?
新高考数学题型全归纳之排列组合 专题01 两个计数原理(解析版)
专题1 两个计数原理类型一、加法原理【例1】高二年级一班有女生18人,男生38人,从中选取一名学生作代表,参加学校组织的调查团,问选取代表的方法有几种. 【解析】18+38=56.【例2】若a 、b 是正整数,且6a b ≤+,则以()a b ,为坐标的点共有多少个? 【解析】66=36´.【例3】用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .328C .360D .648【解析】由题意知本题要分类来解, 当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有884256创= 当尾数为0时,百位有9种选法,十位有8种结果, 共有98172创=根据分类计数原理知共有25672328+= 故选:B .【例4】用数字12345,,,,组成的无重复数字的四位偶数的个数为( )A .8B .24C .48D .120【解析】由题意知本题需要分步计数,2和4排在末位时,共有122A =种排法, 其余三位数从余下的四个数中任取三个有3443224A =创=种排法, 根据由分步计数原理得到符合题意的偶数共有22448?(个).故选:C .【例5】用012345,,,,,这6个数字,可以组成____个大于3000,小于5421的数字不重复的四位数.【解析】分四类:①千位数字为3,4之一时,百十个位数只要不重复即可,有352120A =个; ②千位数字为5时,百位数字为0,1,2,3之一时,有124448A A =个;③千位数字为5时,百位数字是4,十位数字是0,1之一时,有11236A A =个;最后还有5420也满足题意. 所以,所求四位数共有120+48+6+1=175个. 故答案为 175. 类型二、乘法原理【例6】公园有4个门,从一个门进,一个门出,共有_____种不同的走法. 【解析】根据题意,要求从从任一门进,从任一门出, 则进门的方法有4种,出门的方法也有4种, 则不同的走法有4416?种【例7】将3个不同的小球放入4个盒子中,则不同放法种数有_______. 【解析】根据题意,依次对3个小球进行讨论:第一个小球可以放入任意一个盒子,即有4种不同的放法, 同理第二个小球也有4种不同的放法, 第三个小球也有4种不同的放法, 即每个小球都有4种可能的放法,根据分步计数原理知共有即44464创=不同的放法, 故答案为:64.【例8】如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余两所学校均只参观一天,那么不同的安排方法共有 种.【解析】分两步完成,第一步先安排甲学校参观,共六种安排方法;第二步安排另外两所学校,共有25A 安排方法,故不同的安排种法有256120A ?,故答案为120.【例9】高二年级一班有女生18人,男生38人,从中选取一名男生和一名女生作代表,参加学校组织的调查团,问选取代表的方法有几种.【解析】111838684C C = 【例10】六名同学报名参加三项体育比赛,每人限报一项,共有多少种不同的报名结果?【解析】每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得共有不同的报名方法63729=种.【例11】六名同学参加三项比赛,三个项目比赛冠军的不同结果有多少种? 【解析】由题意,每项比赛的冠军都有6种可能,因为有3项体育比赛,所以冠军获奖者共有36666创=种可能【例12】用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).【解析】解析:可分三步来做这件事: 第一步:先将3、5排列,共有22A 种排法;第二步:再将4、6插空排列,插空时要满足奇偶性不同的要求,共有222A 种排法;第三步:将1、2放到3、5、4、6形成的空中,共有15C 种排法.由分步乘法计数原理得共有221225240A A C =(种). 答案为:40【例13】从集合{12311},,,,中任选两个元素作为椭圆方程22221x y m n +=中的m 和n ,则能组成落在矩形区域{()|||11B x y x ,,=<且||9}y <内的椭圆个数为( ) A .43B .72C .86D .90【解析】椭圆落在矩形内,满足题意必须有,m n ¹,所以有两类, 一类是m ,n 从{1,2,3,6¼,7,8}任选两个不同数字,方法有2856A = 令一类是m 从9,10,两个数字中选一个,n 从{1,2,3,6¼,7,8}中选一个 方法是:2816?所以满足题意的椭圆个数是:561672+= 故选:B .【例14】若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为2y x =-,值域为{19},--的“同族函数”共有( )A .7个B .8个C .9个D .10个【解析】定义域是集合的子集,且子集中至少应该含有1-、1中的一个和3-、3中的一个,满足条件的定义有:{1-,3}-、{1-,3}、{1,3}-、{1,3}、{1-,1,3}-、{1-,1,3}、{1-,3-,3}、{1,3-,3}、{1-,1,3-,3},共9个.故选:C .【例15】某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位和个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0,并且千位、百位上都能取0.这样设计出来的密码共有( )A .90个B .99个C .100个D .112个【例16】从集合{4321012345},,,,,,,,,----中,选出5个数组成子集,使得这5个数中的任何两个数之和不等于1,则取出这样的子集的个数为( )A .10B .32C .110D .220【解析】从集合{1-,2-,3-,4-,0,1,2,3,4,5}中,随机选出5个数组成 子集,共有105C 种取法,即可组成105C 个子集,记“这5个数中的任何两个数之和不等于1”为事件A ,而两数之和为1的数组分别为(1,2)-,(2,3)-,(3-,4)(4-,5),(0,1),A 包含的结果有①只有有一组数的和为1,有5422213111160C C C C C =种结果②有两组数之和为1,有562160C C =种, 则A 包含的结果共有220种 故答案为:220.【例17】若x 、y 是整数,且6x ≤,6x ≤,则以()x y ,为坐标的不同的点共有多少个? 【解析】整数x ,y 满足6x ≤,6x ≤ 则{6,5,4,3x A?----,2-,1-,0,1,2,3,4,5,6},{6,5,4y B?---,3-,2-,1-,0,1,2,3,4,5,6},从A 种选一个共有13种方法,从B 选一个共有13种方法, 故有1313169?种.故答案为:169.【例18】用0,1,2,3,4,5这6个数字:⑴可以组成______________个数字不重复的三位数. ⑵可以组成______________个数字允许重复的三位数.【解析】(1)根据题意,分2步分析:①、先选百位,百位可以在1、2、3、4、5中任选1个,则百位有5种方法, ②、在剩下的5个数字中任选2个,安排在十位、个位,有2520A =种选法, 则可以组成520100?个无重复数字的三位数(2)分3步进行分析:①、先选百位,百位可以在1、2、3、4、5中任选1个,则百位有5种选法,②、再选十位,十位可以在0、1、2、3、4、5中任选1个,则十位有6种选法, ③、最后分析个位,个位可以在0、1、2、3、4、5中任选1个,则个位有6种选法, 则可以组成566180创=个数字允许重复的三位数;【例19】六名同学报名参加三项体育比赛,共有多少种不同的报名结果? 【解析】63333333创创?【例20】将3名教师分配到2所中学任教,每所中学至少一名教师,则不同的分配方案共有( )种.A .5B .6C .7D .8【解析】将3名教师分配到2所中学任教,每所中学至少1名教师, 只有一种结果1,2,首先从3个人中选2个作为一个元素, 使它与其他两个元素在一起进行排列,共有22326C A =种结果, 故选:B .类型三、基本计数原理的综合应用【例21】用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是_________.(用数字作答) 【解析】按首位数字的奇偶性分两类: 一类是首位是奇数的,有:2323A A ;另一类是首位是偶数,有:322322()A A A -则这样的五位数的个数是:2332223322()20A A A A A +-=. 故答案为:20.【例22】若自然数n 使得作竖式加法(1)(2)n n n ++++均不产生进位现象.则称n 为“可连数”.例如:32是“可连数”,因323334++不产生进位现象;23不是“可连数”,因232425++产生进位现象.那么,小于1000的“可连数”的个数为( )A .27B .36C .39D .48【解析】如果n 是良数,则n 的个位数字只能是0,1,2,非个位数字只能是0,1,2,3(首位不为0), 而小于1000的数至多三位, 一位的良数有0,1,2,共3个二位的良数个位可取0,1,2,十位可取1,2,3,共有339?个三位的良数个位可取0,1,2,十位可取0,1,2,3,百位可取1,2,3,共有34336创=个. 综上,小于1000的“良数”的个数为393648++=个 故选:D .【例23】由正方体的8个顶点可确定多少个不同的平面?【解析】依题意,正方体的8个顶点所确定的平面有:6个表面,6个对角面,8个正三角形平面共20个. 故答案为:20【例24】分母是385的最简真分数一共有多少个?并求它们的和.【解析】因为3855711=⨯⨯,在1~385这385个自然数中,5的倍数有385[]775=(个), 7的倍数有385[]557=(个),11的倍数有385[]3511=(个),5735⨯=的倍数有385[]1135=(个),51155⨯=的倍数有385[]755=(个), 71177⨯=的倍数有385[]577=(个),385的倍数有1个. 由容斥原理知,在1~385中能被5、7或11整除的数有775535(1175)1145++−+++=(个), 而5、7、11互质的数有385145240−=(个).即分母为385的真分数有240(个). 如果有一个真分数为385a,则必还有另一个真分数385385a −,即以385为分母的最简真分数是成对出现的, 而每一对之和恰为1.故以385为分母的240最简分数可以分成120时,它们的和为1120120⨯=. 【例25】用0,1,2,3,4,5这6个数字,可以组成_______个大于3000,小于5421的数字不重复的四位数.【解析】分四类:①千位数字为3,4之一时,百十个位数只要不重复即可,有352120A =个; ②千位数字为5时,百位数字为0,1,2,3之一时,有124448A A =个;③千位数字为5时,百位数字是4,十位数字是0,1之一时,有11236A A =个;最后还有5420也满足题意. 所以,所求四位数共有120+48+6+1=175个. 故答案为 175.【例26】某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“0000创创创?”到“9999创创创?”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( )A .2000B .4096C .5904D .8320【解析】10000个号码中不含4、7的有484096=, \ “优惠卡”的个数为1000040965904-=,故选:C .【例27】同室4人各写1张贺年卡,先集中起来,然后每人从中各拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有( )A .6B .9种C .11种D .23种【解析】设四人分别为a 、b 、c 、d ,写的卡片分别为A 、B 、C 、D , 由于每个人都要拿别人写的,即不能拿自己写的,故a 有三种拿法,不妨设a 拿了B ,则b 可以拿剩下三张中的任一张,也有三种拿法,c 和d 只能有一种拿法, 所以共有33119创?种分配方式,故选:B.【例28】某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为()A.504B.210C.336D.120【解析】由题意知将这3个节目插入节目单中,原来的节目顺序不变,\三个新节目一个一个插入节目单中,原来的6个节目形成7个空,在这7个位置上插入第一个节目,共有7种结果,原来的6个和刚插入的一个,形成8个空,有8种结果,同理最后一个节目有9种结果根据分步计数原理得到共有插法种数为789504创=,故选:A.【例29】某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共()A.15种B.12种C.9种D.6种【解析】同种树苗不相邻且第一个树坑和第5个树坑只能种甲种树苗,\只有中间三个坑需要选择树苗,当中间一个种甲时,第二和第四个坑都有2种选法,共有4种结果,当中间一个不种甲时,则中间一个种乙或丙,当中间这个种乙时,第二和第四个位置树苗确定,当中间一个种丙时,第二和第四个位置树苗确定,共有2种结果,\总上可知共有426+-种结果,故选:D.【例30】用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.648【解析】由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有884256创=当尾数为0时,百位有9种选法,十位有8种结果,共有98172创=根据分类计数原理知共有25672328+=故选:B.【例31】足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,那么一个队打14场共得19分的情况有( )A.3种B.4种C.5种D.6种【解析】得3分最多6场,则1分的1场,剩余的场次均得0分;若3分的共5场,则1分的共4场;若3分的共4场,则1分的共7场;若得3分的共3场,则1分的共9场;若得3分的2场,则1分的13场,不合题意,故选B.。
计数原理、排列组合
计数原理一、两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.二、例题例1 某学校食堂备有5种素菜、3种荤菜、2种汤。
现要配成一荤一素一汤的套餐。
问可以配制出多少种不同的品种?分析:1、完成的这件事是什么?2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤)3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.解:属于分步:第一步配一个荤菜有3种选择第二步配一个素菜有5种选择第三步配一个汤有2种选择共有N=3×5×2=30(种)例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。
(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?(1)分析:1、完成的这件事是什么?2、如何完成这件事?3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算。
解:属于分类:第一类从上层取一本书有5种选择第二类从下层取一本书有4种选择共有N=5+4=9(种)(2)分析:1、完成的这件事是什么?2、如何完成这件事?3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.解:属于分步:第一步从上层取一本书有5种选择第二步从下层取一本书有4种选择共有N=5×4=20(种)例3、有1、2、3、4、5五个数字.(1)可以组成多少个不同的三位数?(2)可以组成多少个无重复数字的三位数?(3)可以组成多少个无重复数字的偶数的三位数?(1)分析: 1、完成的这件事是什么?2、如何完成这件事?(配百位数、配十位数、配个位数)3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.略解:N=5×5×5=125(个)(2)(3)(4)自己完成。
排列与组合,分步乘法计数原理,分类加法计数原理
排列:1、排列的概念:从n个不同元素中取出m (mWn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、全排列:把n个不同元素全部取出的一个排列,叫做这n个元素的一个全排列。
3、排列数的概念:从n个不同元素中取出m (mWn)个元素的所有排列的个数,叫做从 n 个不同元素中取出m个元素的排列数,用符号白;表示。
4、阶乘:自然数1到n的连乘积,用n!=1X2X3X・・・Xn表示。
规定:0!=15、排列数公式:*”n (n-1)(n-2)(n-3)…(n-m+1)='卡—活"。
组合:1、组合的概念:从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合。
2、组合数的概念:从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数用符号C;表示。
b=屋=题…---掰+。
_ /3、组合数公式:1H史耀!的I一对;4、组合数性质:K - …,5、排列数与组合数的关系:量二5,排列与组合的联系与区别:从排列与组合的定义可以知道,两者都是从n个不同元素中取出m个(mWn, n, m£N) 元素,这是排列与组合的共同点。
它们的不同点是:排列是把取出的元素再按顺序排列成一列,它与元素的顺序有关系,而组合只要把元素取出来就可以,取出的元素与顺序无关.只有元素相同且顺序也相同的两个排列才是相同的排列,否则就不相同;而对于组合,只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合,如a, b与b, a是两个不同的排列,但却是同一个组合。
排列应用题的最基本的解法有:(1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素,称为元素分析法,或以位置为考察对象,先满足特殊位置的要求,再考虑一般位置,称为位置分析法;(2)间接法:先不考虑附加条件,计算出总排列数,再减去不符合要求的排列数。
排列的定义的理解:①排列的定义中包含两个基本内容,一是取出元素;二是按照一定的顺序排列;②只有元素完全相同,并且元素的排列顺序也完全相同时,两个排列才是同一个排列,元素完全相同,但排列顺序不一样或元素不完全相同,排列顺序相同的排列,都不是同一个排列;③定义中规定了 mWn,如果m<n,称为选排列;如果m=n,称为全排列;④定义中“一定的顺序”,就是说排列与位置有关,在实际问题中,要由具体问题的性质和条件进行判断,这一点要特别注意;⑤可以根据排列的定义来判断一个问题是不是排列问题,只有符合排列定义的说法,才是排列问题。
排列组合典型题大全包括答案
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客〞,能重复的元素看作“店〞,那么通过“住店法〞可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例 1】〔1〕有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2〕有 4 名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3〕将 3 封不同的信投入 4 个不同的邮筒,那么有多少种不同投法?【解析】:〔1〕34〔 2〕43〔 3〕43【例2】把 6 名实习生分配到7 个车间实习共有多少种不同方法?【解析】:完成此事共分 6 步,第一步;将第一名实习生分配到车间有7 种不同方案,第二步:将第二名实习生分配到车间也有7 种不同方案,依次类推,由分步计数原理知共有76 种不同方案.【例3】 8 名同学争夺 3 项冠军,获得冠军的可能性有〔〕A、83 B、38 C、A8 3 D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8 名学生看作8 家“店〞,3 项冠军看作 3 个“客〞,他们都可能住进任意一家“店〞,每个“客〞有8 种可能,因此共有83种不同的结果。
所以选 A1、 4 封信投到 3 个信箱当中,有多少种投法?2、 4 个人争夺 3 项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、 4 个同学参加 3 项不同的比赛(1〕每位同学必须参加一项比赛,有多少种不同的结果?(2〕每项竞赛只许一名同学参加,有多少种不同的结果?4、 5 名学生报名参加 4 项比赛,每人限报 1 项,报名方法的种数有多少?又他们争夺这 4 项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10 瓶汽水的方法有多少种?6、〔全国 II文〕5位同学报名参加两个课外活动小组, 每位同学限报其中的一个小组, 那么不同的报名方法共(A)10 种(B) 20 种(C) 25 种(D) 32种7、 5 位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,那么不同的负责方法有多少种?8、 4 名不同科目的实习教师被分配到 3 个班级,不同的分法有多少种?思考: 4 名不同科目的实习教师被分配到 3 个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 .【例 1】A, B,C , D , E五人并排站成一排,如果A, B 必须相邻且B在A的右边,那么不同的排法种数有【解析】:把 A, B 视为一人,且B固定在A的右边,那么此题相当于4 人的全排列, A44 24 种例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 .解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
(整理版)有关重复的排列组合问题
有关重复的排列组合问题我们常见的排列、组合问题,其中的元素通常是不可重复的,下面我们看几类可重复的排列、组合问题。
一. 有重复排列–––分步计数原理例1. 4个同学争夺3项竞赛冠军,冠军获得者共有几种可能情况?解:完成这件事情可分三步:〔1〕第一项冠军有4种可能;〔2〕第二项冠军有4种可能;〔3〕第三项冠军有4种可能。
所以可能情况有:4×4×4=64〔种〕。
一般地,从n 个不同元素里取出允许重复的m 个元素,按一定顺序排成一列,那么,第1、第2、…、第m 个位置上选取元素的方法都有n 种。
由分步计数原理得每次从n 个不同元素里取出允许重复的m 个元素的排列数为:N n n n n m n m n N m n m =⋅⋅⋅⋅=∈≤ (,,)*相关练习:用0,1,2,…,9这10个数字可组成多少个8位数字的 号码?〔108〕二. 不尽相异元素的排列–––组合法例2. 小麦、大麦品种各1种,种在5种不同土质的试验田里,3块种小麦,2块种大麦,有多少种种法?解:这5个不尽相异的元素有3个相同,另2个相同,所以共有:C C 535210==〔种〕种法。
一般地,在n 个不尽相异的元素里,如果有m 1个元素相同,又有m 2个元素相同,并且m 1+m 2=n ,那么这n 个元素的不同排列种数N C C n m n m==12。
三. 相同元素分组––––隔板法例3. 5个相同小球放到4个不同盒子里,每盒至少有1个,共有多少种放法? 解法1:每盒先放入1球,剩下1球任选1盒,共有:C 414=〔种〕放法。
解法2:〔第一隔板法〕5个小球可形成6个空隙,由于每盒至少放1个小球,所以除去两边空隙还剩4个空,只要在这4个位置上隔进3个板,即可满足要求。
所以有:C 434=〔种〕放法。
例4. 将5个相同小球放到4个不同盒子里〔盒子可空〕,共有多少种放法? 解法1:〔分类法〕第一类:全部放入1个盒子里,有:C 414=〔种〕放法;第二类:放入2个盒子里,有:C 42424⨯=〔种〕放法;第三类:放入3个盒子里,有:C 43624⨯=〔种〕放法;第四类:放入4个盒子里,有4种放法。
计数原理,排列与组合
第一章 计数原理§1.1计数原理,排列与组合(分析问题:分类或分步;再解决问题即计数:排列,组合或列举) 一, 计数原理1.分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共n m N +=种不同的方法.(每类中每一种都能独立完成)2.分步乘法计数原理:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有n m N ⨯=种不同的方法.(每类中每一种只能完成事件的一部分);二, 排列与组合1.排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺....序.排成一列,叫做从n 个不同元素中取出m 2.组合:从n 个不同元素中,任取m(m n ≤)个元素(这里的被取元素各不相同)合成一组,叫做从n 个不同元素中取出m 三,排列与组合的公式和性质 1. (1)(2)(1)mnA n n n n m =---+ = !()!n n m - 1. (1)(2)(1)!m mn n mm A n n n n m C A m ---+== 2. 全排列数:(1)(2)21!nnA n n n n =--⋅=(叫做n 的阶乘)2. )!(!!m n m n C m n -=; mn n m n C C -=3.规定 0! =1 . 3. 规定: 01nC=.; m n C 1+=m n C +1-m nC . 四,求解排列应用问题的主要方法1注意区别“恰好”与“至少”从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有多少种 2特殊元素(或位置)优先安排(对有限制的排列组合问题中的特殊元素或特殊位置优先考虑)将5列车停在5条不同的轨道上,其中a 列车不停在第一轨道上,b 列车不停在第二轨道上,那么不同的停放方法有种 3“相邻”用“捆绑”,“不邻”就“插空”七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有多少种 4、混合问题,先“组”后“排”对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能? 5、分清排列、组合、等分的算法区别(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?(2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多少种分法?(3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法?6、分类组合,隔板处理(一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。
排列与组合的应用举例(常见排列组合问题的解题方法)
解析:(2)按题意,个位数字只可能是0,1,2,3,4共5种情况,
分别有个 ,
个,合并总计300个,
或
个。
5.不相邻问题插空法: 对于某两个元素或者几个元素要条件的元素按要求 插入排好元素的空档之中即可 .
解析:方法一(排除法):逆向思考,至少各一台的反面就是分别只 取一种型号,不取另一种型号的电视机,故不同的取法共有
7.“至少”“至多”问题用间接排除法或分类法: “至少”“至多”问题用间接排除法或分类法:抽取两类混合
元素不能分步抽.
例7.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型 电视机各一台,则不同的取法共有 ( )
解析:把4名学生分成3组有 种方法,再把三组学生分配到3所学校
有种,则不同的保送方案共有
种
解决排列组合问题的一般过程如下: 1、认真审题弄清要做什么事。 2、怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同 时进行,确定分多少步及多少类。 3、确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数 是多少及取出多少个元素。 4、解决排列组合综合性问题,往往分类与分步交叉,因此必须掌握一 些常用的解题方法,根据题目的条件,我们就可以选取不同的方法来解 决问题.对于一些比较复杂的问题,我们可以将几种策略结合起来应用 把复杂的问题简单化,举一反三,触类旁通。
人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的
选法共有
。
7.“至少”“至多”问题用间接排除法或分类法: “至少”“至多”问题用间接排除法或分类法:抽取两类混合
元素不能分步抽.
例7.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型 电视机各一台,则不同的取法共有 ( )
排列组合专题复习及经典例题详解
排列组合专题复习及经典例题详解研究目标:掌握排列、组合问题的解题策略。
重点:1.特殊元素优先安排的策略;2.合理分类与准确分步的策略;3.排列、组合混合问题先选后排的策略;4.正难则反、等价转化的策略;5.相邻问题捆绑处理的策略;6.不相邻问题插空处理的策略。
难点:综合运用解题策略解决问题。
研究过程:1.知识梳理1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类型办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+。
+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……,做第n步有mn种不同的方法;那么完成这件事共有N=m1×m2×。
×mn种不同的方法。
特别提醒:分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性;分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏。
3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,m<n时叫做选排列,m=n时叫做全排列。
4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号Pn表示。
5.排列数公式:Pn=n(n-1)(n-2)。
(n-m+1)=m!/(n-m)。
其中m≤n,n、m∈N+。
特别提醒:规定0!=1.6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合。
7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数,用符号Cn表示。
(完整版)计数原理、排列组合题型与方法
计数原理、排列组合题型与方法☆基本思路:大的方向分类,类中可能有步或类例1:架子上有不同的2个红球,不同的3个白球,不同的4个黑球。
若从中取2个不同色的球,则取法种数为________。
解:先分类、再分步,共有取法2×3+2×4+3×4=26种.故填26.☆基本思路:大的方向分步,步中可能有类或步例1:如图所示,使电路接通,开关不同的开闭方式有( )A.11种B.20种C.21种D.12种解:分两步,第一部分接通,则可能有一个接通或者两个都接通,有3种可能;第二部分接通,则可能恰有一个接通或恰有两个接通或者都接通,有7种可能.从而总共有37=21种方式。
☆基本思路:排除法间接求解例1:(2013·济南模拟)电路如图所示,在A,B间有四个开关,若发现A,B之间电路不通,则这四个开关打开或闭合的方式有( )A。
3种B。
8种C。
13种D。
16种解:各个开关打开或闭合有2种情形,故四个开关共有24种可能,其中能使电路通的情形有:1,4都闭合且2和3中至少有一个闭合,共有3种可能,故开关打开或闭合的不同情形共有24-3=13(种).故选C.☆剔除重复元素例1:(2013·四川)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是()A。
9 B.10 C。
18 D.20解:lg a-lg b=lg错误!,而错误!=错误!,错误!=错误!,故所求为A错误!-2=18个,故选C.☆投信问题例1:将5封信投入3个邮筒,不同的投法共有( )A。
53种 B。
35种 C.3种 D。
15种解:第1封信,可以投入第1个邮筒,可以投入第2个邮筒,也可以投入第3个邮筒,共有3种投法;同理,后面的4封信也都各有3种投法。
所以,5封信投入3个邮筒,不同的投法共有35种。
故选B.例2:有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.解(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).☆数字排列问题例1:用数字0,1,2,3,4,5组成没有重复数字的四位数.(1)可组成多少个不同的四位数?(2)可组成多少个不同的四位偶数?解:(1)直接法:A错误!A错误!=300;间接法:A错误!-A错误!=300。
计数原理,排列组合
点评:
1、清楚完成“一件事”的具体含义
2、乘法原理中的“分步”程序要正确。“步”
与“步”之间是连续的,不间断的,缺一不可;但也
不能重复、交叉;若完成某件事情需n步, 则必须 且只需依次完成这n个步骤后,这件事情才算完成。 3、加法原理中每一种方法都可以独立完成事件
分类计数原理与分步计数原理
例1 书架的第一层放有4本不同的计算机书,第2层放有3 本不同的文艺书,第3层放有2本不同的体育书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架的第1、2、3层各取一本书,有多少种不同的 取法? (3)同时从书架的第1、2、3层取两本不同类的书,有多 少种不同的取法
分类计数原理与分步计数原理
综合应用:
例4:一种号码锁有4个拨号盘,每个拨号盘上有 从0到9共10个数字,则这4个拨号盘
(1)可以组成多少个四位数号码?
(2)可以组成多少个各位数字都不同的四位数号码?
(3)可以组成多少个末尾数字是8的四位数号码? (4)可以组成多少个首位数字不是0且各位数字都 不同的四位数号码?
解:(1)由加法原理 4+3+2=9
(2)由乘法原理 4 × 3 × 2=24
(3)总体上用加法原理,在每一类中用乘法原理
4 × 3+3 × 2+4 × 2=26
点评:
解题的关键是从总体上看这件事情是“分类
完成”,还是“分步完成”。区分的关键在于每
一种方法能否独立完成这个事情。“分类完成”
用“加法原理”;“分步完成”用“乘法原理”。 除此之外,还要搞清楚“分类”或“分步”的具 体标准。在“分类”或“分步”过程中,标准必 须一致,才能保证不重复、不遗漏。
分类计数原理与分步计数原理 解:
(完整版)两个计数原理与排列组合知识点及例题(最新整理)
m
1
mm
1
2m
1n
m
1
m
n!
1!n
m
1 ! n
2n
1
m
n 1 !n
2!
m
1 !
C m1 n2
右
另法:利用公式
C
m n
Cm n1
C
m1 n1
推得
左
C m1 n
C nm
C
m n
C m1 n
C m1 n1
Cn n1
C m1 n2
右
点评:证明排列、组合恒等式通常利用排列数、组合数公式及组合数基本性质
并列需要分类计算
解:(1)A 中每个元都可选 0,1,2 三者之一为像,由分步计数原理,共有 3 3 3 3 34 个不同
映射
(2)根据 a, b, c, d 对应的像为 2 的个数来分类,可分为三类:
第一类:没有元素的像为 2,其和又为 4,必然其像均为 1,这样的映射只有一个;
第二类:一个元素的像是
(1)6 名学生排 3 排,前排 1 人,中排 2 人,后排 3 人; (2)6 名学生排成一排,甲不在排头也不在排尾; (3)从 6 名运动员中选出 4 人参加 4×100 米接力赛,甲不跑第一棒,乙不跑第四棒; (4)6 人排成一排,甲、乙必须相邻; (5)6 人排成一排,甲、乙不相邻; (6)6 人排成一排,限定甲要排在乙的左边,乙要排在丙的左边(甲、乙、丙可以不相邻)
根据分类计数原理和点 A 共面三点取法共有 3C53 3 33 种
(2)取出的 4 点不共面比取出的 4 点共面的情形要复杂,故采用间接法:先不加限制任取 4 点( C140
例 1 完成下列选择题与填空题
高考复习:计数原理与排列组合(一)
【例题】n n元集合的非空子集个数为______。
【例题】 计算下列各数:
【例题】 现有4个男生和6个女生:
(1)任选4人参加志愿活动,有___种选法;
(2)任选4人参加志愿活动,要有2名男生和2名女 生,有______种选法;
(3)任选4人参加志愿活动,至多有1名男生3年上海春季10)从4名男同学和6名女同学中 随机选取3人参加某社团活动,选出的3人中男女 同学都有的概率为________(结果用数值表示).
【例题】 (2014年广东理8)设集合
A 1 x1 x2 x3 x4 x5 3
60
90
120
130
2
(4)任选4人参加志愿活动,至少有1名男生参 加, 有______种选法;
(5)任选4人分赴上海、天津、广州、深圳参加志 愿活动,有______种选法。
【例题】 用 0~9组成的: (1)三位数有______个; (2)无重复数字的三位数有______个; (3)(2013年山东理10)有重复数字的三位数有 ______个; (4)无重复数字的三位偶数有______个。
计数原理、排列组合-精简题型汇总
小集团排列问题-先整体后局部:小集团排列问题中,先将 小集团看做一个元素,进行全排列,再对小集团内部进行全 排列 。
6
六、重排问题 ——住店法
例6. 把6名学生分配到7个车间实习,共有多少种不同的分法?
解:完成此事共分六步:把第1名学生分配到车间有 7 种 分法,把第2名学生分配到车间也有7种分法,依此类推, 由分步计数原理,共有 76 种不同的分法。
插空法:元素相隔问题可先把没有位置要求的 元素进行排队,再把不相邻元素插入其中间和 两端。
4
四、 定序问题——倍缩法
例4. 9人排成一行,要求甲、乙、丙从左到右排列(不要求必
须相邻),有多少种排法?
NAA9393 A96 60480
定序问题-倍缩法:对于某几个元素顺序一定的排 列问题,可先将这几个元素与其它元素一同进行 排列,然后用总的排列数除以这几个元素的全排 列数。
或:7名学生争夺5项冠军,每项冠军只能由一人获得,获 得冠军的可能的种数有 75 种。
重排问题-住店法:允许重复的排列问题,是以元素为研究 对象,元素不受位置的约束,可以逐一安排各个元素的位置 。通常,n个不同的元素没有限制地安排在m个位置上的排列 数为mn种。
7
七、环排问题 ——线性排列
例7. 8人围桌而坐,共有多少种坐法?
解:分三步取书C得62C42C22 种方法,但这里出现重复计数的现象,不 妨记6本书为ABCDEF,若第一步取AB,第二步取CD,第三步取EF
,该分法记为(AB,CD,EF),则C62C42C22 中还有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)
9
九、相同元素分份(名额分配)问题——隔板法
高中数学 2-3 排列组合典型例题 教师用
1.分类计数原理: 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有N = n 1+n 2+n 3+…+n M 种不同的方法.2.分步计数原理:完成一件事,需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事共有N =n 1·n 2·n 3·…n M 种不同的方法.注:分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。
它们的共同点都是把一个事件分成若干个分事件来进行计算。
只不过利用分类计算原理时,每一种方法都独立完成事件;如需连续若干步才能完成的则是分步。
利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性.比较复杂的问题,常先分类再分步。
3.⑪排列的定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.⑫排列数的定义: 从n 个不同元素中取出m (m ≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数, 用符号m n A 表示. 其中n ,m ∈N *,并且m ≤n .⑬排列数公式: !(1)(1)(,,)()!m n n A n n n m m n n m N n m =--+=∈- ≤ 当m =n 时,排列称为全排列,排列数为n n A =(1)21n n ⨯-⨯⨯⨯ 记为n !, 且规定O!=1.注:!(1)!!n n n n ⋅=+- ; 11--=m n m n nA A 4.⑪组合的定义: 从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑫组合数的定义: 从n 个不同的元素中取出m (m ≤n )个元素的所有组合数,叫做从n 个不同元素中取出m 个元素的组合数.用符号mn C 表示. ⑬组合数公式: (1)(1)!!!()!m m n n m m A n n n m n C A m m n m --+===- . 规定01n C =,其中m ,n ∈N +,m ≤n.注: 排列是“排成一排”,组合是“并成一组”, 前者有序而后者无序. ⑭组合数的两个性质:①;mn m n n C C -= 从n 个不同元素中取出m 个元素后就剩下n -m 个元素,因此从n 个不同元素中取出 n -m 个元素的方法是一一对应的,因此是一样多的.②11m m m n n n C C C -++= 根据组合定义与加法原理得;在确定n +1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m -1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有m n m n m n C C C 11+-=+.5.解排列、组合题的基本策略与方法(Ⅰ)排列、组合问题几大解题方法:①直接法; ②排除法;③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,()m m n <个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m m n nA A 种排列方法.(Ⅱ)排列组合常见解题策略:①特殊元素优先安排策略; ②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列); ④正难则反,等价转化策略; ⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略; ⑦定序问题除法处理策略;⑧分排问题直排处理的策略; ⑨ “小集团”排列问题中先整体后局部的策略; ⑩构造模型的策略.1.1两个计数原理(1)例1、某班共有男生28名,女生20名,从该班选出学生代表参加校学代会。
高中理科数学《计数原理与排列组合》单元测试
一、选择题1.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【解题提示】用插空法求解.【解析】选A.8名学生先排有错误!未找到引用源。
种排法,产生9个空,2位老师插空有错误!未找到引用源。
种排法,所以共有错误!未找到引用源。
种排法.2.(2016·烟台模拟)从1,3,5,7,9这5个奇数中选取3个数字,从2,4,6,8这4个偶数中选取2个数字,再将这5个数字组成没有重复数字的五位数,且奇数数字与偶数数字相间排列.这样的五位数的个数是()A.180B.360C.480D.720【解析】选D.第一步,选:错误!未找到引用源。
;第二步,排:3!·2!.根据分步乘法计数原理,得符合条件的五位数共有错误!未找到引用源。
3!·2!=720(个). 3.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有()A.24种B.28种C.32种D.36种解析:将3本相同的小说记为a,a,a;2本相同的诗集记为b,b,将问题分成3种情况,分别是①aa,a,b,b,此种情况有A24=12种;②bb,a,a,a,此种情况有C14=4种;③ab,a,a,b,此种情况有A24=12种,总共有28种,故选B.答案:B4.如果把个位数是1,且恰好有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有()A.9个B.3个C.12个D.6个解析:当重复数字是1时,有C13·C13种;当重复数字不是1时,有C13种.由分类加法计数原理,得满足条件的“好数”有C13·C13+C13=12个.答案:C5.(2018·沧州七校联考)高三年级的三个班去甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种答案 C解析自由选择去四个工厂有43种方法,甲工厂不去,自由选择去乙、丙、丁三个工厂有33种方法,故不同的分配方案有43-33=37种.6.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为()A.42 B.30C.20 D.12答案 A解析将新增的2个节目分别插入原定的5个节目中,插入第一个有6种插法,插入第2个时有7个空,共7种插法,所以共6×7=42(种).7.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252C.261 D.279解析:能够组成三位数的个数是9×10×10=900,能够组成无重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三位数的个数是900-648=252.答案:B8.(2014·四川,理)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种答案 B解析根据甲、乙的位置要求分类解决,分两类.第一类:甲在左端,有A55=5×4×3×2×1=120种方法;第二类:乙在最左端,有4A44=4×4×3×2×1=96种方法.所以共有120+96=216种方法.9.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有() A.288个B.240个C.144个D.126个答案 B解析对个位是0和个位不是0两类情形分类计算;对每一类情形按“个位——最高位——中间三位”分步计数:①个位是0并且比20 000大的五位偶数有1×4×A43=96个;②个位不是0并且比20 000大的五位偶数有2×3×A43=144个;故共有96+144=240个.本题考查两个基本原理,是典型的源于教材的题目.10.(2018·衡水中学调研卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .10种 B .20种 C .36种 D .52种答案 A解析 将4个小球分2组,①C 42C 22A 22=3种;②C 41C 33=4种.①中的这3种分组方法任意放均满足条件,∴3×A 22=6种放法.②中的4种分组方法各只对应1种放法.故总种数为6+4=10种.11.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行.则安排这6项工程的不同方法总数为( ) A .10 B .20 C .30 D .40答案 B解析 因为工程丙完成后立即进行工程丁,若不考虑与其他工程的顺序,则安排这6项工程的不同方法数为A 55,对于甲、乙、丙、丁所处位置的任意排列有且只有一种情况符合要求,因此,符合条件的安排方法总数为A 55A 33=5×4=20.12.(2017·河北唐山一中模拟)中小学校车安全引起社会的关注,为了彻底消除校车安全隐患,某市购进了50台完全相同的校车,准备发放给10所学校,每所学校至少2台,则不同的发放方案的种数有( ) A .C 419B .C 389C .C 409D .C 399答案 D解析 首先每个学校配备一台,这个没有顺序和情况之分,剩下40台;将剩下的40台象排队一样排列好,则这40台校车之间有39个空.对这39个空进行插空(隔板),比如说用9个隔板隔开,就可以隔成10部分了.所以是在39个空里选9个空插入隔板,所以是C 399. 二、填空题13. 将甲、乙、丙等六人分配到高中三个年级,每个年级2人.要求甲必须在高一年级,乙和丙均不在高三年级,则不同的安排种数为 .答案:9解析:若甲、乙在高一年级,则丙一定在高二年级,此时不同的安排种数为3;若甲、丙在高一年级,则乙一定在高二年级,此时不同的安排种数为3;若甲在高一年级,乙、丙在高二年级,此时不同的安排种数为3,所以由分类计数原理知不同的安排种数为9.14.(2017·北京海淀区二模)某运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有________种不同的抽调方法. 答案 84解析 方法一:(分类法),在每个车队抽调1辆车的基础上,还需抽调3辆车.可分成三类:一类是从某1个车队抽调3辆,有C 71种;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A 72种;一类是从3个车队中各抽调1辆,有C 73种.故共有C 71+A 72+C 73=84(种)抽调方法.方法二:(隔板法),由于每个车队的车辆均多于4辆,只需将10个份额分成7份.可将10个小球排成一排,在相互之间的9个空当中插入6个隔板,即可将小球分成7份,故共有C 96=84(种)抽调方法.15.将标号为1,2,3,4,5,6的6个小球放入3个不同的盒子中,若每个盒子放2个,其中标号为1,2的小球放入同一个盒子中,则不同的放法共有 种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计数原理及排列组合典型问题
一、 计数原理:
某城市在中心广场建造一个花圃,花圃分为6个部分(如
右图)现要栽种4种不同颜色的花,每部分栽种一种且相
邻部分不能栽种同样颜色的花,不同的栽种方法有______
种.(以数字作答)
【答案】 120
二、 排列问题:
1、限定顺序问题:
(1) 7位同学站成一排.甲必须站在乙的左边? 【答案】7722=2520A A
(2) 7位同学站成一排.甲、乙和丙三个同学由左到右排列? 【答案】84033
77=A A (3)7位同学站成一排.甲和乙在丙的同侧?
【答案】3360
2、相邻问题:7位同学站成一排,甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起排法共有多少种?
【答案】将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,∴一共有排法种数:(种)
3、不相邻问题:7位同学站成一排,甲、乙和丙三个同学都不能相邻的排法共有多少种?
【答案】先将其余四个同学排好有种方法,此时他们留下五个“空”,再
将甲、乙和丙三个同学分别插入这五个“空”有种方法,所以一共有=
1440种.
4、限制位置问题:7位同学站成一排,甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?
【答案】将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2种方法,所以,丙不能站在排头和排尾的排法
342342288A A A =44A 35A 44A 35A 55A 654
321
有
三、组合问题:
1、等分问题:
(1)今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法?
【答案】62221064233
=3150C C C C A
(2)今有10件不同奖品, 从中选6件分给甲乙丙三人,每人2件, 有几种分法?
【答案】622210
642=18900C C C C
2、不等分问题:
(1)今有10件不同奖品, 从中选6件分给三份,其中1份一件,1份二件,1份三件, 有多少种分法?
【答案】612310
653=12600C C C C
(2)今有10件不同奖品, 从中选6件分给甲乙丙三人,其中1人一件,1人二件,1人三件, 有多少种分法?
【答案】6123310
6533=75600C C C C A
3、元素相同问题:
从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?
【答案】529
=118755C 960)2(225566
=⋅-A A A。