(完整版)锐角三角函数复习教案

合集下载

中考锐角三角函数复习教案

中考锐角三角函数复习教案

中考锐角三角函数复习教案教案标题:中考锐角三角函数复习一、教学目标:1.复习三角函数的定义及性质;2.复习与锐角三角函数相关的公式和计算方法;3.提高学生的综合应用能力。

二、教学重点:1.锐角三角函数的定义;2.锐角三角函数的性质;3.锐角三角函数的计算。

三、教学难点:1.锐角三角函数的综合应用;2.解决与锐角三角函数相关的实际问题。

四、教学流程:1.复习预习:复习三角函数的定义及性质;2.引入新知识:引入锐角三角函数的定义;3.讲解锐角三角函数的性质;4.讲解与锐角三角函数相关的公式和计算方法;5.练习锐角三角函数的计算;6.进行综合应用练习;7.提问与解答;8.作业布置。

五、教学内容详细说明:1.复习预习:复习三角函数的定义及性质,包括正弦函数、余弦函数和正切函数的定义及其周期性、奇偶性、增减性等性质。

2.引入新知识:介绍锐角三角函数的定义,包括正弦定理、余弦定理和正切函数的定义。

通过几何图形的展示和实例的计算,让学生感受到锐角三角函数在实际问题中的应用。

3.讲解锐角三角函数的性质:详细讲解正弦、余弦和正切函数的周期性、奇偶性、增减性等性质。

通过图形展示和实例计算,让学生理解和掌握这些性质。

4.讲解与锐角三角函数相关的公式和计算方法:讲解正弦、余弦和正切函数之间的关系及计算方法,包括倍角、半角、和差等公式。

通过实例计算,让学生掌握这些公式和计算方法。

5.练习锐角三角函数的计算:提供一些锐角三角函数的计算题目,让学生进行练习和巩固。

教师可以给予指导和解答,让学生通过练习提高计算能力。

6.进行综合应用练习:提供一些与锐角三角函数相关的实际问题,让学生进行综合应用练习。

学生可以通过解决这些问题来巩固所学的知识,并培养解决实际问题的能力。

7.提问与解答:教师可以进行提问,引导学生回顾和总结所学内容,回答问题和解决疑惑。

8.作业布置:布置一些与锐角三角函数相关的作业,让学生巩固所学的知识。

作业可以包括计算题目、应用题目和综合问题。

九年级-数学锐角三角函数复习教案

九年级-数学锐角三角函数复习教案
教学步骤
师生活动
设计意图
基础知识之
自我回顾
教师提前一天布置学生对本章知识进行复习整理,本课进行成果展示,比一比,谁更优秀。
提前告知学生本节课要求,让其早作准备,让学生“有备而来”,有利于提高复习效果。让学生以比赛选手身份展示自己复习成果——本节课复习效果。有效地明确其身份——你是本课的主人,一定要参与其中,为提高课堂效益打下基础。
基础知识之
灵活运用
教师控制好投影换页速度,让学生有充分思考时间,学生讲解过程,核对答案,教师点评.
1. 中, ,则 值是()
A. B. C. D.
2.Rt 中,斜边AB的长为m, ,则BC边长是()
A. B.
C. D.
3. 中, ,则 的值是()
A. B. C. D.
4. _________
4道小题,不难不易,具有典型性、示范性,再次检查学生掌握基本知识情况。其中不乏有陷阱题,看学生审题习惯如何,不错最好,错了不是坏事,其他同学的纠正,教师点评有助于其加深印象。
难点突破之
思维激活
投影试题,学生分析,学生板演,学生纠错,教师点评.
1.中学有一块三角形形状的花园ABC,现可直接测得 ,AC=40米,BC=25米,请你求出这块花园的面积。
2.据报道,204国道某地段事故不断,据交通管理部门调查发现,很多事故发生的最直接原因就是司机对限速60km/h的警示视而不见,超速行驶.于是交通管理部门准备在该地段路边离公路100m处设置一个速度监测点A,在如图所示的直角坐标系中,点A位于 轴上,测速路段BC在 轴上,点B在点A的北偏西52°方向上,点C在点A的北偏东60°方向上.(参考数据: )
(参考数据: )
本题接近学生实际生活,设计新颖,考查解直角三角形的实际应用。同时,充分体现了方程思想在解直角三角形问题中的应用,是中考命题的热点,中考题并不可怕,师生互动后也能顺利解决,让学生产生“不过如此”的感觉。

锐角三角函数-复习教案

锐角三角函数-复习教案

锐角三角函数一、三角函数知识点归纳1.三角函数定义。

sinA=, cosA=, tanA=2.特殊锐角的三角函数值:求特殊角的三角函数值:1.在等腰直角三角形ABC 中,∠C =90º,则sin A 等于( )A .12B CD .12.求下列各式的值(1)sin 30°+cos30° (2)2sin 45°-21cos30°(3)045sin 30cos +tan60°-tan30° (4)2sin450-3tan300+4cos600-6tan4503、已知sinA=21(∠A 为锐角),则∠A=_________,cosA=_______,tanA=__________.求非特殊角的三角函数值:例、已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为练习: 1、已知cosA=23,且∠B=900-∠A ,则sinB=__________.2、在Rt △ABC 中,∠C 为直角,sin(900-A)=0.524,则cos(900-B)=_________.3、∠A 为锐角,已知sinA=135,那么cos (900-A)=___________ .4、在Rt ABC △中,9032C AB BC ∠===°,,,则cos A 的值是 .二、解直角三角形在直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系:sinA=c a cosA=c b tanA=b a(2)三边之间关系:a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系:∠A+∠B=90°. (以上三点正是解直角三角形的依据)例1、如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 。

例2、如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD ,若AB=8,BD=5,则CD=1、在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、如果三角形的斜边长为4,一条直角边长为23,求斜边的高。

锐角三角函数复习课教案

锐角三角函数复习课教案

锐角三角函数复习课教案1.理解锐角三角函数的定义,掌握特殊锐角(30°,45°,60°)的三角函数值,并会进行计算.2.掌握直角三角形边角之间的关系,会解直角三角形. 3.利用解直角三角形的知识解决简单的实际问题. (一)锐角三角函数定义知识点归纳1.如图所示,在Rt △ABC 中,∠C =90°. ①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边)(cos =A =______,斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______.2.特殊角的三角函数值.a sina cosa tana 30° 45° 60°∠A 的正弦sin A 、∠A 的余弦:cos A 、∠A 的正切:tan A ,它们统称为∠A 的锐角三角函数,注意锐角的三角函数只能在直角三角形中使用,如果没有直角三角形,常通过作垂线构造直角三角形. (二)、解直角三角形1.定义:由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.(直角三角形中,除直角外,一共有5个元素,即3条边和2个锐角) 2.直角三角形的边角关系: 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,C . (1)三边之间的关系:____________; (2)锐角之间的关系:____________;(3)边角之间的关系:sin A =a c ,cos A =b c ,tan A =a b ,sin B =b c ,cos B =a c ,tan B =ba.3.解直角三角形的几种类型及解法:(1)已知一条直角边和一个锐角(如a ,∠A ),其解法为:∠B =90°-∠A ,c =asin A,b =atan A(或b =c 2-a 2); (2)已知斜边和一个锐角(如c ,∠A ),其解法为:∠B =90°-∠A ,a =c ·sin A , b =c ·cos A (或b =c 2-a 2);(3)已知两直角边a ,b ,其解法为:c =a 2+b 2,由tan A =ab ,得∠A ,∠B =90°-∠A ;(4)已知斜边和一直角边(如c ,a )其解法为:b =c 2-a 2,由sin A =ac ,求出∠A ,∠B =90°-∠A .(三)、解直角三角形的应用 ①仰角与俯角③坡度 tan hi lα==(四)类型题组类型1 求锐角三角函数值1、在Rt ⊿ABC 中,∠C =90°,BC =10,AC =4,则______tan _____,cos ==A B ;2、已知Rt △ABC 中,若,900=∠C cos 24,135==BC A ,则._______=AC 3、Rt △ABC 中,,900=∠C 35tan ,3==B BC ,那么.________=AC 4、在Rt ⊿ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正弦址与余弦值的情况( )A 都扩大2倍B 都缩小2倍C 都不变D 不确定 5、在⊿ABC 中,∠C =90°,tan A = ,则sin B =( ). A . B . C . D . 6. 在Rt △ABC 中,∠C =90°,5sin 13A =,则tanB = 。

九年级数学下册 第28章锐角三角函数复习教案 人教新课标版 教案

九年级数学下册 第28章锐角三角函数复习教案 人教新课标版 教案

第28章 锐角三角函数复习教案锐角三角函数(第一课时) 教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。

二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。

三.情感目标:提高学生对几何图形美的认识。

教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。

2.归纳三角函数定义。

siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。

4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结 五.作业课本解直角三角形应用(一) 一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2+b 2=c 2(勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 2 a=6,解这个三角形.例2在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20 B ∠=350,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 3在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. (三) 巩固练习在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。

锐角三角函数复习教案

锐角三角函数复习教案

锐角三角函数复习教案(总6页) -本页仅作为预览文档封面,使用时请删除本页-锐角三角函数复习教案锐角三角函数复习教案一、案例实施背景本节课是九年级解直角三角形讲完后的一节复习课二、本章的课标要求:1、通过实例锐角三角函数(sinA、cosA、tanA)2、知道特殊角的三角函数值3、会使用计算器由已知锐角求它的三角函数值,已知三角函数值求它对应的锐角4、能运用三角函数解决与直角三角形有关的简单实际问题此外,理解直角三角形中边、角之间的关系会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,进一步感受数形结合的数学思想方法,通过对实际问题的思考、探索,提高解决实际问题的能力和应用数学的意识。

三、课时安排:1课时四、学情分析:本节是在学完本章的前提之下进行的总复习,因此本节选取三个知识回顾和四个例题,使学生将有关锐角三角函数基础知识条理化,系统化,进一步培养学生总结归纳的能力和运用知识的能力.因此,本节的重点是通过复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.进一步体会三角函数在解决实际问题中的作用,从而发展数学的应用意识和解决问题的能力.五、教学目标:知识与技能目标1、通过复习使学生将有关锐角三角函数基础知识条理化,系统化.2、通过复习培养学生总结归纳的能力和运用知识的能力.过程与方法:1、通过本节课的复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.2、通过复习锐角三角函数,进一步体会它在解决实际问题中的作用.情感、态度、价值观充分发挥学生的积极性,让学生从实际运用中得到锻炼和发展.六、重点难点:1.重点:锐角三角函数的定义;直角三角形中五个元素之间的相互联系.2.难点:知识的深化与运用.七、教学过程:知识回顾一:(1)在Rt△ABC中,C=90,AB=6,AC=3,则BC=_________,sinA=_________,cosA=______,tanA=______,A=_______,B=________.知识回顾二:(2)比较大小:sin50______sin70cos50______cos70tan50______tan70.知识回顾三:(3)若A为锐角,且cos(A+15)=,则A=________.本环节的设计意图:通过三个小题目回顾:1、锐角三角函数的定义:在Rt△ABC中,C=90锐角A的正弦、余弦、和正切统称A的锐角三角函数。

第二十八章锐角三角函数(教案)

第二十八章锐角三角函数(教案)
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义及其图像性质。对于难点部分,如函数互化公式的理解,我会通过具体例题和图形比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用三角板和量角器来测量并计算实际角度对应的函数值。
第二十八章锐角三角函数(教案)
一、教学内容
第二十八章锐角三角函数:
1.锐角三角函数的定义:正弦、余弦、正切的定义及表示方法。
2.锐角三角函数的图像:通过动态演示或静态图像,让学生直观理解正弦、余弦、正切函数的图像特征。
3.锐角三角函数的性质:周期性、奇偶性、单调性等。
4.锐角三角函数的互化:正弦、余弦、正切之间的关系及其互化公式。
举例:讲解正弦函数的定义时,通过直角三角形的比例关系引出正弦函数的概念,并强调在单位圆中的比值表示方法。
2.教学难点
-函数图像的动态理解:学生往往难以从静态图像中理解动态变化,如何让学生通过动态演示或交互式软件直观感受函数图像的变化。
-锐角三角函数互化公式的记忆与运用:正弦、余弦、正切之间的互化关系较复杂,学生需掌握并能灵活运用互化公式。
在新课讲授环节,我发现有些同学对锐角三角函数的定义理解不够深入,尤其是在函数图像的动态理解上存在困难。针对这一点,我采用了动态软件和教具进行演示,但感觉效果并不理想。我考虑在下一节课中增加互动环节,让学生自己动手操作,以便更直观地感受函数图像的变化。
在实践活动和小组讨论中,同学们表现出了较高的热情,能够积极参与讨论和实验操作。但在引导讨论时,我发现有些同学对实际问题的数学建模能力较弱,难以将问题抽象为数学模型。针对这一问题,我将在后续的教学中加强数学建模的培训,培养学生从实际问题中提炼数学问题的能力。

中考锐角三角函数复习教案

中考锐角三角函数复习教案

锐角三角函数复习教案一、【教材分析】二、【教学流程】运用第2题图3.式子2cos30°-tan45°-〔1-tan60°〕2的值是 ( )A.2 3-2B.0C.2 3D.24.在△ABC中,假设|cos A-12|+(1-tan B)2=0,那么∠C的度数是( )A.45°B.60°C.75°D.105°【组内交流】学生根据问题解决的思路和解题中所呈现的问题进行组内交流,归纳出方法、规律、技巧.【成果展示】教师要有意识引导学生体会锐角三角函数在题目解决中所表达的解题规律.给学生充足的时间思考分析通过学生思考梳理锐角三角函数的知识运用.一生展示,其它小组补充完善,展示问题解决的方法,注重一题多解及解题过程中的共性问题,教师注意总结问题的深度和广度.直击1.(威海中考)如图,在以下网格中,小正方形的边长均为1,点A,B,O都在格点上,那么∠AOB的正弦值是( )3101110A B C D102310....第1题图2.(重庆中考)计算6tan 45°-2cos 60°的结果是( )A. B.4 C. D.5教师展示问题,学生有针对性独立思考解答,3435三、【板书设计】锐角三角函数复习作 业必做题1.(重庆中考)如图,△ABC 中,AD ⊥BC ,垂足为点D ,假设BC =14,AD =12,tan ∠BAD =求sin C 的值.1题图 2.(苏州中考)如图,在△ABC ,AB =AC =5,BC =8.假设∠BPC = ∠BAC ,那么tan ∠BPC = .选做题 2题图 3.的值,求为锐角,若αααααcos sin 34cos sin -=+第一,二题学生课下独立完成,延续课堂.第三题课下交流讨论有选择性完成.以生为本,正视学生学习能力、认知水平等个体差异,让不同的学生都能学有所得,学有所成,体验学习带来的成功与快乐.34,12锐角三角函数1、锐角三角函数的定义⑴、正弦⑵、余弦⑶、正切2、30°、45°、60°特殊角的三角函数值3、各锐角三角函数间的函数关系式⑴、互余关系;⑵、平方关系;⑶、相除关系四、【教后反思】。

中考锐角三角函数复习教案

中考锐角三角函数复习教案

中考锐角三角函数复习教案【教案内容】一、教学目标1.知识与技能(1)复习锐角三角函数的定义;(2)掌握常见锐角三角函数的计算方法;2.过程与方法(1)通过讲解、分析和解题等学习方法,帮助学生全面复习锐角三角函数的相关知识;(2)通过练习题,巩固学生的计算能力和应用能力;3.情感态度价值观通过学习锐角三角函数,培养学生的数学思维能力,提高学生的逻辑思维和分析问题的能力,培养学生的合作意识和团队精神。

二、教学重点1.锐角三角函数的定义;2.常见锐角三角函数的计算方法。

三、教学难点1.锐角三角函数的综合运用;2.有关锐角三角函数的实际问题。

四、教学过程1.复习(1)复习锐角三角函数的定义;(2)回顾与锐角三角函数相关的练习题。

2.讲授(1)解析定义法解析定义法是指通过三角形的几何关系来定义锐角三角函数的方法。

其基本定义如下:- 正弦函数sinA:在一个锐角三角形中,对于任意锐角A,a/b就是其正弦函数。

- 余弦函数cosA:在一个锐角三角形中,对于任意锐角A,b/c就是其余弦函数。

- 正切函数tanA:在一个锐角三角形中,对于任意锐角A,a/c就是其正切函数。

(2)练习题演练通过一些具体的练习题,帮助学生巩固解析定义法的运用。

3.拓展(1)锐角三角函数的性质-在锐角三角形中,锐角的对边是锐角三角函数的对边,锐角的邻边是锐角三角函数的邻边。

-在锐角三角形中,正弦函数的值总是小于等于1,余弦函数的值总是小于等于1,正切函数的值没有上界。

(2)常用锐角三角函数的计算- 根据锐角的大小和所在象限,计算sinA、cosA和tanA的值。

- 根据锐角的大小和所在象限,计算cscA、secA和cotA的值。

(3)练习题演练通过一些具体的练习题,帮助学生巩固常用锐角三角函数的计算方法。

4.整合与应用(1)综合运用通过一些综合的锐角三角函数计算题,帮助学生综合应用所学知识解答问题。

(2)实际问题通过一些与现实生活相关的锐角三角函数问题,帮助学生发现锐角三角函数在实际应用中的重要性和作用。

最新中考锐角三角函数复习教案

最新中考锐角三角函数复习教案

锐角三角函数复习教案一、【教材分析】二、【教学流程】运用第2题图3.式子2cos30°-tan45°-(1-tan60°)2的值是 ( )A.2 3-2B.0C.2 3D.24.在△ABC中,若|cos A-12|+(1-tan B)2=0,则∠C的度数是 ( )A.45°B.60°C.75°D.105°【组内交流】学生根据问题解决的思路和解题中所呈现的问题进行组内交流,归纳出方法、规律、技巧.【成果展示】教师要有意识引导学生体会锐角三角函数在题目解决中所体现的解题规律.给学生充足的时间思考分析通过学生思考梳理锐角三角函数的知识运用.一生展示,其它小组补充完善,展示问题解决的方法,注重一题多解及解题过程中的共性问题,教师注意总结问题的深度和广度.直击1.(威海中考)如图,在下列网格中,小正方形的边长均为1,点A,B,O都在格点上,则∠AOB的正弦值是( )3101110A B C D102310....第1题图2.(重庆中考)计算6tan 45°-2cos 60°的结果是( )A. B.4 C. D.5教师展示问题,学生有针对性独立思考解答,3435三、【板书设计】锐角三角函数复习作 业必做题1.(重庆中考)如图,△ABC 中,AD ⊥BC ,垂足为点D ,若BC =14,AD =12,tan ∠BAD =求sin C 的值.1题图2.(苏州中考)如图,在△ABC ,AB =AC =5,BC =8.若∠BPC = ∠BAC , 则tan ∠BPC = .选做题 2题图 3.的值,求为锐角,若αααααcos sin 34cos sin -=+第一,二题学生课下独立完成,延续课堂.第三题课下交流讨论有选择性完成.以生为本,正视学生学习能力、认知水平等个体差异,让不同的学生都能学有所得,学有所成,体验学习带来的成功与快乐.34,12锐角三角1、锐角三角函数的定义⑴、正弦⑵、余弦⑶、正切四、【教后反思】。

锐角三角函数复习教案

锐角三角函数复习教案

第二十八章锐角三角函数(复习)一、教学目标::1、掌握锐角三角函数的概念,利用锐角三角函数的意义及直角三角形的边角关系解决一些数学问题。

2、通过运用勾股定理,直角三角形的边角关系以及锐角三角函数知识,培养学生分析问题、解决问题的能力。

3、渗透数形结合思想,培养学生良好的学习习惯。

二、教学重点:锐角三角函数及直角三角形有关知识的综合运用三、教学难点:实际问题转化成数学模型。

四、教学过程:(一)师生共同复习本章知识结构(1)锐角三角函数及特殊角的三角函数值:①如图所示,在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.那么∠A的正弦:sin A=∠A的余弦:cos A=∠A的正切:tan A=∠B的正弦:sin A=∠B的余弦:cos B=∠B的正切:tan B=思考:通过边角关系,你发现了什么规律?②特殊角的三角函数值:③三角函数的增减性:当0°< α < 90°时对于sinα与tanα,角度越大,函数值越;对于cosα,角度越大,函数值越 .(2). 解直角三角形①在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.三边关系:三角关系:边角关系:(3). 三角函数的应用 ①仰角和俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角. ② 坡度,坡角如图:坡面的铅垂高度(h )和水平长度(l ) 的比叫做坡面坡度.记作i ,即i= h l.坡面与水平面的夹角叫做坡角,记作α,有 i = tan α. 坡度通常写成1∶m 的形式,如i =1∶6.显然,坡度越大,坡角α就越大,坡面就越陡. ③ 方位角:以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于900的角,叫做方位角. 如图所示 (二)、双基练习1、若∠A 为锐角,sinA=13,则:cosA=_____,tanA=______2、比较大小:sin530_____ sin540 sin270______ cos7203、(2014·凉山州)在△ABC 中,若|cos A -12|+(1-tan B)2=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°4、(2015·兰州)如图,△ABC 中,∠B =90°,BC =2AB ,则cos A =( )A .52B .12C .255D .555、如图,在菱形ABCD 中,DE ⊥AB ,cos A =35,BE =2,则tan ∠DBE的值是_ __. (三)、能力提升练习 6、(2015·巴中)计算:|2-3|-(2015-π)0+2sin 60°+(13)-1.7、(2015·丽水)如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos ∠α的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC8、(2015·太原)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2 B.255 C .55 D .129、如图在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,tan ∠BDC=34,则线段AB 的长为( ) A 、 4 B 、5 C 、6 D 、1010、如图,在□ABCD 中,对角线AC ,BD 相交所成的锐角为α,若AC=a ,BD=b ,则:S □ABCD=( )A 、12absinaB 、absinaC 、abcosaD 、 12abcosa11、如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A .12B .34C .32D .4512、(2014·临沂)如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B ,C 之间的距离为( )A .20海里B .10 3 海里C .20 2 海里D .30海里13、(2015·曲靖)如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则cos D =____. 14、(2015·宁波)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度.站在教学楼的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的俯角为30°.若旗杆与教学楼的距离为9 m ,则旗杆AB 的高度是__________m (结果保留根号)15、(2015·牡丹江)在△ABC 中,AB =122,AC =13,cos B =22,求BC 的长。

锐角三角函数复习教案

锐角三角函数复习教案

数学个性化教学教案授课时间:年月日备课时间年月日年级九学科数学课时 2 h 学生姓名授课主题锐角三角函数授课教师教学目标1、使学生了解解直角三角形的概念,能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。

教学重点 1.三角形全等的条件;三角形全等条件的综合运用教学难点1、解直角三角形教学过程一、【历次错题讲解】二、【基础知识梳理】1、锐角三角函数定义在直角三角形ABC中,∠C=900,设BC=a,CA=b,AB=c,锐角A的四个三角函数是:(1) 正弦定义:在直角三角形中ABC,锐角A的对边与斜边的比叫做角A的正弦,记作sinA,即sin A =ca,(2)余弦的定义:在直角三角行ABC,锐角A的邻边与斜边的比叫做角A的余弦,记作cosA,即cos A =cb,(3)正切的定义:在直角三角形ABC中,锐角A的对边与邻边的比叫做角A的正切,记作tanA,即tan A =ba,这种对锐角三角函数的定义方法,有两个前提条件:(1)锐角∠A必须在直角三角形中,且∠C=900;(2)在直角三角形ABC 中,每条边均用所对角的相应的小写字母表示。

否则,不存在上述关系2、坡角与坡度坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比),即坡度等于坡角的正切。

3、锐角三角函数关系(1)平方关系:sin2A + cos2A = 1;4、互为余角的两个三角函数关系若∠A+∠B=∠90,则sinA=cosB ,cosA=sinB.学习札记5、特殊角的三角函数三角函数 锐角α 300 450 600sin α cos α tan α6、勾股定理1、勾股定理的概念:直角三角形斜边的平方等于两直角边的平方和。

2、勾股定理的数学表达;若∆ABC 为直角三角形∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且∠C=∠90,则222c b a =+,反之,已知a ,b ,c 为三角形ABC 的边。

九年级数学《锐角三角函数》复习教学设计

九年级数学《锐角三角函数》复习教学设计

教学目标:1.理解锐角三角函数的概念;2.掌握正弦函数、余弦函数和正切函数的定义;3.能够根据特殊角的数值计算三角函数值;4.能够利用三角函数的性质解决实际问题。

教学准备:教材《九年级数学》课本、教学PPT、白板、彩色粉笔、三角函数计算器。

教学过程:一、导入(10分钟)1.引导学生回顾上节课学习的内容,复习什么是锐角以及角的三要素。

2.提问:你们知道什么是三角函数吗?为什么叫三角函数?3.引入本节课的学习目标:学习锐角三角函数的概念和定义,并能够计算特殊角的三角函数值。

二、学习与练习(30分钟)1.讲解正弦函数的定义和性质。

通过示意图和实例计算正弦函数值。

2.讲解余弦函数的定义和性质。

通过示意图和实例计算余弦函数值。

3.讲解正切函数的定义和性质。

通过示意图和实例计算正切函数值。

4.练习:根据特殊角的数值计算三角函数值,并相互验证。

三、拓展应用(30分钟)1.引导学生应用三角函数的性质解决实际问题,如计算身高、建筑物高度等。

2.提供一些经典的应用题,让学生独立解决,并和同伴分享解题思路。

四、归纳总结(15分钟)1.学生进行小组讨论,归纳总结正弦函数、余弦函数和正切函数的定义和性质。

2.学生代表发言,将自己小组的总结写在黑板上,带领全班进行讨论和补充。

五、课堂练习与答疑(15分钟)1.教师布置几道练习题,要求学生独立完成并交卷。

2.教师和学生一起核对答案,解答学生提出的问题,并做相关的应用题。

六、课堂小结(10分钟)1.教师进行全班复习,回顾本节课所学的内容和方法。

2.提醒学生继续巩固复习,预习下一节课的内容。

教学反思:通过本节课的教学,学生能够理解并掌握了锐角三角函数的概念和定义,并利用其性质解决实际问题。

在教学过程中,我注重启发学生的思维,引导他们独立思考和解决问题,培养了他们的数学思维能力。

然而,本节课的时间安排过于紧凑,学生的课堂参与度还需进一步提高,下节课需要更加注重学生的主动参与和互动。

锐角三角函数复习教案

锐角三角函数复习教案

锐角三角函数复习教案教学目标1通过复习,使学生系统地掌握本章知识。

熟练应用三角函数进行计算。

2了解仰角、俯角、方位角等相关慨念。

掌握直角三角形的边与边,角与角,边与角的关系,能应用这些关系解决相关的问题,进一步培养学生应用知识解决问题的能力。

3通过解直角三角形的复习,体会数学在解决实际问题中的作用。

教学重难点重点:解直角三角形及其应用难点:解直角三角形及其应用教学过程一、本章知识结构梳理二本章专题讲解、专题一:锐角三角函数强化练习1、在△ABC 中,∠C =90°,则sinA+cosA 的值( )A.等于1B.大于1C.小于1D.不一定2、若 1 / 无意义,则锐角为 ( )A.30°B.45°C.60°D.75°3.将cos15°、sin25°、tan45°、cos78°用“<”连接起来__________ 例题精讲例1如图,在Rt △ABC 中,∠C =90°,点D 在BC 边上,已知∠ADC=45°,DC=6,sinB=3/5,试求tan ∠BAD.4.如图,圆O 是△ABC的外接圆,连接OA 、OC 。

圆O 的半径为2,sinB=求弦AC 的长? 方法小巧门:在图中如果没有直角三角形,可适当地构造直 角三角形,从而创设运用锐角三角函数解题的问题情景。

专题二:解直角三角形 锐角三角函数1锐角三角函数的定义 ⑴、正弦; ⑵、余弦; ⑶、正切。

2、30°、45°、60°特殊角的三角函数值。

3、各锐角三角函数间关系 ⑴、定义; ⑵、直角三角形的依据 ⑶、解直角三角形的应用。

①、三边间关系; ②、锐角间关系; ③、边角间关系。

3-4con a 2 AC D B43专题概述:解直角三角形的知识在解决实际问题中有广泛的应用。

因此要掌握直角三角形的一般解法,即已知一边一角和已知两边的两种情况,有时要与方程、不等式、相似三角形及圆等知识结合在一起,要注意各种方法的灵活运用。

中考锐角三角函数复习教案

中考锐角三角函数复习教案
概念再现,知识梳理。




【自主探究】
1如图,A,B,C三点在正方形网格线的格点上,若将△ACB绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()
A. B. C. D.
第1题图
2.如图所示,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于()
A. B. C. D.
第2题图
教师展现问题,学生独立思考完成,要求学生做题时注意知识点和方法的运用,做每一道题进行反思总结.
解题过程中要求学生仔细观察图形,教师要有意识引导学生体会锐角三角函数在题目解决中所体现的解题规律.
给学生充足的时间思考分析
通过学生思考梳
理锐角三角函数
的知识运用.
一生展示,其它小组补充完善,展示问题解决的方法,注重一题多解及解题过程中的共性问题,教师注意总结问题的深度和广度.
以生为本,正视学生学习能力、认知水平等个体差异,让不同的学生都能学有所得,学有所成,体验学习带来的成功与快乐.
三、【板书设计】
锐角三角函数复习
四、【教后反思】
锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。??
教学
重点
锐角三角函数的定义,记忆特殊角的三角函数值.
教学
难点
能够具有合情推理和初步的演绎推理能力.
二、【教学流程】
教学环节
教学问题设计
师生活动
二次备课




1.在Rt△ABC中,∠C=90°,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB的值是()

人教版初中九年级下册数学教案 第二十八章 锐角三角函数 章末复习

人教版初中九年级下册数学教案 第二十八章 锐角三角函数 章末复习

章末复习1.进一步理解并掌握锐角三角形函数的意义,能用定义进行相关的计算;2.熟记特殊角的三角函数值,能用计算器求任意锐角的三角函数值或利用锐角的三角函数值求相应角的度数;3.能用解直角三角形知识解决实际应用问题.4.进一步增强学生分析问题、解决问题的能力,掌握数形结合的思想方法.5.进一步增强学生的数学应用意识,感受数学的转化思想方法,增强学生对数学学习的热情.【教学重点】通过对本章知识的回顾,巩固所学知识,能熟练运用所学知识解决具体问题.【教学难点】运用锐角三角函数解决实际应用问题.一、知识框图,整体把握【教学说明】教学前,教师应根据本章知识内容设计一个适合要求的知识结构框图,教学时,与学生一道回顾本章知识,按自己的设计思路展示出结构图,让学生加深对本章知识的系统理解.二、释疑解惑,加深理解问题 1 请用计算器探索出锐角函数的函数值随自变量锐角从小到大的变化而变化的情况,你有什么发现?【教学说明】教师可引导学生利用计算器求出0°〜10°,10°〜20°,20°〜30°,……,80°〜90° 之间的某一锐角的三角函数值,通过分析得到的函数值,可获得锐角三角函数的一些简单性质.【归纳结论】对于锐角A,它的正弦函数 (sinA)的函数值随自变量锐角A的增大而增大,且sinA必满足0< sinA<1;它的余弦函数(cosA)的函数值随锐角A的增大而减小,且 cosA必满足0<COSA<1;它的正切函数(tanA) 的函数值随锐角A的增大而增大,且tanA满足tanA >0.试一试若锐角A的余弦值cosA = 3,则锐角A的取值范围是()A. 60°<A<90°B. 45°<A<60°C. 30°<A<45°D. 0°<A<30°分析与解由于cos30°=≈0. 866,cos45°= ≈0.707 ,cos60° =12,且 cosA = 34= 0.75,知 cos45°<cosA<cos30°,结合余弦函数的性质,其函数值随角度的增大而减小,从而可知 30°<A <;45°,故应选 C.问题 2 利用锐角三角函数定义及勾股定理,你能证明sin2A + cos2A = 1吗?你有何发现?问题3 若∠A + ∠B =90,你能探索出 tanA与tanB之间有什么关系吗?与同伴交流.【教学说明】教师应引导学生构建直角三角形,利用直角三角形的边角关系及相应锐角的三角函数的意义不难得出结论.经历由问题1的感性认识到问题2、3的理性思考可进一步开拓学生的思维能力,增强解题技能.【结论】 1.对于任意锐角A ,总有sin 2A + cos 2A = 1 ;2.若两个锐角∠A ,∠B 满足∠A + ∠B = 90°, 则必有 tanA • tanB = 1.试一试 化简 22sin 232sin 231cos 23︒-︒+-︒-tan1°·tan11°· tan21°·tan31°·tan89°·tan79°·tan69°·tan59°.分析与解 由2sin 232sin 23︒-︒ = 2sin 231︒-()= |sin 231︒-| = 1 - sin23°,21cos 23-︒ = 2sin 23︒ = sin23°,及tan1°·tan89°=1 等可得到原式 = 1 - sin23°+ sin23°- 1 = 0.三、典例精析,复习新知例1 在Rt △ABC 中,∠C=90°,已知cosA=13,求cosB 和tanA的值.分析与解 结合图形及已知条件,由cosA= 13 =AC AB ,故不妨设AC=m ,则AB=3m ,由勾股定理易得BC=22m ,从而cosB =BC AB= 223m m = 223, tanA =BC AC = 22m m = 22.例2 如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O经过点C ,E 是⊙O 上一点,且∠BEC=45°.(1)试判断CD与⊙O的位置关系,并说明理由.(2)若BE=8 cm,sin∠BCE = 45,求⊙O的半径.分析与解本例是一道圆、平行四边形、锐角三角函数的小综合问题,在(1)中可直接由∠BEC=45°得到∠BOC=90°(添加辅助线OC),再利用平行四边形性质,可得到∠OCD=∠BOC=90°,从而CD是⊙O的切线;在(2)中,应先连AE,利用圆的性质可得∠BAE=∠BCE,又AB为⊙O直径,故△ABC为直角三角形,这样由sin∠BCE= 45,得到sin∠BAE=4 5 = BEAB,又BE=8,从而得AB=10,故⊙O的半径为5.通过上面的分析可以发现,对于不是直角三角形中的锐角三角函数问题,常常需通过添加辅助线,将这一锐角三角函数转化为直角三角形中某个角的三角函数来解决问题.例3 小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形,已知吊车吊臂的支点O距离地面的高OO'=2米,当吊臂顶端由A点抬升至点A'(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B'处,紧绷着的吊缆A B''=AB.AB垂直地面O'B于点B,A B''垂直地面O'B于点C,吊臂长度O A'=OA=10 m,且cosA = 35,sin A' = 12.(1)求此重物在水平方向移动的距离BC;(2)求此重物在竖直方向移动的距离B'C.(结果保留根号)分析与解过O作OF⊥AB于F,交A B''于点E(如图),这样可在Rt△AOF中,利用OA=10, cosA= 35,求出AF=6,从而得OF=8,在Rt△A'OE中,由O A'=10,sin A'=12,得OE=5,从而BC=EF=OF-OE=8-5=3 m,即重物在水平方向移动的距离为3 m;同样,可求出AB=AF+BF=AF+OO' =6+2=8,在Rt△A'OE中,可得A'E=53.故A'C=A'E+EC =53+2,这样B'C= A'C-A B''=A'C-AB=53+2-8=53-6,即此重物在竖直方向移动的距离为(53-6) m.例 4 某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A 点的高度AB 为2 m ,台阶AC 的坡度为1∶3 (即AB ∶BC=1∶3,且B 、C 、E 三点在同一直线上,请根据以上条件求出树DE 的高度(测倾器的高度忽略不计).分析与解 如图,过点A 作AF ⊥DE 于F ,则四边形ABEF 为矩形.∴AF=BE ,EF=AB=2.设DE=x ,在Rt △CDE 中,CE=tan DCE DE ∠ = tan 60?DE = 33x . 在Rt △AFD 中,DF = DE - EF = x - 2,∴AE=tan DAF DF ∠ = 2tan 30?x - = 3(x 2)-. ∵AF = BE = BC + CE ,∴3(x 2)- = 23 + 33x .解得.例5 图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O 到BC (或DE )的距离大于或等于⊙O 的半径时(⊙O 是桶口所在圆,半径为OA ),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F ,C-D 是CD 〖T ,AB=FE=5 cm ,∠ABC=∠FED=149°.请通过计算判断这个水桶提手是否合格.(参考数据:314≈17.72,tan73.6°≈3.40,sin75.4°≈0.97,)分析与解要判断图丙中所示提手是否合格,可过O作OM⊥BC 于M,只须比较OM与OA的大小即可.这时再连OB,在Rt△ABO中,由tan ∠ABO = OAOB= 3.4及tan73.6°=3.4可知∠ABO=73.6°,又∠ABC=149°,从而= 175∠MBO=75.4°,又OB = 22+ =314≈17.72,且sin+ = 25289AB OA,∴OM=OB·sin∠MBO=17.72×sin75.4°=17.72×0.97≈17.2,∠MBO=OMOB由OM>OA知,这个提手是合格的.【教学说明】上述所选四道题中的例1,例2可由学生自主探究,独立完成,然后相互交流,互相检查.例3、例4文字叙述较长,教师应作好引导,帮助学生分析,找出解决问题的突破口,让学生在理解的基础上探寻结论,进一步体验用锐角三角函数知识解决实际问题的过程、方法,加深对本章知识的理解.四、师生互动,课堂小结通过这节课的学习,你有哪些收获?【教学说明】师生相互交流,让学生谈谈自己的想法,提出来与大家分享,也可帮助学生进行知识、方法的提炼,形成完整的知识结构.1.布置作业:从教材P84~85复习题28中选取.2.完成创优作业中本课时的练习.本课时为复习课,首先要让学生了解本章的知识体系,教学的展开以问题的解决为中心,指导学生自主理清由实际问题转化为三角函数模型的思路,增强学生数学问题的转化意识.。

锐角三角函数复习教案

锐角三角函数复习教案

中学教学设计环节内容(目标与任务)时间与方式(师生活动)教学过程(2)根据锐角三角函数的概念说出课前热身中∠B的正弦、余弦和正切值。

本环节先让学生独立完成,再在小组内交流,然后展示成果,专题一展示完后。

教师及时点拨,锐角的正弦、余弦和正切即锐角的三角函数,类比∠A的三角函数,说出∠B的三角函数,巩固锐角三角函数的定义。

设计意图:通过本环节让学生对所学知识进行梳理,形成体系。

三、诊断练习、巩固旧知。

1、在Rt△ABC中,∠C=90°,如果sinA=135,则tanB= 。

2、正方形网格中,AOB∠如图放置,则AOB∠cos= 3、如图所示:边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,求tan∠AED专题二特殊锐角的三角函数值利用正弦、余弦和正切的概念并结合直角三角形完成表格∠A 30°45°60°sinAcosAtanA问题:观察表中数据:随着锐角A度数的增大,它的正弦、余弦和正切值如何变化?自测1.cos245°+ tan60°cos30°2、3.点(-sin60°,cos60°)关于y轴对称的点的坐标是_____4、比较大小:(1)tan35°___ tan65° (2)sin70°___ cos10°5.若tan(α+20°)= 3,锐角α的度数应是______时间与方式(师生活动)6、已知2cosA -3= 0 ,求锐角A的度数 .中考链接,提升技能。

青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=403米,若灰太狼以5m/s的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?自结1.锐角三角函数的定义⑴、正弦;⑵、余弦;⑶、正切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:锐角三角函数
(复习课)
复习目标
(1)知识与技能:
1.通过复习进一步巩固锐角三角函数的定义,并能灵活运用定义进行有关计算。

2.通过复习牢记特殊角的三角函数值,并能进行有关计算。

3.通过复习进一步巩固直角三角形的边角关系,并能进行解直角三角形的知识应用。

(2)过程与方法:通过对本章的复习,让学生学会将千变万化的实际问题转化为数学问题来解决的能力,培养学生用数学的意识。

(3)情感与价值:通过测量避雷针的高,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,通过选式的诀窍,可简便计算,从而体会探索,发现科学的奥秘和意义。

复习重点:特殊角的三角函数值,并能进行有关计算;解直角三角形的知识应用。

复习难点:解直角三角形的知识应用。

教学方法:讲练结合法
课型:复习课
教具准备:多媒体课件
教学过程
一、锐角三角函数的定义
在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,
c .则
∠A 的正弦:sin A=_______________
∠A 的余弦:cos A =________
∠A 的正切:tan A =_______________ 、在Rt △ABC 中,∠C=90°,a =2,B 自己动手:
1、在等腰△ABC 中,AB=AC=5,BC=6,求sinB ,cosB ,tanB.
2、求适合下列各式的锐角α
3=α3tan
二、特殊角的三角函数值
60
tan
45
cos
30
sin
22⋅
-

练习检测:
求下列各式的值:


-30
cos
30
sin
2
1
1)


+

-
︒60
sin
2
45
tan
30
tan
3
2)

三、解直角三角形
1、解直角三角形的定义:利用已知元素,求出未知元素的过程。

2、解直角三角形的性质:
①三边间关系:
②两锐角间关系:
③边角间关系:
3、解直角三角形条件:已知两边,或已知一边一角。

自己动手:在Rt△ABC中,∠C=90°,a、b、c分别为
∠A 、∠B、∠C的对边.根据已知条件,
解直角三角形.c=8,∠A =60°
四、拓展升华:锐角三角函数间的关系
1、从定义可以看出sin A与cos B有什么关系?sin B与cos A呢?满足这种关系的A
∠与B
∠又是什么关系呢?
2、利用定义及勾股定理你还能发现sin A与cos A的关系吗?
3、再试试看tan A与sin A和cos A存在特殊关系吗?经过教师引导学生探索之后总结出如下几种关系:
(1)若90
A B
∠+∠=那么sin A=cos B或sin B=cos A
(2)22
sin cos1
A A
+=(3)
sin
cos
A A
A =
4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?为什么?余
弦呢?正切呢?
通过一番讨论后得出:
(1)锐角的正弦值随角度的增加(或减小)而增加(或减小);
(2)锐角的余弦值随角度的增加(或减小)而减小(或增加);
(3)锐角的正切值随角度的增加(或减小)而增加(或减小)。

作业:《课时练》89页——“节末综合训练”1—10小题必做,11、12小题选作
板书设计
锐角三角函数(复习课)
1、锐角三角函数意义
2、特殊角的三角函数值
3、解直角三角形。

相关文档
最新文档