电磁感应现象的两种情况

合集下载

4.5 电磁感应现象的两类情况

4.5 电磁感应现象的两类情况

V
电能
内能
结论:克服安培力做了多少功,就产生多少电能; 若电路是纯电阻电路,转化过来的电能将全部转化 为电阻的内能。
磁场变强
B
4、感生电动势中的非静电力: 是感生电场对自由电荷的作用力。
如图:绝缘管内壁光滑,一带正电的小球静止于a点; 当磁感应强度B增大时,问:带电小球将如何运动?
+
a
4、感生电动势中的非静电力: 是感生电场对自由电荷的作用力。
如图:绝缘管内壁光滑,一带正电的小球静止于a点; 当磁感应强度B增大时,问:带电小球将如何运动?
E感
+
a
F
5、感生电动势中的能量转化:
磁场变强
E磁场
E电
注意:若电路是纯电阻电路,转 化过来的电能也将全部转化为电 阻的内能
二、电磁感应现象中的洛仑兹力
1、动生电动势:指导体切割磁 感线产生的电动势。
思考:
导体棒向右运动切割磁感线 时,导体棒就相当于电源; 哪么此时C、D两端中哪端相 当于电源的正极?
++
v
F洛
- -
思考: 动生电动势中的能量转化
光滑导轨上架一个直导体棒MN,若MN以初速V 向右运动,MN长为L,不计其他电阻,试分析: M
(1)导体MN的运动情况? (2)MN向右运动过程中, 电路中的能量转化情况?
R
× × × × ×
× × × × ×
× × × × ×
×× ×× ×× ×× ×× N
4.5 电磁感应现象的两类情况
4.5 电磁感应现象的两类情况

感生电动势 动生电动势
思考:以下两种电磁感应现象中,哪部分导体相当于电源?哪一
种作用扮演了非静电力的角色 ?

高考物理电磁感应现象压轴题知识归纳总结含答案解析

高考物理电磁感应现象压轴题知识归纳总结含答案解析

高考物理电磁感应现象压轴题知识归纳总结含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。

垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。

现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量【答案】(1)3245ab U BL gL =;(2)32244532m g R Q mgL B L =-【解析】 【详解】(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得214sin 30(4)2mgL mgL m m v =++,25v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332445ab U E BL gL == (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22mB L v mg R=,从ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知2143sin 3(4)2m mg L mgL m m v Q θ=+++,32244532m g R Q mgL B L=-2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求:(1)线圈进入磁场时的速度 v 。

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)及详细答案

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)及详细答案
5s时拉力F的功率为:P=Fv
代入数据解得:P=1W
棒MN最终做匀速运动,设棒最大速度为vm,棒受力平衡,则有:
代入数据解得:
(2)解除棒PQ后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v′,则有:
设从PQ棒解除锁定,到两棒达到相同速度,这个过程中,两棒共产生的焦耳热为Q,由能量守恒定律可得:
(1)前2s时间内流过MN杆的电量(设EF杆还未离开水平绝缘平台);
(2)至少共经多长时间EF杆能离开平台。
【答案】(1)5C;(2)4s
【解析】
【分析】
【详解】
解:(1)t=2s内MN杆上升的距离为
此段时间内MN、EF与导轨形成的回路内,磁通量的变化量为
产生的平均感应电动势为
产生的平均电流为
流过MN杆的电量
(1)导线框匀速穿出磁场的速度;
(2)导线框进入磁场过程中产生的焦耳热;
(3)若在导线框进入磁场过程对其施加合适的外力F则可以使其匀加速地进入磁场区域,且之后的运动同没施加外力F时完全相同。请写出F随时间t变化的函数表达式.
【答案】(1)2m/s (2)0.15J (3)F=0.75-1.25t(0<t<0.4s)
联立①②③式பைடு நூலகம்得: ④
(2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I,根据欧姆定律:I= ⑤
式中R为电阻的阻值.金属杆所受的安培力为: ⑥
因金属杆做匀速运动,由牛顿运动定律得:F–μmg–f=0⑦
联立④⑤⑥⑦式得:R=
5.如图所示空间存在有界匀强磁场,磁感应强度B=5T,方向垂直纸面向里,上下宽度为d=0.35m.现将一边长L=0.2m的正方形导线框自磁场上边缘由静止释放经过一段时间,导线框到达磁场下边界,之后恰好匀速离开磁场区域.已知导线框的质量m=0.1kg,电阻 .(g取10m/s2)求:

电磁感应现象的两类情况 课件

电磁感应现象的两类情况  课件
由电荷的电场 静电力

导体中自由电 荷所受洛伦兹 力沿导体方向 的分力
感生电动势
动生电动势
回路中相当于电 处于变化磁场中 做切割磁感线运动的导
源的部分
的线圈部分

通常由右手定则判断,也 方向判断方法 由楞次定律判断
可由楞次定律判断
大小计算方法
由 E=nΔΔΦt 计算
通常由 E=Blvsinθ 计算, 也可由 E=nΔΔΦt 计算
3.感生电场可用电场线形象描述,但感生电场的电场 线是闭合曲线,所以感生电场又称为涡旋电场.这一点与 静电场不同,静电场的电场线不闭合.
4.感生电场可以对带电粒子做功,可使带电粒子加速 和偏转.
二、感生电动势与动生电动势的对比
感生电动势 动生电动势
产生原因
导体做切割磁 磁场的变化
感线运动
感生电场对自 移动电荷的非
3.感生电场的方向 磁场变化时,垂直磁场的闭合环形回路(可假定 存在)中 感应电流 的方向就表示感生电场的方向.
电磁感应现象中的洛伦兹力
1.成因:导体棒做切割磁感线,导体棒中的自由电荷 随棒一起定向运动,并因此受到 洛伦兹力.
2.动生电动势 (1)定义:如果感应电动势是由于 导体运动 产生的, 它也叫做动生电动势. (2)非静电力:动生电动势中,非静电力是洛伦兹力 沿 导体棒方向的分力.
势 E2=ΔΔΦt22=ΔΔBt22S,由 ΔB1=ΔB2,Δt2=2Δt1,故 E1=2E2, 由此可知,A 项正确.
答案:A
电磁感应中的能量转化与守恒
图中虚线为相邻两个匀强磁场区域 1 和 2 的边 界,两个区域的磁场方向相反且都垂直于纸面,磁感应强 度大小都为 B,两个区域的高度都为 L.一质量为 m、电阻 为 R、边长也为 L 的单匝矩形导线框 abcd,从磁场区域 上方某处竖直自由下落,ab 边

4_5 电磁感应现象的两类情况

4_5 电磁感应现象的两类情况

第五节电磁感应现象的两类情况素养目标定位※了解电磁感应两种情况下电动势的产生机理※※能够运用电磁感应规律熟练解决相关问题,素养思维脉络知识点1 电磁感应现象中的感生电场1.感生电场(1)产生英国物理学家麦克斯韦在他的电磁场理论中指出:__变化__的磁场能在周围空间激发__电场__,这种电场与静电场不同,它不是由电荷产生的,我们把它叫做__感生电场__。

(2)特点感生电场线与磁场方向__垂直__。

感生电场的强弱与磁感应强度的__变化率__有关。

2.感生电动势(1)感生电场的作用感生电场对自由电荷的作用就相当于电源内部的非静电力。

(2)感生电动势磁场变化时,感应电动势是由__感生电场__产生的,它也叫感生电动势。

3.感生电场的方向磁场变化时,垂直磁场的闭合环形回路(可假定存在)中__感应电流__的方向就表示感生电场的方向。

知识点2 电磁感应现象中的洛伦兹力1.成因导体棒做切割磁感线运动,导体棒中的自由电荷随棒一起定向运动,并因此受到__洛伦兹力__。

2.动生电动势(1)定义:如果感应电动势是由于__导体运动__产生的,它也叫做动生电动势。

(2)非静电力:动生电动势中,非静电力是__洛伦兹力__沿导体棒方向的分力。

3.导体切割磁感线时的能量转化当闭合电路的一部分导体切割磁感线时,回路中产生感应电流,导体受到安培力的作用。

__安培力__阻碍导体的切割运动,要维持匀速运动,外力必须__克服安培力做功__,因此产生感应电流的过程就是__其他形式__的能转变为电能的过程。

思考辨析『判一判』(1)如果空间不存在闭合电路,变化的磁场周围不会产生感生电场。

( ×)(2)处于变化磁场中的导体,其内部自由电荷定向移动,是由于受到感生电场的作用。

( √)(3)感生电场就是感应电动势。

( ×)(4)动生电动势(切割磁感线产生的电动势)产生的原因是导体内部的自由电荷受到洛伦兹力的作用。

( √)(5)产生动生电动势时,洛伦兹力对自由电荷做了功。

电磁感应现象的两类情况

电磁感应现象的两类情况
4.5 电磁感应现象的两类情况
动生电动势
AB相当于电源 导体切割磁感线
磁场变化引 起的电动势
感生电动势
线圈B相当 于电源
电键闭合,改变滑动片的位置
△回顾电荷在外电路和内电路中的运动。
a
d c
b 化学作用就是我们 所说的非静电力
△电源电动势的作用是某种
非静电力对自由电荷的作用。
一、电磁感应现象中的感生电场
思考与讨论
一个闭合电路静止于磁场 中,由于磁场强弱的变化,闭 合电路内产生了感应电动势. 这种情况下,哪一种作用扮 演了非静电力的角色?
磁场变强
〔英〕麦克斯韦认为
磁场变化时会在周围空间激发 一种电场-----感生电场
感生电动势的非 静电力是感生电 场对电荷的作用 力。 感生电场的方向类 似感应电流方向的 判定----楞次定律
原磁场在增强,即电流在 增大。
二、电磁感应现象中的洛伦兹力
思考与讨论
导体切割磁感线时也会产 生感生电动势,该电动势 产生的非静电力是什么?
探讨:
※洛伦兹力方向如何? 其做功吗?
※能量是怎样转化的呢? F2 -
洛伦兹力不做功,不提供 能量,只是起传递能量的 作用。即外力克服洛伦
U F洛 F1
兹力的一个分量F2所 做的功,通过另一个 分量F1转化为感应电 流的能量
一段导线在做切割磁感应线的运 动时相当于电源,这时的非静电力与 洛伦兹力有关。 由于导体运动而产生的感应电动 势称为动生电动势。
d
a v
c
b
S
N
二ห้องสมุดไป่ตู้电磁感应现象中的洛伦兹力
1.动生电动势:
由于导体运动而产生的电动势。
动生电动势的非静电力与洛伦兹力 有关。

高考物理电磁感应现象的两类情况-经典压轴题

高考物理电磁感应现象的两类情况-经典压轴题

高考物理电磁感应现象的两类情况-经典压轴题一、电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。

电磁感应现象中的两类情况 课件

电磁感应现象中的两类情况   课件

楞次定律或右手定则
楞次定律
闭合导体中的自由电荷在感 生电场下做定向运动
产生感应电流(感生电动势)
2、感生电场与感生电动势:
感生电场(涡旋电场): 变化的磁场在周围空间激发的电场。
方向: 就是感生电流的方向,用楞次定律判断
感生电场线: 是闭合的曲线。
感生电动势: 由感生电场产生的感应电动势。
感生电动势所对应的非静电力是感生电 场对自由电荷的作用。
洛伦兹力Fe与自由电子速度V垂直不做功;
Fe力的分量:
FFee21克 做服正外功力转做化负 为功 电, 势能。Fe2
V
Fe
即:洛伦兹不提供能量,
Fe1
只是起传递能量的作用。
Ve
练2:如图,匀强磁场B中,光滑导轨上一直导体棒 MN向右以速度V匀速运动,棒长L,电阻阻值R, 不计其他电阻。求:
1)导体棒受安培力大小、方向?
2)导体棒受到的外力大小、方向?
3)导体棒运动X位移,外力克服安培力做功表达 式?
4)在此过程中感应电流做功多少?
练2:如图,匀强磁场B中,光滑导轨上一直导体棒 MN向右以速度V匀速运动,棒长L,电阻阻值R, 不计其他电阻。
解析电:动势:E BLV
电流:I
E R
安培力:F BIV
解得:
F
B 2L2V R
电源电动势的作用:
某种非静电力对自由电荷施加力的作用,将 电源负极的正电荷(或电源正极的负电荷) 通过电源内部移送到电源的正极(或电源的 负极)。
例:干电池
非静电力就是化学作用
问题: 感应电动势对应的非静电力是一种什么样的 作用?
1、 感生电动势
动生电动势:
动生电动势:

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)含详细答案

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)含详细答案

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)含详细答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T 。

电磁感应现象的两类情况

电磁感应现象的两类情况
总结: 感生电动势在电路中的作用就是电源,其 电路就是内电路,当它与外电路连接后就 会对外电路供电. 感应电场(也叫感生电场)是产生感应 电流或感应电动势的原因,感应电场的方 向同样可由楞次定律判断.
14
二、洛伦兹力与动生电动势
15
理论分析:
× × × × × × ×
_× _ _
f f ×
×
× × ×
v
× × ×
_ _ _
f
× ×
17
二、洛伦兹力与动生电动势
一段导体切割磁感线运动时相当于一个电源,这时非 静电力与洛伦兹力有关。由于导体运动而产生的电动 势叫动生电动势
动生电动势的大小:若导线与磁场垂直,则电动势大 小为
E Blv
18
动生电动势 特 点 原 因 非的 静来 电源 力 磁场不变,闭合电路的整 体或局部在磁场中运动导 致回路中磁通量的变化 由于S的变化引起 回路中变化
二、洛伦兹力与动生电动势
例3如图,导体AB在做切割磁感线运动时,将产生 一个电动势,因而在电路中有电流通过,下列说法 中正确的是( AB ) A.因导体运动而产生的感应电动势称为动生 电动势 B.动生电动势的产生与洛仑兹力有关 C.动生电动势的产生与电场力有关 D.动生电动势和感生电动势产生的原因是一 样的
感生电动势 闭合回路的任何部分都不 动,空间磁场发生变化导 致回路中磁通量变化 由于B的变化引起 回路中变化 变化磁场在它周围空间激发 涡旋电场,非静电力就是感 生电场力,由感生电场力对 电荷作功而产生电动势 楞次定律判断
19
非静电力就是洛仑兹力, 由洛仑兹力对运动电荷 作用而产生电动势
方 向
右手定则


线圈
磁场 B 电 子 束

电磁感应现象的两类情况

电磁感应现象的两类情况

1.感生电场是一种涡旋电场,电场线是闭合的. 2.感生电场的方向可由楞次定律判断.如图所示, 当磁场增强时,产生的感生电场是与磁场方向垂直且阻碍磁 场增强的电场. 3.感生电场提供了使电荷运动的非静电力. 磁场 激发感 感生电场驱动自 产生感 变化 → 生电场 → 由电荷定向移动 → 应电流 4.感生电动势大小:E=nΔΔΦt .
C.当磁感应强度均匀减小时,感生电场的电场线从上
向下看应为顺时针方向
D.当磁感应强度均匀减小时,感生电场的电场线从上
向下看应为逆时针方向 解析:感生电场的电场线方向由楞次定律来判定.假
设垂直于磁场方向有一闭合环形回路.
B向上, 均匀增 大时
―楞―次→ 定律
回路中感 应电流的 磁场方向 向下
―安―培→ 定则
感生电动势和 重点 动生电动势的
计算
感生电动势和
难点
动生电动势产 生的原因分析
和理解
知识点一 电磁感应现象中的感生电场 提炼知识 1.感生电场 磁场变化时在空间激发的一种电场. 2.感生电动势 由感生电场产生的感应电动势. 3.感生电动势中的非静电力 感生电场对自由电荷的作用.
4.感应电场的方向 与所产生的感应电流的方向相同,可根据楞次定律 和右手定则判断.
A
B
C
D
解析:根据楞次定律,在前半个周期内,圆环内产
生的感应电流方向为顺时针,即通过 ab 边的电流方向为
由 b 指向 a,再根据左手定则判断,ab 边受到的安培力为
水平向左,即负方向.根据法拉第电磁感应定律,前半个
周期内 ab 中的电流为定值,则所受安培力也为定值.结合
选项可知 B 正确.
答案:B
判断正误 (1)变化的磁场周围一定存在感生电场,与是否存 在闭合电路无关.( ) (2)恒定的磁场一定能在周围空间产生感生电场. () (3)感生电动势在电路中的作用相当于电源电动 势,其电路相当于内电路.( ) 答案:(1)√ (2)× (3)√

高考物理与电磁感应现象的两类情况有关的压轴题附详细答案

高考物理与电磁感应现象的两类情况有关的压轴题附详细答案
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s时导体棒的加速度;
(3)若经过时间t,导体棒下滑的垂直距离为s,速度为v.若在同一时间内,电阻产生的热与一恒定电流I0在该电阻上产生的热相同,求恒定电流I0的表达式(各物理量全部用字母表示).
【答案】(1)18.75m/s(2)a=4.4m/s2(3)
又因为安培力
对实验车,由牛顿第二定律得:
即 得:
4.如图所示,足够长的U型金属框架放置在绝缘斜面上,斜面倾角 ,框架的宽度 ,质量 ,框架电阻不计。边界相距 的两个范围足够大的磁场I、Ⅱ,方向相反且均垂直于金属框架,磁感应强度均为 。导体棒ab垂直放置在框架上,且可以无摩擦的滑动。现让棒从MN上方相距 处由静止开始沿框架下滑,当棒运动到磁场边界MN处时,框架与斜面间摩擦力刚好达到最大值 (此时框架恰能保持静止)。已知棒与导轨始终垂直并良好接触,棒的电阻 ,质量 ,重力加速度 ,试求:
(1)若在开启电磁制动瞬间,三根金属棒的位置刚好在图所示位置,则此时制动转盘上的电动势E为多少?此时a与b之间的电势差有多大?
(2)若忽略转盘的质量,且不计其它阻力影响,则在上述制动过程中,制动转盘产生的热量是多少?
(3)若要提高制动的效果,试对上述设计做出二处改进.
【答案】(1) , (2) (3)若要提高制动的效果,可对上述设计做出改进:增加外金属圈的半径r3或减小内金属圈的半径r2
(1)棒由静止开始沿框架下滑到磁场边界MN处的过程中,流过棒的电量q;
(2)棒运动到磁场Ⅰ、Ⅱ的边界MN和PQ时,棒的速度 和 的大小;
(3)通过计算分析:棒在经过磁场边界MN以后的运动过程中,U型金属框架能否始终保持静止状态?
【答案】(1) ;(2) , ;(3)框架能够始终保持静止状态

电磁感应现象的两类情况

电磁感应现象的两类情况

小试牛刀
如图4.5-4甲所示,100匝的线圈(图中只画了2匝)两端A、 B与一个电压表相连.线圈内有垂直指向纸内方向的磁场, 线圈中的磁通量按图乙所示规律变化. (1)电压表的读数等于多少? (2)请在线圈位置上标出感生电场的方向。 (3)A、B两端,哪端应该与电压表标+号的接线柱连接?
(1)50V
根据E=BLv=4.7×10-3×12.7×0.7×340 V=0.14 V. 根据右手定则可知,左侧机翼尖电势高.
小试牛刀
设图中的磁感应强度B=1T,平行导轨宽l=1m,金属棒 以1m/s速度帖着导轨向右运动,R=1Ω,其他电阻不 计. (1)运动的导线会产生感应电动势,相当于电源.用 电池等符号画出这个装置的等效电路图. (2)通过R的电流方向如何?大小等于多少?
第五节 电磁感应现象的两类情况
复习
+ + + +
+ + + + +
+
+
-
+
-
非静电力做功把其它形式的能转化为电能
电池:化学作用
非静电力
一、电磁感应现象中的感生电场
一个闭合电路静止于磁场中, 由于磁场强弱的变化,闭合电 路内产生了感应电动势. 这种情况下,哪一种作用是非 静电力?
感生电动势: 磁场变强
4∶1
2∶1
1、由于导体切割磁感线而产生的感应电 动势叫动生电动势. 2、动生电动势的非静电力与洛伦兹力有关.
注意:动生电动势与洛伦兹力有关,但洛 伦兹力始终不做功.
小试牛刀
国庆阅兵时,我国的“飞豹FBC-1”型歼击轰 炸机在天安门上空沿水平方向自东向西呼啸而 过.该机的翼展为12.7米,北京地区地磁场的 -5 竖直分量为4.7×10 T,该机飞过天安门时的 速度为声速的0.7倍,求该机两翼尖间的电势 差.那端的电势比较高?

高考物理电磁感应现象的两类情况-经典压轴题含答案

高考物理电磁感应现象的两类情况-经典压轴题含答案

高考物理电磁感应现象的两类情况-经典压轴题含答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.3.如图所示,竖直放置、半径为R 的圆弧导轨与水平导轨ab 、在处平滑连接,且轨道间距为2L ,cd 、足够长并与ab 、以导棒连接,导轨间距为L ,b 、c 、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B 的匀强磁场,均匀的金属棒pq 和gh 垂直导轨放置且与导轨接触良好。

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)附答案

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)附答案
高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)附答案
一、电磁感应现象的两类情况
1.如图所示,无限长平行金属导轨 EF、PQ 固定在倾角 θ=37°的光滑绝缘斜面上,轨道间 距 L=1m,底部接入一阻值 R=0.06Ω 的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁 感应强度 B=2T。一质量 m=2kg 的金属棒 ab 与导轨接触良好,ab 与导轨间的动摩擦因数 μ=0.5,ab 连入导轨间的电阻 r=0.04Ω,电路中其余电阻不计。现用一质量 M=6kg 的物体通 过一不可伸长的轻质细绳绕过光滑的定滑轮与 ab 相连.由静止释放物体,当物体下落高度 h=2.0m 时,ab 开始匀速运动,运动中 ab 始终垂直导轨并与导轨接触良好。不计空气阻 力,sin37°=0.6,cos37°=0.8,g 取 10m/s2。
电阻,一长为 l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且 接触良好,两者之间的动摩擦因数为 μ,导轨处于匀强磁场中,磁感应强度大小为 B,方 向垂直于斜面向上,当金属杆受到平行于斜面向上大小为 F 的恒定拉力作用,可以使其匀
速向上运动;当金属杆受到平行于斜面向下大小为 F 的恒定拉力作用时,可以使其保持与 2
I E R
q It
q BLat2 5C 2R
BIL Mg
I E R
E BLv
t v a
t=
MgR B 2 L2 a
4s
4.如图 1 所示,在光滑的水平面上,有一质量 m=1kg、足够长的 U 型金属导轨 abcd,间
距 L=1m。一电阻值 R 0.5Ω 的细导体棒 MN 垂直于导轨放置,并被固定在水平面上的两 立柱挡住,导体棒 MN 与导轨间的动摩擦因数 0.2 ,在 M、N 两端接有一理想电压表

电磁感应现象的两类情况

电磁感应现象的两类情况

电磁感应现象的两类情况一、电磁感应现象中的感生电场1.感生电场麦克斯韦认为,磁场变化时会在空间激发一种电场,它与静电场不同,不是由电荷产生的,我们把它叫做感生电场。

2.感生电动势由感生电场产生的感应电动势。

3.感生电动势中的非静电力就是感生电场对自由电荷的作用。

4.感生电场的方向判断1.感生电场是一种涡旋电场,电场线是闭合的。

2.感生电场的方向可由楞次定律判断。

如图4-5-1所示,当磁场增强时,产生的感生电场是与磁场方向垂直且阻碍磁场增强的电场。

3.感生电场的存在与是否存在闭合电路无关。

1、某空间出现了如图4-5-2所示的一组闭合电场线,方向从上向下看是顺时针的,这可能是()A.沿AB方向磁场在迅速减弱B.沿AB方向磁场在迅速增强C.沿BA方向磁场恒定不变D.沿BA方向磁场在迅速减弱2、(多选)下列说法中正确的是()A.感生电场由变化的磁场产生B.恒定的磁场也能在周围空间产生感生电场C.感生电场的方向也同样可以用楞次定律和安培定则来判定D.感生电场的电场线是闭合曲线,其方向一定是沿逆时针方向3、如图4-5-3所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将()A.不变B.增加C.减少D.以上情况都可能4、如图2所示,内壁光滑、水平放置的玻璃圆环内,有一直径略小于圆环直径的带正电的小球,以速率v0沿逆时针方向匀速转动(俯视),若在此空间突然加上方向竖直向上、磁感应强度B随时间成正比例增加的变化磁场.若运动过程中小球带电荷量不变,那么()A.小球对玻璃圆环的压力一定不断增大B.小球所受的磁场力一定不断增大C.小球先沿逆时针方向减速运动,过一段时间后沿顺时针方向加速运动D.磁场力对小球一直不做功二、电磁感应现象中的洛伦兹力1.动生电动势由于导体切割磁感线运动而产生的感应电动势。

2.动生电动势中的“非静电力”自由电荷因随导体棒运动而受到洛伦兹力,非静电力与洛伦兹力有关。

高考物理电磁感应现象压轴难题试卷附答案

高考物理电磁感应现象压轴难题试卷附答案

高考物理电磁感应现象压轴难题试卷附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“”字型(如图乙)通电后使其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“”字型线圈依次通电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)(2)求列车能达到的最大速度m v ;(3)列车以最大速度运行一段时间后,断开接在“” 字型线圈上的电源,使线圈与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ⨯、磁感应强度为B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“”字型线圈时,电容器中贮存的电量Q .【答案】(1) 012() BL v v R -222210122BL B L kR v B L +-24nB Lb R ' 【解析】 【详解】解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =- 由欧姆定律得:12EI R = 解得:01(2 )BL v v I R -=(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:B F BIL =由平衡条件得:20B f F F -= ,已知:2f F kv =解得:222210122m BL B L kR v B L v kR +-=(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:感应电动势:n E tφ∆=∆,而B Lb φ∆=' 电流:12E I R =电荷量:11Q I t =∆ 解得:12nB LbQ R '= 电磁铁通过字型线圈中间时,电路情况如图2所示:B Lb φ∆=',2222E nI R tφ∆==∆ 22Q I t =∆解得:222nB LbQ R '= 电磁铁通过字型线圈右边界时,电路情况如图3所示:n E tφ∆=∆, B Lb φ∆=',32E I R =33Q I t =∆解得:32nB LbQ R '=, 总的电荷量:123Q Q Q Q =++ 解得:24nB LbQ R '=3.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。

电磁感应现象的两类情况

电磁感应现象的两类情况

则金属棒 ab 接入回路的 bc 部分切割磁感线产生的 感应电动势为: E=Bv0 bc =Bv2 0ttan30° 在回路 bOc 中,回路总感应电动势具体由导体 bc 部分产生,因此,回路内总的感应电动势为:E =E= 3Bv2 0t/3.

电磁感应的图象问题
例4 如图甲所示,矩形导线框 abcd 固定在匀强磁场中,磁感线
的方向与导线框所在平面垂直.规定磁场的正方向垂直纸面向里, 磁感应强度 B 随时间变化的规律如图乙所示,若规定顺时针方向
为感应电流i的正方向,下列i-t图(如图丙)中正确的是(
)
【答案】
D
五、既有 动生又有感生: B变化S也变化: E =nΔ(BS) /Δt
d
a

v
e
b
f
例题1: 如图所示,固定与水平面上的金属框cdef,处 在竖直向下的匀强磁场中,金属棒ab搁在框架上,可无 摩擦滑动。此时abed构成一个边长L的正方形,棒电阻r, 其余电阻不计,开始时磁感应强度为B。 ⑴ 若以t=0时 起,磁感应强度均匀增加,每秒增加量k,同时保持棒 静止,求棒中的感应电流? ⑵ 若以t=0时起,磁感应强度逐渐减小,当棒以恒定 速度v向右匀速运动,可使棒中不产生感应电流,则磁 感应强度应怎样随时间变化?
P
作用于杆的安培力 F =Bt l i
解得 F=3k2 l 2 t / 2r0 , 代入数据为F=1.44×10 -3 N
v
Q
l
又解: 以 a 表示金属杆运动的加速度, 在t 时刻,金属杆与初始位置的距离 L=1/2×a t2 =18a v=a t=6a, 此时杆的速度 若磁场不变化,由于导体运动产生的动生电动势E1 E1 =Bt l v=kt l v=0.02 6×0.2×6a =0.144a (V) 这时,杆与导轨构成的回路的面积 S=Ll =3.6a , 若导体不运动,由于磁场变化产生的感生电动势E2 E2 =SΔB/Δt= S×k = 3.6a ×0.02 = 0.072a (V) 回路中的感应电动势为两者之和(方向相同) E=E1+E2=SΔB/Δt + B2l v = 0.216a (V) L P R=2Lr =3.6 a 回路的总电阻 0 v l 回路中的感应电流 i =E/R=0.06 (A) Q 作用于杆的安培力 F=B2l i =0.12×0.2×0.06 =1.44 ×10 -3 N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.5电磁感应规律的应用学习目标
1.知道感生电场。

2.知道感生电动势和动生电动势及其区别与联系。

教学重点
感生电动势与动生电动势的概念。

教学难点
对感生电动势与动生电动势实质的理解。

自主学习
1、电磁感应现象中的感生电场与感生电动势
教材图4.5-1,穿过闭合回路的磁场增强,在回路中产生感应电流。

是什么力充当非静电力使得自由电荷发生定向运动呢?
什么是感生电动势?
感生电场的方向应如何判断?
提示:回想一下,感应电流的方向如何判断?电流的方向与电荷移动的方向有何关系?
若导体中的自由电荷是负电荷,能否用楞次定律判定?下面通过例题看一下这方面的应用。

例题:现代科学研究中常要用到高速粒子,电子
感应加速器就是利用感生电场是电子加速的设备,
它的基本原理如图 4.5---2所示,上下为电磁铁的两个磁
极,磁极之间有一个环形真空室,电子在真空室
中做圆周运动。

电磁线圈电流的大小,方向可以变化,
产生的感应电场是电子加速。

上图为侧视图,
下图为真空室的俯视图。

如果从上向下看,电子
沿逆时针方向运动,那么当电磁铁线圈电流的方向
与图示方向一致时,电流的大小应该怎样变化才能使
电子加速?如果电流的方向与图示方向相反,为使电子加速,电流又该怎样变化?
a被加速的电子带什么电?
b电子逆时针运动,等效电流方向如何?
c加速电场的方向如何?
d使电子加速的电场是什么电场?
e电磁铁的磁场怎样变化才能产生顺时针方向的感生电场?为什么?
2、电磁感应现象中的洛伦兹力与动生电动势
什么是动生电动势? 如图所示,导体棒运动过程中产生感应电流,试分析电路中的能量转化情况。

实例探究
感生电场与感生电动势
【例1】 如图所示,一个闭合电路静止于磁场中,由于磁场强弱的变化,而使电路中产生了感应电动势,下列说法中正确的是( )
A .磁场变化时,会在在空间中激发一种电场
B .使电荷定向移动形成电流的力是磁场力
C .使电荷定向移动形成电流的力是电场力
D .以上说法都不对 洛仑兹力与动生电动势
【例2】如图所示,导体AB 在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是( ) A .因导体运动而产生的感应电动势称为动生电动势 B .动生电动势的产生与洛仑兹力有关 C .动生电动势的产生与电场力有关
D .动生电动势和感生电动势产生的原因是一样的 综合应用
【例3】如图所示,两根相距为L 的竖直平行金属导轨位于磁感应强度为B 、方向垂直纸面向里的匀强磁场中,导轨电阻不计,另外两根与上述光滑导轨保持良好接触的金属杆ab 、cd 质量均为m ,电阻均为R ,若要使cd 静止不动,则ab 杆应向_________运动,速度大小为_______,作用于ab 杆上的外力大小为____________
巩固练习
1.如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将( )
磁场变强
A .不变
B .增加
C .减少
D .以上情况都可能
2.穿过一个电阻为l Ω的单匝闭合线圈的磁通量始终是每秒钟均匀地减少2 Wb ,则( )
A .线圈中的感应电动势一定是每秒减少2 V
B .线圈中的感应电动势一定是2 V
C .线圈中的感应电流一定是每秒减少2 A
D .线圈中的感应电流一定是2 A 3.在匀强磁场中,ab 、cd 两根导体棒沿两根导轨分别以速度v 1、v 2滑动,如图所示,下列情况中,能使电容器获得最多电荷量且左边极板带正电的是( )
A .v 1=v 2,方向都向右
B .v 1=v 2,方向都向左
C .v 1>v 2,v 1向右,v 2向左
D .v 1>v 2,v 1向左,v 2向右
4.如图所示,面积为0.2 m 2的100匝线圈处在匀强磁场中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6Ω,线圈电阻R 2=4Ω,求: (1)磁通量变化率,回路的感应电动势; (2)a 、b 两点间电压U ab
5.如图所示,在物理实验中,常用“冲击式电流计”来测定通过某闭合电路的电荷量.探测器线圈和冲击电流计串联后,又能测定磁场的磁感应强度.已知线圈匝数为n ,面积
为S ,线圈与冲击电流计组成的回路电阻为R ,把线圈放在被测匀强磁场中,开始时线圈与磁场方向垂直,现将线圈翻转180°,冲击式电流计测出通过线圈的电荷量为q ,由此可知,被测磁场的磁磁感应强度B 多大?。

相关文档
最新文档