七年级数学-几何图形初步单元测试卷

合集下载

七年级数学上学期第四单元几何图形初步测试卷5套带答案

七年级数学上学期第四单元几何图形初步测试卷5套带答案

第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。

人教版数学七年级上册第4章 几何图形初步单元测试(含答案)

人教版数学七年级上册第4章 几何图形初步单元测试(含答案)

七年级上册第4章单元测试一.选择题(共10小题)1.一个角的余角是44°,这个角的补角是()A.134°B.136°C.156°D.146°2.下列图形能折叠成正方体的是()A .B .C .D .3.下面各图是圆柱的展开图的是()A .B .C .D .4.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80km第1页(共12页)D.南偏西40°方向,距离为80km5.有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2020次后,骰子朝下一面的数字是()A.5B.4C.3D.26.下列各角中,()是钝角.A .周角B .平角C.平角D .平角7.小明家在学校的南偏西50°方向上,则学校在小明家()上.A.南偏西50°B.西偏南50°C.北偏东50°D.北偏东40°8.下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)9.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变10.下列语句中,正确的个数是()第2页(共12页)①直线AB和直线BA是两条直线;②射线AB和射线BA是两条射线;③若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余;④一个角的余角比这个角的补角小;⑤一条射线就是一个周角;⑥两点之间,线段最短.A.1个B.2个C.3个D.4个二.填空题(共5小题)11.已知,∠A=46°28',则∠A 的余角=.12.一个长方体的高是10cm,它的底面是边长为4cm的正方形,如果底面正方形的边长增加acm,则它的体积增加了cm3.13.已知如图,C是线段AB上的一点,N是线段BC的中点,若AB=10,AC=6,则AN=.14.已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是cm.15.如图,将长方形ABCD纸片按如图所示的方式折叠,EF,EG为折痕,点A落在A',点B落在B',点A',B',E在同一直线上,则∠FEG=度.三.解答题(共5小题)16.如图,CD是Rt△ABC斜边上的高,请找出图中各对互余的角.第3页(共12页)17.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.18.如图,已知线段AB=12 cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.(1)若点C恰好是AB的中点,则DE =cm;(2)若AC=4 cm,求DE的长;(3)试说明无论AC取何值(不超过12 cm),DE的长不变.第4页(共12页)19.如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.(1)求∠AOB的度数:(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数.(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE=.20.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:Ⅰ、画射线DC;Ⅱ、画直线AC与线段BD相交于点F ;(2)图中以F为顶点的角中,请写出∠AFB的补角.第5页(共12页)参考答案一.选择题(共10小题)1.解:∵一个角的余角是44°,∴这个角的度数是:90°﹣44°=46°,∴这个角的补角是:180°﹣46°=134°.故选:A.2.解:A、能折叠成正方体,故此选项符合题意;B、出现了“凹”字格,不能折叠成正方体,故此选项不符合题意;C、折叠后有两个面重合,不能折叠成正方体,故此选项不符合题意;D、出现了“田”字格,不能折成正方体,故此选项不符合题意.故选:A.3.解:由图可知,该圆柱底面直径为6,高为4,所以该圆柱的底面周长(圆柱侧面展开得到的长方形的长)为:6×3.14=18.84,故选:C.4.解:如图:第6页(共12页)∵乙城市位于甲城市北偏东50°方向,距离为80km,∴甲城市位于乙城市南偏西50°方向,距离为80km,故选:B.5.解:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2020÷4=505,∴滚动第2020次后与第一个相同,∴朝下的数字是3的对面4,故选:B.6.解:平角=180°,钝角大于90°而小于180°,平角=×180°=120°,是钝角.故选:B.7.解:∵小明家在学校的南偏西50°方向上,∴学校在小明家北偏东50°方向上.故选:C.8.解:48°39'+67°31'=115°70'=116°10',故A选项错误;90°﹣70°39'=19°21',故B选项错误;21°17'×5=105°85'=106°25',故C选项错误;180°÷7=25°43',故D选项正确.故选:D.9.根据立体图形的切拼方法可知:圆柱体切拼成一个长方体后,体积大小不变,表面积增加了两个以圆柱的高和第7页(共12页)底面半径为边长的长方形的面积,所以表面积变大了.故选:B.10.解:①直线AB和直线BA是一条直线,原来的说法是错误的;②射线AB和射线BA是两条射线是正确的;③互余是指的两个角的关系,原来的说法是错误的;④一个角的余角比这个角的补角小是正确的;⑤周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的;⑥两点之间,线段最短是正确的.故正确的个数是3个.故选:C.二.填空题(共5小题)11.解:∵∠A=46°28′,∴∠A的余角=90°﹣46°28′=43°32′.故答案为:43°32′.12.解:长方体原体积为:4×4×10=160cm3.底面边长增加acm后,边长为(4+a)cm,体积为:10(4+a)2=(10a2+80a+160)cm3.体积增加为:10a2+80a+160﹣160=10a2+80a.故答案为:(10a2+80a).13.解:∵AB=10,AC=6,∴CB=10﹣6=4,第8页(共12页)∵N是线段BC的中点,∴CN=2,∴AN=AC+CN=6+2=8.14.解:当C点在线段AB上时,BC=AB﹣AC=8﹣5=3(cm);当C点在线段BA的延长线上时,BC=AB+AC=8+5=13(cm).故BC的长为3或13cm.故答案为3或13.15.解:由折叠可得∠AEF=∠A'EF,∠BEG=∠B'EG,∵∠AEB=180°,∴∠FEG=∠A'EF+∠B'EG =∠AEB=90°,故答案为90.三.解答题(共5小题)16.解:∵CD⊥AB,∴△ABC,△BCD是直角三角形,又∵△ABC是直角三角形,∴∠A与∠B,∠A与∠ACD,∠B与∠BCD互余(直角三角形的两个锐角互余),又∵∠ACB=90°,∴∠ACD与∠BCD互余.∴图中互余的角有:∠A与∠B,∠A与∠ACD,∠B与∠BCD,∠ACD与∠BCD.17.解:(1)因为点C为OP的中点,第9页(共12页)所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.18.解:(1)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB)=6cm;故答案为:6.(2)∵AC=4cm,∴CD=2cm,∵AB=12cm,AC=4cm,∴BC=8cm,∴CE=4cm,DE=DC+CE=6cm;(3)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB),即DE =AB=6cm,故无论AC取何值(不超过12 cm),DE的长不变.第10页(共12页)19.解:(1)由射线OB平分∠AOC可得∠AOC=2∠BOC,设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣42°,解得:x=44°,即∠AOB=44°.(2)由(1)得,∠AOC=88°,①当射线OD在∠AOC内部时,∠AOD=22°,则∠COD=∠AOC﹣∠AOD=66°;②当射线OD在∠AOC外部时,∠AOD=22°则∠COD=∠AOC+∠AOD=110°;(3)∵OE平分∠AOD,∴∠AOE =,当射线OD在∠AOC内部时,∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;当射线OD在∠AOC外部时,∠BOE=∠AOB+∠AOE=44°+11°=55°.∴∠BOE度数为33°或55°.故答案为:33°或55°20.解:(1)作图如下:第11页(共12页)(2)∠AFB的补角为∠BFC,∠AFD.第12页(共12页)。

人教版初一七年级上册数学 《第四章 几何图形初步》单元测试卷02(含答案)

人教版初一七年级上册数学 《第四章 几何图形初步》单元测试卷02(含答案)

人教版七年级数学上册《第四章几何图形初步》单元测试卷一、选择题(共8小题,4*8=32)1.下列能用∠C表示∠1的是()2.A,B两点间的距离是()A.连结两点间的直线B.连结两点的线段C.连结两点间的直线的长度D.连结两点的线段的长度3.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1B.2C.3D.44.已知线段AB=15cm,点C是直线AB上一点,BC=5cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10cm B.5cmC.10cm或5cm D.7.5cm5.α与∠β的度数分别是(2m-67)°和(68-m)°,且∠α与∠β都是∠γ的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等6.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cmC.7cm或3cm D.7cm7.已知∠AOB=30°,自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,则∠BOC=()A.10°B.40°C.40°或70°D.10°或70°8.已知直线AB上有一点O,射线OC和射线OD在直线AB的同侧,∠BOC=50°,∠COD =100°,则∠BOC与∠AOD的平分线的夹角的度数是()A.130°B.135°C.140°D.145°二、填空题(共6小题,4*6=24)9.如图,AB+BC>AC,其理由是____.10.如图,在横线上填上适当的角:∠AOB=-∠COB=∠AOD-.11.如图,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的_____倍.12.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.13.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=________.14.归纳与猜想:(1)观察下图填空:图1中有个角;图2有个角;图3中有个角;(2)根据(1)猜想:在一个角内引n-2条射线可组成个角.三、解答题(共5小题,44分)15.(6分)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.16.(8分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°,如图.第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转了7°12′,这些菜有多少千克?AB,点E是17.(8分)如图,已知A,B,C三点在同一直线上,AB=24cm,BC=38 AC的中点,点D是AB的中点,求DE的长.18.(10分)如图,已知∠AOB=12∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.19.(12分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD 的中点E,F之间的距离是10cm,求AB,CD的长.参考答案1-4CDBC5-8CBDC9.两点之间线段最短10.∠AOC ,∠DOB11.312.155°13.2cm 或8cm14.3,6,10;n (n -1)215.解:如图所示。

七年级数学上册第4章 几何图形初步 单元测试卷(沪科版 2024年秋)

七年级数学上册第4章 几何图形初步 单元测试卷(沪科版 2024年秋)

七年级数学上册第4章几何图形初步单元测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列几何体中,含有曲面的有()A.1个B.2个C.3个D.4个2.中华武术是中国传统文化之一,是中华民族在日常生活中结合社会哲学、中医学、伦理学、兵学、美学、气功等多种传统文化思想和文化观念逐步形成的独具民族风貌的运动项目.“枪挑一条线,棍扫一大片”,从数学的角度解释为()A.点动成线,线动成面B.线动成面,面动成体C.点动成线,面动成体D.点动成面,面动成线3.【2024·合肥四十六中期末】下列几何图形与相应语言描述相符的是()A.如图①,延长线段AB到点CB.如图②,点B在射线CA上C.如图③,直线AB的延长线与直线CD的延长线相交于点PD.如图④,射线CD和线段AB没有交点4.如图所示,点C是线段AB上的一点,点D是线段BC的中点,若AB=10,AC=6,则CD=()A.4B.2C.3D.15.如图,下列说法中错误的是()A.OA的方向是北偏东30°B.OB的方向是北偏西15°C.OC的方向是南偏西25°D.OD的方向是东南方向6.【2023·北京如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC 的大小为()A.36°B.44°C.54°D.63°7.【2024·合肥庐阳中学校级月考】如图,OB平分∠AOC,则∠AOD -∠BOC等于()A.∠BOD B.∠DOC C.∠AOB D.∠AOC8.点P 在射线AB 上,当PA PB =2或P A PB =12时,称点P 是射线AB 的超级点.已知点P 是射线AB 的超级点,若AB =9,则PA 的长度不可能是()A .18B .12C .6D .39.如图,AC =14AB ,BD =15AB ,AE =CD ,则CE 与AB 之比为()A .16B .310C .112D .71010.已知A ,B ,C 三点在同一条直线上,则下列:①AC +BC =AB ;②AC =12AB ;③AC =BC ;④AB =2BC .可以判断点C 是线段AB 中点的有()A .③B .②④C .②③④D .①②③④二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,利用隧道,把弯曲的公路改直,就能缩短两地的路程,这其中蕴含的数学道理是____________________.12.一个角的补角为125°20′,则这个角的余角是________.13.如图,将三个边长相同的正方形的一个顶点重合放置,已知∠1=35°,∠2=40°,则∠3=________°.14.如图,AB为一根长为40cm的绳子,拉直铺平后,在绳子上任意取两点M,N,分别将AM,BN沿点M,N折叠,点A,B分别落在绳子上的点A′,B′处(绳子无弹性,折叠处的长度忽略不计).(1)当点A′与点B′恰好重合时,MN=________.(2)当A′B′=10cm时,MN=________________.三、(本大题共2小题,每小题8分,满分16分)15.计算:(1)48°39′+67°31′-21°17′×5;(2)90°-51°37′11″.16.已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.四、(本大题共2小题,每小题8分,满分16分) 17.【2024·合肥三十八中校级月考】尺规作图:已知∠α,∠β,求作∠ABC,使得∠ABC=∠α-∠β.(不写作法,但要保留作图痕迹)18.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=2cm,求AC的长.五、(本大题共2小题,每小题10分,满分20分)19.已知,如图,B,C两点把线段AD分成253三部分,M为AD的中点,AB=4cm,求CM和AD的长.20.【2024·合肥包河大地中学月考】如图,已知∠AOC=12∠BOC,OD平分∠AOB,且∠AOC=40°,求∠COD.六、(本题满分12分)21.【2024·合肥四十八中校级月考】如图,已知∠AOB=120°,OC 是∠AOB内的一条射线,且∠AOC∶∠BOC=1∶2.(1)求∠AOC的度数;(2)过点O作射线OD,使得∠AOD=12∠AOB,求∠COD的度数.七、(本题满分12分)22.如图,A,B,C三点在同一直线上,点D在AC的延长线上,且CD=AB.(1)请用圆规在图中确定D点的位置;(2)比较线段的大小:AC________BD(填“>”“=”或“<”);(3)若AB:BC=2:5,AC=14,求AD的长.八、(本题满分14分)23.如图①,以直线AB 上一点O 为端点在AB 上方作射线OC ,使∠AOC =65°,将一个含30°角的三角尺DOE 的直角顶点放在点O 处,一条直角边OD 与直线AB 重合.(1)∠COE =________°;(2)如图②,将三角尺DOE 绕点O 按顺时针方向旋转,若OC 恰好平分∠AOE ,则∠COD =________;(3)将三角尺DOE 绕点O 按顺时针方向旋转,如果0°<∠AOD <180°,∠COD =14∠AOE ,求∠COD 的度数.答案一、1.B 2.A 3.D 4.B 5.A 6.C 7.A8.B 【点拨】当PA PB =12时,如图①,因为AB =9,所以PA =13AB =13×9=3.当PA PB=2且点P 在线段AB 上时,如图②,则P A =23AB =23×9=6.当PA PB=2且点P 在AB 的延长线上时,如图③,则P A =2AB =2×9=18.综上,PA =3或6或18.故选B.9.B 【点拨】因为AE =CD ,所以AE -CE =CD -CE ,所以AC =DE =14AB ,所以CE =AB -AC -DE -BD =AB -14AB -14AB -15AB =310AB ,所以CE 与AB 之比为3∶10.10.A 【点拨】①当AC +BC =AB 时,点C 不一定是AB 的中点,故①错误;②当AC =12AB 时,点C 不一定在线段AB 上,故②错误;③当AC =BC 时,点C 一定是AB 的中点,故③正确;④当AB =2BC 时,点C 不一定在线段AB 上,故④错误.二、11.两点之间线段最短12.35°20′【点方法】已知一个锐角为α,则余角为90°-α,补角为180°-α,所以补角-余角=(180°-α)-(90°-α)=90°,可得结论为一个锐角的补角比余角大90°.)13.15【点拨】由题意,得∠1+∠2+90°=90°+90°-∠3.因为∠1=35°,∠2=40°,所以35°+40°+90°=180°-∠3.所以∠3=15°.14.(1)20cm (2)25cm 或15cm【点拨】(1)由折叠的性质,得AM =A ′M ,BN =B ′N ,所以当点A ′与点B ′恰好重合时,MN =A ′M +B ′N =12AB =20cm ,故答案为20cm ;(2)当点A ′落在点B ′的左侧时,如图,因为AA ′+A ′B ′+BB ′=40cm ,A ′B ′=10cm ,所以AA ′+BB ′=30cm ,由折叠的性质,得AM =A ′M ,BN =B ′N ,所以A ′M +B ′N =15cm ,所以MN =MA ′+A ′B ′+B ′N =25cm.当点A ′落在点B ′的右侧时,如图,因为AA ′+BB ′=AB +A ′B ′=40+10=50(cm),所以AM +BN =12AA ′+12BB ′=12(AA ′+BB ′)=12×50=25(cm),所以MN =AB -(AM +BN )=40-25=15(cm).三、15.【解】(1)原式=48°39′+67°31′-106°25′=9°45′.(2)原式=89°59′60″-51°37′11″=38°22′49″.16.【解】设这个角是x °,则余角是(90-x )°,补角是(180-x )°,根据题意,得180-x =3(90-x )+10,解得x =50.则这个角的度数为50°.四、17.【解】如图,∠ABC 为所作.18.【解】因为点B 为CD 的中点,BD =2cm ,所以CD =4cm ,所以AC =AD -CD =8-4=4(cm).五、19.【解】设AB =2x cm ,则BC =5x cm ,CD =3x cm ,所以AD =AB +BC +CD =10x cm.因为M 是AD 的中点,所以MD =12AD =5x cm.因为AB =4cm ,所以2x =4,所以x =2.所以CM =MD -CD =5x -3x =2x =2×2=4(cm),AD =10x =10×2=20(cm).20.【解】因为∠AOC =12∠BOC ,∠AOC =40°,所以∠BOC =2∠AOC =80°,所以∠AOB =∠AOC +∠BOC =120°,因为OD 平分∠AOB ,所以∠AOD =12∠AOB =60°,所以∠COD =∠AOD -∠AOC =20°.六、21.【解】(1)因为∠AOC ∶∠BOC =1∶2,∠AOB =120°,所以∠AOC =13∠AOB =13×120°=40°.(2)因为∠AOD =12∠AOB ,所以∠AOD =60°,当OD 在∠AOB 内部时,∠COD =∠AOD -∠AOC =20°,当OD 在∠AOB 外部时,∠COD =∠AOC +∠AOD =100°.故∠COD 的度数为20°或100°.七、22.【解】(1)如图所示,以点C 为圆心,AB 长为半径画弧交AC的延长线于点D ,点D 即为所求.(2)=【点拨】因为AB =CD ,所以AB +BC =CD +BC ,所以AC =BD .(3)因为AB ∶BC =2∶5,AC =14,所以AB =22+5AC =4,所以CD =4,所以AD =AC +CD =18.八、23.【解】(1)25【点拨】∠COE =∠DOE -∠AOC =90°-65°=25°.(2)25°【点拨】因为OC 恰好平分∠AOE ,所以∠COE =∠AOC =65°,所以∠COD =∠DOE -∠COE =90°-65°=25°.(3)①当OD 在∠AOC 内部时,设∠COD =x ,则∠AOD =65°-x ,所以∠AOE =∠AOD +∠DOE =65°-x +90°=155°-x .因为∠COD =14∠AOE ,所以x =14(155°-x ),解得x =31°,即∠COD =31°.②当OD 在∠BOC 内部,OE 在OB 上方时,设∠COD =y ,则∠AOD =65°+y ,∠AOE =∠AOD +∠DOE=65°+y +90°=155°+y .因为∠COD =14∠AOE ,所以y =14(155°+y ),解得y ,即∠COD 此时∠AOE =155°,不合题意,舍去.③当OD 在∠BOC 内部,OE 在OB 下方时,设∠COD =z ,则∠AOD =65°+z ,所以∠AOE =360°-∠AOD -∠DOE =360°-(65°+z )-90°=205°-z .因为∠COD =14∠AOE ,所以z =14(205°-z ),解得z =41°,即∠COD =41°.综上,∠COD 的度数为31°或41°.。

2023年人教版七年级数学上册 第四章 几何图形初步 单元测试卷及答案

2023年人教版七年级数学上册 第四章 几何图形初步 单元测试卷及答案

2023年人教版七年级数学上册第四章几何图形初步单元测试卷及答案七年级数学·上时间:90分钟满分:120分一、选择题(每题3分,共30分)1.下列几何体中,是圆锥的为()2.【2021·百色】已知∠α=25°30′,则它的余角为()A.25°30′ B.64°30′ C.74°30′ D.154°30′3.下列作图语句错误..的是()A.延长线段ABB.延长射线ABC.直线m和直线n相交于点PD.在射线AB上截取线段AC,使AC=3 cm4.下列立体图形中,都是柱体的为()5.如图,表示∠1的其他方法中,不正确...的是()A.∠ACBB.∠CC.∠BCAD.∠ACD6.如图所示的几何体从上面看到的图形为()17.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()①平板弹墨线②建筑工人砌墙③会场摆直茶杯④弯河道改直A.1个B.2个C.3个D.4个8.【教材P138例4变式】如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的度数为()A.69°B.111°C.141°D.159°9.在直线上顺次取A,B,C三点,使得AB=5 cm,BC=3 cm,如果O是线段BC的中点,那么线段AO的长度是()A.8 cm B.7.5 cm C.6.5 cm D.2.5 cm 10.如图,点A,B是正方体的两个顶点,将正方体按如下方式展开,则在展开图中点A,B的位置标注正确的是()二、填空题(每题3分,共24分)11.【2020·广州】已知∠A=100°,则∠A的补角等于________.12.七棱柱有________个面,________个顶点.13.【教材P130习题T10改编】已知线段AB=8 cm,在直线AB上画线段BC,使2它等于3 cm,则线段AC=______________.14.用“度、分、秒”表示21.24°为__________.15.【教材P136例1变式】【中考·大连】如图,点O在直线AB上,射线OC平分∠BOD,若∠COB=35°,则∠AOD等于________.(第15题)(第17题)(第18题)16.【教材P134练习T1改编】钟表在8:25时,时针与分针的夹角是________度.17.如图是由一些相同的小正方体搭成的几何体从正面、左面、上面看到的形状图,则搭成这个几何体的小正方体的个数是________.18.如图,将一副三角尺叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB =________.三、解答题(19~22题每题10分,其余每题13分,共66分)19.【教材P128练习T2改编】如图,已知线段a,b,画一条线段,使它等于3a -b(用直尺和圆规画图,不要求写画法).20.一个角的余角比它的补角的13还少20°,求这个角的度数.3421.一个几何体从三个方向看到的图形如图所示(单位:cm). (1)写出这个几何体的名称:__________;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.22.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB .若AB =24 cm ,求线段CE 的长.23.如图,OD 平分∠BOC ,OE 平分∠AOC ,∠BOC =60°,∠AOC =58°.(1)求∠AOB的度数.(2)①求∠DOC和∠ADE的度数;②判断∠DOE与∠AOB是否互补,并说明理由.24.已知在同一平面内,∠AOB=90°,∠AOC=60°.(1)∠COB=____________.(2)若OD平分∠BOC,OE平分∠AOC,则∠DOE的度数为________.(3)在(2)的条件下,将题目中的∠AOC=60°改成∠AOC=2α(α<45°),其他条件不变,你能求出∠DOE的度数吗?若能,请写出求解过程;若不能,说明理由.5答案一、1.B 2.B 3.B 4.C 5.B 6.C7.A8.C9.C10.A二、11.80°12.9;1413.11 cm或5 cm14.21°14′24″15.110°16.102.517.518.180°点思路:根据角的和差关系,将∠AOC表示为∠AOD+∠COD,则∠AOC+∠DOB=∠AOD+∠DOB+∠COD=∠AOB+∠COD=90°+90°=180°.三、19.解:如图,AE=3a-b .20.解:设这个角的度数为x.依题意得90°-x+20°=13(180°-x),解得x=75°.答:这个角的度数为75°. 21.解:(1)长方体(2)体积为3×3×4=36(cm3).22.解:因为点C是AB的中点,所以AC=BC=12AB=12×24=12(cm).所以AD=23AC=23×12=8(cm).所以CD=AC-AD=12-8=4(cm).因为DE=35AB=35×24=14.4(cm),所以CE=DE-CD=14.4-4=10.4(cm).23.解:(1)∠AOB=∠BOC+∠AOC=60°+58°=118°.(2)①因为OD平分∠BOC,OE平分∠AOC,所以∠DOC=∠BOD=12∠BOC=12×60°=30°,∠AOE=∠COE=12∠AOC=12×58°=29°.6②∠DOE与∠AOB不互补.理由:因为∠DOC=30°,∠COE=29°,所以∠DOE=∠DOC+∠COE=59°.所以∠DOE+∠AOB=59°+118°=177°.所以∠DOE与∠AOB不互补.24. 点易错:本题根据题目条件解答时,OC是在∠AOB内部,还是在∠AOB外部,其位置不确定,且它们都符合条件,因此解答本题应分OC在∠AOB 外部和内部两种情况讨论.解:(1)30°或150°(2)45°(3)能求出∠DOE的度数.需要分两种情况讨论:①当OC在∠AOB内部时,如图①所示.因为OD平分∠BOC,OE平分∠AOC,所以∠COD=12∠BOC ,∠COE=12∠AOC.所以∠DOE=∠COD+∠COE=12∠BOC+12∠AOC=12(90°-2α)+12·2α=45°.②当OC在∠AOB外部时,如图②所示.因为OD平分∠BOC,OE平分∠AOC,所以∠COD=12∠BOC,∠COE=12∠AOC.所以∠DOE=∠COD-∠COE=12∠BOC-12∠AOC=12(90°+2α)-12·2α=45°.综上所述,∠DOE的度数是45°.78。

2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)

2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)

2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)一.选择题(共8小题,满分32分)1.下列四个几何体中,是棱柱的是()A.B.C.D.2.已知∠α=35°40′,则∠α的补角的度数为()A.55°60′B.55°20′C.144°60′D.144°20′3.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A.①④B.②③C.①②④D.①③④4.将一副常规的三角尺如图放置,则图中∠ACB的度数是()A.75°B.95°C.15°D.120°5.如图,若∠1=32°,则∠2的度数是()A.32°B.58°C.48°D.68°6.如图,若∠AOB=∠COD=∠EOF=90°,且∠DOF=45°,∠AOE=30°,求∠BOC 的度数为()A.15°B.20°C.25°D.30°7.若∠1与∠2互为余角,∠1与∠3互为补角,则下列结论:①∠3﹣∠2=90°;②∠3+∠2=270°﹣2∠1;③∠3﹣∠1=2∠2;④∠3<∠1+∠2.其中正确的是()A.①B.①②C.①②③D.①②③④8.如图,∠AOB与∠COB的度数分别记为m,n(m>n),OM,ON分别是∠COB,∠AOC 的平分线,则∠MON的度数为()A.B.C.D.二.填空题(共8小题,满分32分)9.如图,已知线段AB长度为x,CD长度为y,则图中所有线段的长度和为.10.点A,B,C是同一直线上的三个点,若AB=7cm,BC=5cm,则AC=cm.11.(1)钟表上的时间是3时30分,此时时针与分针所成的夹角是度.(2)计算:24°24′=°.(3)一个角是40°,则它的补角是度.12.如图是一个底面各边都相等的六棱柱,它的底面边长为2cm,高为5cm.这个棱柱共有条棱,个面,侧面积是cm2.13.在平整的地面上,有若干个完全相同的棱长为2cm的小正方体堆成一个几何体,如图所示:这个几何体露出的表面积是cm2.14.如图,将一个三角板60°角的顶点与另一个三角的直角顶点重合,∠1=28°,∠2=°.15.如图,已知点O是直线AB上的一点,∠COE=120°,∠AOF=∠AOE.(1)当∠BOE=15°时,∠COA的度数为;(2)当∠FOE比∠BOE的余角大40°,∠COF的度数为.16.某天卢老师在数学课上,利用多媒体展示如下内容:如图,C为直线AB上一点,∠DCE 为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各学习小组经过讨论后得到以下结论:①∠ACF与∠BCH互余;②∠HCG=45°;③∠ECF与∠GCH互补;④∠ACF﹣∠BCG=45°.聪明的你认为哪些结论是正确的,请写出正确结论的序号.三.解答题(共7小题,满分56分)17.如图所示的是一个正方体的平面展开图,若将该展开图折叠成正方体后,相对面上的两个数字互为相反数,求2x+y﹣z的值.18.如图是一个食品包装盒的表面展开图.(1)该包装盒的几何体名称是;(2)根据图中所标尺寸,用a,b表示这个几何体的表面积S,并计算当a=1,b=4时,S的值.19.如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BD=2cm.(1)图中共有条线段.(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.20.如图,点C在线段AB上,点M,N分别为AC,BC的中点.(1)若AC=6cm,MB=10cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC=2acm,MB=bcm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC=xcm,BC=ycm,M,N分别是线段AC,BC的中点,请画出图形,并用含x,y的式子表示MN的长度.21.如图1,∠AOC和∠BOD都是直角.(1)如果∠DOC=35°,则∠AOB=;(2)找出图1中一组相等的锐角为:;(3)若∠DOC变小,∠AOB将;(填变大、变小、或不变)(4)在图2中,利用能够画直角的工具在图2上再画一个与∠BOC相等的角.22.直观想象,逻辑推理已知点O为直线AB上一点.(1)如图1,过点O作射线OC,使∠AOC:∠BOC=3:2,求∠AOC与∠BOC的度数;(2)如图2,射线OC为∠AOB内部任意一条射线,射线OD、OE分别是∠AOC、∠BOC 的角平分线,求∠DOE的度数,并写出简要的推理过程;(3)写出图2中所有互余的角和互补的角.23.如图,∠AOB=m°,OC是∠AOB内的一条射线,OD、OE分别平分∠BOC、∠AOC.(1)若∠BOC=90°,∠AOC=30°,求∠DOE的度数;(2)试用含m的代数式表示∠DOE;(3)在图中,将OC反向延长,得到OP,OM、ON分别平分∠BOP、∠AOP.请将图补充完整,并用含m的代数式表示∠MON.参考答案一.选择题(共8小题,满分32分)1.解:选项A中的几何体是圆柱,因此选项A不符合题意;选项B中的几何体是三棱柱,因此选项B符合题意;选项C中的几何体是三棱锥,因此选项C不符合题意;选项D中的几何体是四棱台,因此选项D不符合题意;故选:B.2.解:∵∠α=35°40′,∴∠α的补角的度数为180°﹣35°40′=144°20′.故选:D.3.解:①④可以用“两点确定一条直线”来解释;②可以用“两点之间线段最短”来解释;③根据“作一条线段等于已知线段”的方法进行解释;故选:A.4.解:由题意得:∠ACD=45°,∠BCD=30°,则∠ACB=∠ACD﹣∠BCD=15°.故选:C.5.解:由图可得∠1+∠2+90°=180°,∵∠1=32°,∴∠2=58°.故选:B.6.解:∵∠COD=90°,∠DOF=45°,∴∠COF=45°,∵∠EOF=90°,∴∠EOC=45°,∵∠AOB=90°,∴∠AOE+∠BOC=45°,∵∠AOE=30°,∴∠BOC=15°,故选:A.7.解:根据题意得:(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴(2)﹣(1)得,∠3﹣∠2=90°,∴①正确;(1)+(2)得,∠1+∠2+∠1+∠3=270°,∴∠3+∠2=270°﹣2∠1,∴②正确;(2)﹣(1)×2得,∠3﹣∠1=2∠2,∴③正确;∵(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴2(∠1+∠2)=180°,∴∠3=180°﹣∠1=2(∠1+∠2)﹣∠1=∠1+2∠2,∴∠3>∠1+∠2,∴④错误;故选:C.8.解:∵∠AOC=∠AOB+∠BOC=m+n,∵射线ON平分∠AOC,∴∠CON=∠AOC=(m+n),∵OM平分∠BOC,∴∠COM=∠BOC=n,∴∠MON=∠CON﹣∠COM=(m+n)﹣n=m;故选:A.二.填空题(共8小题,满分32分)9.解:∵线段AB长度为x,∴AB=AC+CD+DB=x,又∵CD长度为y,∴AD+CB=x+y,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=x+x+x+y=3x+y,故答案为:3x+y.10.解:①当点C在线段AB的延长线上时,AC=AB+BC=7+5=12cm.②当点C在线段AB上时.AC=AB﹣BC=7﹣5=2cm.故答案为:12或2.11.解:(1)3点30分时,时针与分针的较小夹角是2.5个大格,一个大格的度数是30°,所以30°×2.5=75°;故答案为:75;(2)24°24′=24.4°.故答案为:24.4;(3)由补角的性质,得40°角的补角是180°﹣40°=140°,故答案为:140.12.解:六棱柱有18条棱,8个面,侧面积是2×6×5=60cm2.故答案为:18,8,60.13.解:∵几何体露出的小正方体的面一共有32个,∴这个几何体露出的表面积为32×4=128(cm2),故答案为:128.14.解:∵∠BAC=60°,∠1=28°,∴∠EAC=∠BAC﹣∠1=32°,∵∠DAE=90°,∴∠2=∠DAE﹣∠EAC=58°.故答案为:58.15.解:(1)∵∠BOE=15°,∠COE=120°,∴∠COA=180°﹣120°﹣15°=45°.故答案为:45°.(2)由题意得,∠FOE=90°﹣∠BOE+40°=130°﹣∠BOE.∵∠AOF=∠AOE,∴180°﹣∠BOF=.∴180°﹣(∠EOF+∠BOE)=60°﹣.∴180°﹣130°=60°﹣.∴∠BOE=30°.∴∠EOF=90°﹣30°+40°=100°.∴∠COF=∠COE﹣∠EOF=120°﹣100°=20°.故答案为:20°.16.解:∵CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,∴∠ACF=∠FCD=∠ACD,∠DCH=∠HCB=∠DCB,∠BCG=∠ECG=∠BCE,∵∠ACB=180°,∠DCE=90°,∴∠FCH=90°,∠HCG=45°,∠FCG=135°∴∠ACF+∠BCH=90°,故①②正确,∵∠ECF=∠DCE+∠FCD=90°+∠FCD,∠FCD+∠DCH=90°,∴∠ECF+∠DCH=180°,∵∠HCG≠∠DCH,∴∠ECF与∠GCH不互补,故③错误,∵∠ACD﹣∠BCE=180°﹣∠DCB﹣∠BCE=90°,∴∠ACF﹣∠BCG=45°.故④正确.故答案为:①②④.三.解答题(共7小题,满分56分)17.解:由题意得:2与y,3与z,x与﹣2分别是相对面上的两个数,所以y=﹣2,z=﹣3,x=2,则2x+y﹣z=4﹣2+3=5.18.解:(1)由展开图知,该包装盒的几何体为长方体,故答案为:长方体;(2)由题知,S=2×2a×a+2×2a×b+2×a×b=4a2+6ab,当a=1,b=4时,S=4+6×4=28.19.解:(1)以A为端点的线段为:AC,AB,AD;以C为端点的线段为:CB,CD;以B为端点的线段为:BD;共有3+2+1=6(条);故答案为:6.(2)∵点B为CD的中点,BD=2cm.∴CD=2BD=2×2=4(cm),∴AC=AD﹣CD=9﹣4=5(cm),答:AC的长是5cm.(3)AB=AC+BC=7cm,EA=3cm,当点E在线段AD上时,BE=AB﹣AE=7﹣3=4(cm),当点E在线段DA的延长线上时,BE=AB+AE=7+3=10(cm),答:BE的长是4或10cm.20.解:(1)∵M是AC的中点,∴MC=AC=3cm,∴BC=MB﹣MC=7cm,又∵N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+NC=6.5cm;(2)∵点M、N分别是AC、BC的中点,AC=2acm,MB=bcm,∴AM=AC=a cm,AC+CB=(a+b)cm,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=(a+b)cm,即线段MN的长是(a+b)cm;(3)如图:MN=(x﹣y)cm,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=(x﹣y)cm,∴CM=AC,CN=BC,∴MN=CM﹣CN=AC﹣BC=(AC﹣BC)=(x﹣y)cm,即线段MN的长是(x﹣y)cm.21.解:(1)∵∠AOC=∠DOB=90°,∠DOC=35°,∴∠COB=∠BOD﹣∠DOC=90°﹣35°=55°,∴∠AOB=∠AOC+∠COB=90°+55°=145°;故答案为:145°;(2)∵∠AOC=∠DOB=90°,∴∠AOD+∠COD=∠BOC+∠COD=90°,∴∠AOD=∠BOC;故答案为:∠AOD=∠BOC;(3)∵∠AOD+∠DOC+∠DOC+∠BOC=∠AOB+∠COD=∠AOC+∠BOD=180°,∴∠AOB=180°﹣∠DOC,∴∠DOC逐渐变小,∠AOB逐渐变大;故答案为:变大;(4)利用三角板画∠AOC=∠BOD=90°,则∠AOD=∠BOC,理由如下:∵∠AOC=∠DOB=90°,∴∠AOD+∠COD=∠BOC+∠COD=90°,∴∠AOD=∠BOC.22.解:(1)设∠AOC=3x,∠BOC=2x,∵∠AOC+∠BOC=180°,∴3x+2x=180°,∴x=36°,∴∠AOC=3×36°=108°,∠BOC=2×36°=72°;(2)∵OD、OE分别是∠AOC、∠BOC的角平分线,∴∠DOC=∠AOD=,∠COE=∠BOE=∠BOC,∵∠AOC+∠BOC=180°,∠DOE=∠DOC+∠COE,∴∠DOE====90°;(3)互余的角有,∠DOC与∠COE,∠AOD与∠COE,∠BOE与∠COD,∠BOE与∠AOD;互补的角有,∠AOD与∠BOD,∠AOC与∠BOC,∠AOE与∠BOE.23.解:(1)∵OD、OE分别平分∠BOC、∠AOC,∴∠DOE==60°;(2)由(1)知,∠DOE===;(3)补充图形如下:∵∠AOB=m°,∴∠BOP+∠AOP=360°﹣∠AOB=360°﹣m°,∵OM、ON分别平分∠BOP、∠AOP,∴∠MON=∠MOP+∠NOP==.。

人教版数学七年级上册《几何图形初步》单元检测题(带答案)

人教版数学七年级上册《几何图形初步》单元检测题(带答案)

人教版数学七年级上学期第四章单元测试(考试时间:90分钟试卷满分:120分)第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个几何体中,是三棱柱的为A.B.C.D.2.如图的几何体由5个相同的小正方体搭成.从正面看,这个几何体的形状是A.B.C.D.3.如图,将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是A.B.C.D.4.下列说法正确的是A.延长直线AB B.延长射线ABC.反向延长射线AB D.延长线段AB到点C,使AC=BC5.“汽车上雨刷器的运动过程”能说明的数学知识是A.点动成线B.线动成面C.面动成体D.面与面交于线6.已知∠α=75°,则∠α的余角等于A.15°B.25°C.75°D.105°7.如图,将一块三角形木板截去一部分后,发现剩余木板的周长要比原三角形木板的周长大,能正确解释这一现象的数学知识是A.两直线相交只有一个交点B.两点之间,线段最短C.经过一点有无数条直线D.两点确定一条直线8.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有A.EF=2GH B.EF>GHC.EF>2GH D.EF=GH9.∠COD=36°19′,下列正确的是A.∠COD=36.19°B.∠COD的补角为144°41′C.∠COD的余角为53°41′D.∠COD的余角为53°19′10.如图,OC平分∠AOB,下列结论错误的是A.∠AOB=2∠AOC B.∠AOC=∠BOCC.∠AOC=12∠AOB D.∠BOC=∠AOB第Ⅱ卷二、填空题(本题共8小题,每小题3分,共24分)11.24°18′=__________°.12.如图,用圆规比较两条线段A'B'和AB的长短,则AB__________A'B'.(填“>”“=”或“<”)13.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是__________.①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.14.如图,∠BAD和∠CAE都是直角,若∠BAE=135°17′,则∠CAD=__________.15.如图,能用字母表示的以点C为端点的线段的条数为m,能用字母表示的以点C为端点的射线的条数为n,则m–n的值为__________.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”对面的字是__________.17.如图,点C、D、E是线段AB上的三个点,下面关于线段CE的表示,其中正确的有__________.①CE=CD+DE;②CE=CB–EB;③CE=CB–DB;④CE=AD+DE–AC.18.一个无盖的长方体的包装盒展开后如图所示(单位:cm),则该长方体的体积为__________cm3.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)如图,写出图中的所有角,并比较它们的大小,通过测量指出哪些角是直角,哪些角是锐角,哪些角是钝角.20.(本小题满分6分)如图是由小正方形组成的图,请你用三种方法分别在下图中添画两个小正方形,使它能成为正方体的表面展开图.21.(本小题满分8分)已知∠A=24.1°+6°,∠B=56°–26°30′,∠C=18°12′+11.8°,试通过计算,比较∠A,∠B和∠C的大小.22.(本小题满分8分)如图,∠2是∠1的4倍,∠2的补角比∠1的余角大45°.(1)求∠1、∠2的度数;(2)若∠AOD=90°,试问OC平分∠AOB吗?为什么?23.(本小题满分6分)如图是一个正方体的展开图,标注了字母A,C的面分别是正方体的正面和底面,其他面分别用字母B,D,E,F表示.已知A=kx+1,B=3x–2,C=1,D=x–1,E=2x–1,F=x.(1)如果正方体的左面与右面所标注字母代表的代数式的值相等,求出x的值;(2)如果正面字母A代表的代数式与对面字母代表的代数式的值相等,且x为整数,求整数k的值.24.(本小题满分10分)如图,已知A、O、B三点共线,OC、OE分别平分∠AOD、∠DOB.(1)试探究∠COD和∠DOE的关系;(2)若∠DOE:∠COD=2:3,求∠COB的度数.25.(本小题满分10分)已知直角三角板的直角顶点C放在直尺的一边MN上,(1)若点A和点B在直线MN的上方(如图1),求此时∠ACM与∠BCN的数量关系;(2)若把这把直角三角板绕顶点C旋转到点A在直线MN的下方,点B仍然在直线MN的上方时(如图2),求∠ACM与∠BCN的数量关系;(3)若把这把直角三角板绕顶点C旋转到点A和点B都在直线MN的下方时(如图3),求∠ACM 与∠BCN的数量关系.26.(本小题满分12分)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?参考答案11.24.3 12.< 13.①④14.44°43′15.2 16.顺17.①②④18.9619.【解析】由图可知,图中的角为:∠DOC、∠COB、∠BOA、∠DOB、∠COA、∠DOA;大小关系为:∠DOC=∠BOA<∠COB<DOB=∠COA<∠DOA;(3分)直角是:∠DOB、∠COA;锐角是:∠DOC、∠COB、∠BOA;钝角是:∠DOA.(6分)20.【解析】如图所示:(6分)21.【解析】因为∠A=24.1°+6°=30.1°=30°6′,∠B=56°–26°30′=29°30′,(4分)∠C=18°12′+11.8°=18°12′+11°48′=29°60′=30°,(6分)所以∠A>∠C>∠B.(8分)22.【解析】(1)因为∠2是∠1的4倍,所以∠2=4∠1,∠1的余角=90°–∠1,∠2的补角=180°–∠2=180°–4∠1,由题意得,(180°–4∠1)–(90°–∠1)=45°,解得∠1=15°,所以,∠2=4×15°=60°;(4分)(2)OC平分∠AOB.理由如下:因为∠AOD=90°,∠2=60°,所以∠AOB=90°–60°=30°,因为∠1=15°,所以∠BOC=30°–15°=15°,所以∠AOC=∠BOC,所以OC平分∠AOB.(8分)23.【解析】(1)因为正方体的左面D与右面B所标注的代数式的值相等,所以x–1=3x–2,解得x=12;(3分)(2)因为正面字母A代表的代数式与对面F代表的代数式的值相等,所以kx+1=x,所以(k–1)x=–1,因为x为整数,所以x,k–1为–1的因数,所以k–1=±1,所以k=0或k=2,综上所述,整数k的值为0或2.(6分)24.【解析】(1)因为OC、OE分别平分∠AOD、∠DOB,所以∠COD=12∠AOD,∠DOE=12∠DOB,所以∠COD+∠DOE=12(∠AOD+∠DOB)=90°;(4分)(2)设∠DOE=2x,∠COD=3x,由(1)可知:∠DOE+∠COD=90°,(6分)所以2x+3x=90°,所以x=18°,所以∠DOE=36°,∠COD=54°,所以∠COB=∠COD+2∠DOE=54°+72°=126°.(10分)25.【解析】(1)当点A和点B在直线MN的上方时,因为∠ACB=90°,所以∠ACM+∠BCN=180°–∠ACB=180°–90°=90°;(3分)(2)当点A在直线MN的下方,点B仍然在直线MN的上方时,因为∠BCN=180°–∠BCM,∠ACM=90°–∠BCM,所以∠BCN–∠ACM=(180°–∠BCM)–(90°–∠BCM)=90°;(6分)(3)当点A和点B都在直线MN的下方时,因为∠BCN=180°–∠BCM,∠ACM=90°+∠BCM,所以∠ACM+∠BCN=(180°–∠BCM)+(90°+∠BCM)=270°.(10分)26.【解析】(1)因为线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,所以CM=12AC=5厘米,CN=12BC=3厘米,所以MN=CM+CN=8厘米;(4分)(2)因为点M,N分别是AC,BC的中点,所以CM=12AC,CN=12BC,所以MN=CM+CN=12AC+12BC=12a;(8分)(3)①当0<t≤5时,C是线段PQ的中点,得10–2t=6–t,解得t=4;②当5<t≤163时,P为线段CQ的中点,2t–10=16–3t,解得t=265;③当163<t≤6时,Q为线段PC的中点,6–t=3t–16,解得t=112;④当6<t≤8时,C为线段PQ的中点,2t–10=t–6,解得t=4(舍),综上所述:t=4或265或112.(12分)。

人教版数学七年级上册第4章《几何图形初步》单元同步检测试题(含答案)

人教版数学七年级上册第4章《几何图形初步》单元同步检测试题(含答案)

第4章【几何图形初步】单元检测题题号一二三总分16 17 18 19 20分数一.选择题1.圣诞帽类似于几何体()A.圆锥B.圆柱C.球D.棱柱2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.如果一个正方体棱长扩大到原来的2倍,则表面积扩大到原来的()A.2倍B.4倍C.8倍D.16倍4.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D.5.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°6.下列4个生产、生活现象中,可用“两点之间线段最短”来解释的是()A.用两根钉子就可以把木条固定在墙上B.植树时,只要选出两棵树的位置,就能确定同一行树所在的直线C.把弯曲的公路改直,就能缩短路程D.砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线7.在以下三个图形中,根据尺规作图的痕迹,不能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图38.已知矩形两边长为2cm与3cm,绕长边旋转一周所得几何体的体积为()A.3πcm3B.4πcm3C.12πcm3D.18πcm39.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC=∠AOBA.1个B.2个C.3个D.4个10.如图所示,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC、AB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点O;③作射线OA,交BC于点E,若CE=6,BE=10.则AB的长为()A.11B.12C.18D.20二.填空题11.若∠A=25°,则它的补角是°.12.张雷同学从A地出发沿北偏东60°的方向行驶到B地,再由B地沿南偏西35°的方向行驶到C 地,则∠ABC=度.13.一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是立方厘米.(结果保留π)14.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.15.已知△ABC,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交直线AB于点D,连接CD.若∠ABC=40°,∠ACD=30°,则∠BAC的度数为.三.解答题16.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′17.如图,点B,D都在线段AC上,AB=12,点D是线段AB的中点,BD=3BC,求AC的长.18.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD和∠AOC 互余,并求∠COD的度数.19.如图,在△ABC中,D是AB边上的一点.请用尺规作图法,在△ABC内,作出∠ADE,使∠ADE=∠B,DE交AC于点E.(保留作图痕迹不写作法)20.在一个圆柱形水桶里,垂直放入一段半径是3cm的圆柱形钢材.如果把钢材全部侵入水中,桶里的水面上升10cm;如果再把钢材垂直露出水面6cm,桶里的水面下降4cm.(π取3.14)(1)整段钢材的体积是多少?(2)若把整段钢材全部用来锻造底面直径为2cm,高为3cm的圆锥形零件,一共可以锻造多少个这样的圆锥形零件?(假定锻造过程中无任何损耗)参考答案一.选择题1.解:圣诞帽的形状上面尖尖的,下面是圆形的,类似于圆锥体,故选:A.2.解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.解:设原来的正方体的棱长为a,则变化后的正方体的棱长为2a,原来的表面积:a×a×6=6a2,变化后的表面积:2a×2a×6=24a2,而24a2÷6a2=4,故选:B.4.解:“面A“的字母与上面的“横线”方向不对,因此选项A不符合题意;有三个“空白”的面,其中的两个“空白”的面是对面,因此选项D不符合题意,由“面A”的对面和邻面是标有“横线”的面,因此选项C不符合题意;故选:B.5.解:射线OA表示的方向是南偏东65°,故选:C.6.解:A、用两根钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;B、植树时,只要选出两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;C、把弯曲的公路改直,就能缩短路程,可用“两点之间线段最短”来解释,符合题意;D、砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线,利用的是两点确定一条直线,故此选项不合题意;故选:C.7.解:在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,利用作法得AE=AF,AM=AN,则可判断△ADM≌△ADN,所以∠AMD=∠AND,则可判断△MDE≌△NDF,所以D点到AM和AN的距离相等,则可判断AD平分∠BAC.故选:A.8.解:将长方形纸片绕长边所在直线旋转一周,得到的几何体是底面半径为2cm,高为3cm的圆柱体,所以:体积为:π×22×3=12π(cm3),故选:C.9.解:①由∠AOC=∠BOC能确定OC平分∠AOB;②如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;③∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;④如图2,∠BOC=∠AOB,不能确定OC平分∠AOB;所以只有①能确定OC平分∠AOB;故选:A.10.解:过点E作DE⊥AB于点D,由作图知AO平分∠BAC,∵∠C=∠ADE=90°,∴CE=DE=6,∵BE=10,∴BD=8,∵AD=AC,CE=DE,∴Rt△ACE≌Rt△ADE(HL),∴AC=AD,设AC=AD=x,由AC2+BC2=AB2得x2+162=(x+8)2,解得:x=12,即AC=12,∴AB=20,故选:D.二.填空题11.解:∵∠A=25°,∴∠A的补角是180°﹣∠A=180°﹣25°=155°.故答案为:155.12.解:如图所示,∵AD∥BE,∠1=60°,∴∠ABE=∠DAB=60°,又∵∠CBE=35°,∴∠ABC=60°﹣35°=25°.故答案为:25.13.解:绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm所在的直线旋转所形成几何体的的体积是:π×32×4=12π,②当绕它的直角边为4cm所在的直线旋转所形成几何体的的体积是:π×42×3=16π,故答案为:12π或16π.14.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.15.解:由题意得,直线MN是线段BC的垂直平分线,∴BD=CD,∴∠BCD=∠B=40°,∵∠ACD=30°,如图1,∴∠ACB=40°+30°=70°,∴∠BAC=180°﹣70°﹣40°=70°;如图2,∴∠ACB=40°﹣30°=10°,∴∠BAC=180°﹣10°﹣40°=130°,综上所述,∠BAC的度数为70°或130°,故答案为:70°或130°.三.解答题16.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.17.解:∵AB=12,点D是线段AB的中点,∴BD=12÷2=6;∵BD=3BC,∴BC=6÷3=2,∴AC=AB+BC=12+2=14.18.解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.19.解:如图,∠ADE即为所求.20.解:(1)整段钢材的高为:10×(6÷4)=15(cm),整段钢材的体积为:3.14×32×15=423.9(cm3),答:整段钢材的体积是423.9立方厘米;(2)每个圆锥形零件的体积为,锻造锥形零件的个数为:423.9÷3.14=135(个).答:一共可以锻造135个这样的圆锥形零件.。

人教版七年级数学第四章《几何图形初步》单元测试带答案解析

人教版七年级数学第四章《几何图形初步》单元测试带答案解析
故选:C.
【点睛】考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.
4.C
【分析】根据正方体表面展开图的特征进行判断即可.
【详解】解:由正方体表面展开图.
【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.
分两种情况:
当点P在点B的右侧,
∵M,N分别为AP,BP的中点,
∴ , ,
∴ ,
当点P在点B的左侧,
∵M,N分别为AP,BP的中点,
, ,
∴ ,
∴在点P的运动过程中,线段MN的长度不变,故④正确.
所以,上列结论中正确的是②④.
故选:D.
【点睛】本题考查了数轴,根据题目的已知条件并结合图形分析是解题的关键.
A.长方体B.圆柱C.圆锥D.正方体
3.下列图形是正方体展开图的个数为()
A.1个B.2个C.3个D.4个
4.如图是正方体的表面展开图,则与“话”字相对的字是( )
A.跟B.党C.走D.听
5.如图,把一个高6分米的圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了36平方分米.原来这个圆柱的体积是( )立方分米.
20.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.
(1)请你帮小华分析一下拼图是否存在问题,若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;
(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,求出修正后所折叠而成的长方体的体积.
故选:D.
【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.

七年级数学上册 第二章 几何图形的初步认识 单元测试卷(冀教版 2024年秋)

七年级数学上册 第二章 几何图形的初步认识 单元测试卷(冀教版 2024年秋)

七年级数学上册第二章几何图形的初步认识单元测试卷(冀教版2024年秋)一、选择题(每题3分,共36分)1.[2024·保定第十七中期中]如图,下列几何体中,属于柱体的有()A.1个B.2个C.3个D.4个2.下列说法中,正确的是()A.若PA=12AB,则P是线段AB的中点B.两点之间,线段最短C.直线的一半是射线D.平角就是一条直线3.已知∠1=28°24',∠2=28.24°,∠3=28.4°,则下列说法中,正确的是()A.∠1=∠2<∠3B.∠1=∠3>∠2C.∠1<∠2=∠3D.∠1=∠2>∠34.[2024·唐山丰润区期末]如图,将一个直角三角形纸板ABC绕点A 逆时针旋转50°得到△ADE,若∠BAC=40°,则∠CAD的度数为()(第4题)A.90°B.30°C.20°D.10°5.如图,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2=()(第5题)A.60°B.50°C.80°D.70°6.[情境题生活应用]某学校的学生每天上午8时45分下第一节课,此时时钟的时针与分针所成的角为()A.10°B.7°30'C.12°30'D.90°30'7.依据下列线段的长度,能确定点A,B,C不在同一直线上的是()A.AB=8cm,BC=19cm,AC=27cmB.AB=10cm,BC=9cm,AC=18cmC.AB=11cm,BC=21cm,AC=10cmD.AB=30cm,BC=12cm,AC=18cm8.[2024·保定十七中月考]如图,将一副三角板按不同的位置摆放,下列摆放方式中,∠α与∠β均为锐角且相等的是()9.[母题教材P89A组T5(2)]如图,OB是∠AOC的平分线,OD是∠COE的平分线.若∠AOB=40°,∠COE=60°,则∠BOD=()(第9题)A.50°B.60°C.65°D.70°10.[2024·石家庄四十中模拟]两根木条,一根长20cm,另一根长24 cm,将它们的一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cmB.4cmC.2cm或22cmD.4cm或44cm11.如图,射线OC平分∠AOB,射线OD平分∠BOC,则下列等式中成立的有()(第11题)①∠COD=∠AOD-∠BOC;②∠COD=∠AOD-∠BOD;③2∠COD=2∠AOD-∠AOB;④∠COD=13∠AOB.A.①②B.①③C.②③D.②④12.[2024·张家口部分学校联考]如图,C,D在线段BE上,下列说法:①直线BE上以B,C,D,E为端点的线段共有6条;②图中有两对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为340°;④若BC=3,CD=DE=4,点F是线段BE上任意一点,则点F到点B,C,D,E 的距离之和的最大值为21,最小值为15.其中正确的有()(第12题)A.1个B.2个C.3个D.4个二、填空题(每题3分,共12分)13.[2024·沧州期末]如图,小明捡到一片沿直线被折断了的银杏叶,小明发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是.(第13题)14.七棱柱有个面,个顶点.15.如图,点O在直线AB上,∠AOC=53°17'28″,则∠BOC=.(第15题)16.[2024·廊坊安次区期末]已知往返于汕头与广州东的D7150次列车,运行途中须停靠汕头、潮汕、普宁、深圳北、东莞南、东莞、广州东7个站点,那么该次列车共有种不同的车票.一列火车往返于A,B两个城市,若共有n(n≥3)个站点,则需要种不同的车票.三、解答题(第17,18题每题6分,第19~21题每题8分,第22~24题每题12分,共72分)17.[2024·保定十七中月考](1)0.75°等于多少分?等于多少秒?(2)将50°22'48″用度表示.(3)将42.34°用度、分、秒表示.18.计算:(1)143°19'42″+26°40'28″;(2)90°3″-57°21'44″.19.已知线段a,b(a<b),如图,求作线段c,使c=2b-a.(写出作法)20.[2024·邯郸永年区实验中学月考]如图,点A,B,C,O都在正方形网格的格点上,按要求画图.(1)画射线BA,直线AC,连接BC;(2)画出三角形ABC绕点O顺时针旋转90°后的三角形A’B’C’.21.[2024·唐山四中模拟]如图,线段AD=6cm,线段AC=BD=4 cm,E,F分别是线段AB,CD的中点,求线段EF的长.22.[2024·石家庄晋州期中]如图所示,点C在线段AB上,AB=30 cm,AC=12cm,M,N分别是AB,BC的中点.(1)求CN的长度;(2)求MN的长度;(3)若点P在直线AB上,且PA=2cm,点Q为BP的中点,请直接写出QN的长度,不用说明理由.23.如图,射线OC和OD把平角∠AOB三等分,OE平分∠AOC,OF平分∠BOD.(1)求∠COD的度数;(2)写出图中所有的直角;(3)写出∠COD的所有余角和补角.24.如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)∠MON=°.(2)将OC绕O点向下旋转,使∠BOC=2x°(0<x<45),其他条件不变,能否求出∠MON的度数?若能,求出∠MON的度数;若不能,试说明理由.(3)若∠AOB=α,∠BOC=β(0°<α+β<180°),其他条件不变,能否求出∠MON的度数?若能,求出∠MON的度数;若不能,试说明理由.答案一、1.B2.B【点拨】当点P不在线段AB上时,P不是线段AB的中点,故A不正确;两点之间,线段最短,故B正确;直线和射线都不可度量,故C不正确;平角和直线是两个不同的概念,故D不正确.3.B【点拨】∠1=28°24'=28.4°,故∠1=∠3>∠2.4.D【点拨】根据题意,可知旋转角∠BAD=50°,所以∠CAD=∠BAD-∠BAC=50°-40°=10°.故选D.5.D【点拨】因为∠1=40°,所以∠BOC=180°-∠1=140°.又因为OD平分∠BOC,所以∠2=12∠BOC=70°.6.B【点拨】时针从8时到8时45分旋转了45×0.5°=22.5°,而分针在8时45分时指向“9”,因此时针与分针所成的角为30°-22.5°=7.5°=7°30'.7.B【点拨】本题可采用排除法.8.B【点拨】A.∠α+∠β=180°-90°=90°,互余,不符合题意;B.根据同角的余角相等,得∠α=∠β,且∠α与∠β均为锐角,符合题意;C.根据等角的补角相等,得∠α=∠β,但∠α与∠β均为钝角,不符合题意;D.∠α+∠β=180°,互补,不符合题意.故选B.9.D【点拨】因为OB是∠AOC的平分线,所以∠BOC=∠AOB=40°.因为OD 是∠COE的平分线,所以∠COD=12∠COE=12×60°=30°.所以∠BOD=∠BOC+∠COD=40°+30°=70°.10.C根据题意画出图形,由于将木条的一端重合且放在同一条直线上,有两种情况,根据线段中点的定义分别求出两根木条的中点之间的距离.11.B【点拨】因为OC平分∠AOB,OD平分∠BOC,所以∠AOC=∠BOC=12∠AOB,∠COD=∠BOD=12∠COB.因为∠COD=∠AOD-∠AOC,∠AOC=∠BOC,所以∠COD=∠AOD-∠BOC.故①正确.因为∠BOD≠∠BOC,所以∠COD≠∠AOD-∠BOD.故②错误.因为∠AOD=∠AOC+∠COD,所以2∠AOD=2(∠AOC+∠COD)=∠AOB+2∠COD.所以2∠AOD-∠AOB=∠AOB+2∠COD-∠AOB=2∠COD.所以2∠COD=2∠AOD-∠AOB.故③正确.因为∠COD=12∠BOC,∠BOC=12∠AOB,所以∠COD=12×12∠AOB=14∠AOB.故④错误.故选B.12.C【点拨】①直线BE上以B,C,D,E为端点的线段有:BC,BD,BE,CD,CE,DE,共6条,故①正确;②∠ACB与∠ACD互补,∠ADC与∠ADE互补,即共有2对互补的角,故②正确;③因为∠BAE=100°,∠DAC=40°,所以∠BAC+∠DAE=60°.以A为顶点的所有小于平角的角有:∠BAC,∠CAD,∠DAE,∠BAD,∠CAE,∠BAE,所以∠BAC+∠CAD+∠DAE+∠BAD+∠CAE+∠BAE=∠BAE+∠BAE+∠CAD+∠BAE=340°,故③正确;④因为BC=3,CD=DE=4,所以当点F在线段CD上时,距离之和最小,此时点F到点B,C,D,E 的距离之和为FB+FE+FD+FC=(FB+FE)+(FC+FD)=BE+CD=(3+4+4)+4=15;当点F和点E重合时,距离之和最大,此时点F到点B,C,D,E的距离之和为FB+FE+FD+FC=(4+4+3)+0+4+(4+4)=23,故④错误.综上所述,正确的有①②③,共3个.故选C.二、13.两点之间,线段最短14.9;1415.126°42'32″16.42;n(n-1)【点拨】往返于汕头与广州东的D7150次列车,共2×(6+5+4+3+2+1)=2×21=42(种)不同的车票.若共有n(n≥3)个站点,则需要2[(n-1)+(n-2)+(n-3)+…+3+2+1]=2×(-1)2=n(n-1)(种)不同的车票.三、17.【解】(1)0.75°=60'×0.75=45',0.75°=60″×45=2700″.(2)48″×48=0.8',22'+0.8'=22.8',22.8'=0.38°.所以50°22'48″=50.38°.(3)60'×0.34=20.4',60″×0.4=24″,所以42.34°=42°20'24″.18.【解】(1)143°19'42″+26°40'28″=169°59'70″=170°10″.(2)90°3″-57°21'44″=89°59'63″-57°21'44″=32°38'19″.19.【解】如图所示.作法:①画射线OA.②在射线OA上顺次取点B,C,使OB=BC=b.③在线段CB上取点D,使CD=a.则OD就是所求作的线段c.20.【解】(1)如图所示.(2)三角形A'B'C'如图所示.21.【解】因为AD=6cm,AC=BD=4cm,所以BC=AC+BD-AD=4+4-6=2(cm).所以AB+CD=AD-BC=6-2=4(cm).又因为E,F分别是线段AB,CD的中点,所以EB=12AB,CF=12CD.所以EB+CF=12AB+12CD=12(AB+CD)=2cm.所以EF=EB+BC+CF=2+2=4(cm).即线段EF的长为4cm.22.【解】(1)因为AB=30cm,AC=12cm,所以BC=18cm.因为N是BC的中点,所以CN=12BC=9cm.(2)因为AB=30cm,M是AB的中点,所以AM=15cm.又因为AC=12cm,所以MC=3cm.所以MN=CN-MC=6cm.(3)QN=5cm或7cm.23.【解】(1)因为射线OC和OD把平角∠AOB三等分,所以∠COD=13×180°=60°.(2)∠DOE与∠COF.(3)∠COD的余角:∠AOE,∠EOC,∠DOF,∠FOB.∠COD的补角:∠AOD,∠EOF,∠BOC.24.【解】(1)45(2)能.因为∠AOB=90°,∠BOC=2x°,所以∠AOC=90°+2x°.因为OM,ON分别平分∠AOC,∠BOC,所以∠MOC=12∠AOC=12(90°+2x°)=45°+x°,∠CON=12∠BOC=x°.所以∠MON=∠MOC-∠CON=45°+x°-x°=45°.(3)能.因为∠AOB=α,∠BOC=β,所以∠AOC=α+β.因为OM,ON分别平分∠AOC,∠BOC,所以∠MOC=12∠AOC=12(α+β),∠CON=12∠BOC=12β.所以∠MON=∠MOC-∠CON=12(α+β)-12β=12α.11。

七年级数学上册《第四章 几何图形初步》单元测试卷及答案-人教版

七年级数学上册《第四章 几何图形初步》单元测试卷及答案-人教版

七年级数学上册《第四章几何图形初步》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列几何体中,三棱锥是()A.B.C.D.2.在下面的图形中,不是正方体的展开图的是()A.B.C.D.3.将下列平面图形绕轴旋转一周,可以得到图中所示的立体图形是()A.B.C.D.4.如图,在一个正方体纸盒上切一刀,切面与棱的交点分别为A,B,C,切掉角后,将纸盒剪开展成平面,则展开图不可能是()A.B.C.D.5.已知线段AB=8,BC=3,且A,B,C三点在同一条直线上,则AC的长是()A.5 B.11 C.5或11 D.246.如图,下列说法错误的是()A.点A在直线AC上,点B在直线m外B.射线AC与射线CA不是同一条射线C.直线AC还可以表示为直线CA或直线D.图中有直线3条,射线2条,线段1条7.如图,一张地图上有A、B、C三地,C地在A地的东南方向,若∠BAC=102°,则B地在A地的()A.南偏西57°方向B.南偏西67°方向C.南偏西33°方向D.西南方向8.已知∠2是∠1的余角,且∠1=35∘,则∠2的补角等于()A.145∘B.125∘C.115∘D.65∘二、填空题9.34.37°=34°′′′.10.如图,用一个平面去截一个三棱柱,截面的形状可能是.①三角形②四边形③五边形④六边形11.已知∠A与∠B互余,且∠A=37°则∠B的补角是度.BC那么AC=.12.点A,B,C在同一条直线上,如果BC=8,AB=1413.如图所示的网格是正方形网格,点 A,B,C,D,O 是网格线交点,那么∠AOB∠COD三、解答题CB,求线段CD和BD的长. 14.如图AB=24,点C为AB的中点,点D在线段AC上,且AD=1315.如图,点O在直线AB上,已知∠AOE=∠COD,且射线OC平分∠BOE,∠EOD=30°求∠AOD 的度数.16.如图是一个正方体的表面展开图,每一个面上都写有一个整数,并且相对两个面上所写的两个互为相反数,求−b a+2ac的值.17.如图,AB是直线OD,OE分别是∠AOC,∠BOC的平分线.(1)∠BOC=72°20′求∠1,∠2,∠DOE的度数.(2)若∠BOC=α,求∠DOE.18.如图1,OC平分∠AOB,OD是∠BOC内部从点O出发的一条射线,OE平分∠AOD.(1)[基础尝试]如图2,若∠AOB=120°,∠COD=10°,求∠DOE的度数;(2)[画图探究]设∠COE=x°,用x的代数式表示∠BOD的度数;(3)[拓展运用]若∠COE与∠BOD互余,∠AOB与∠COD互补,求∠AOB的度数.参考答案1.C2.D3.D4.B5.C6.D7.A8.B9.22;1210.①②③11.12712.6或10或10或613.>或大于14.解:∵点C为AB的中点AB=12∴AC=BC=12CB∵AD=13×12=4∴AD=13∴CD=AC−AD=8∴BD=BC+CD=2015.解:∵∠AOE=∠COD∴∠AOE−∠DOE=∠COD−∠DOE即∠AOD=∠COE∵射线OC平分∠BOE∴∠BOC=∠COE,则∠AOD=∠BOC=∠COE∵∠EOD=30°∴3∠AOD+30°=180°∴∠AOD=50°.16.解:∵a与−3相对,b与2相对,c与1相对,相对两个面上所写的两个互为相反数∴a=3 b=−2 c=−1∴−b a+2ac=−(−2)3+2×3×(−1)=2.故答案为:2.17.(1)解:∵AB是直线OD,OE分别是∠AOC,∠BOC的平分线∠BOC=72°20′∴∠1=∠EOB=12∠BOC=36°10′∴∠DOC=∠AOD=12∠AOC=12(180°−∠BOC)=12(180°−72°20′)=53°50′∴∠DOE=∠1+∠2=36°10′+53°50′=90°;(2)解:∵AB是直线OD,OE分别是∠AOC,∠BOC的平分线∴∠1=∠EOB=12∠BOC∴∠DOC=∠AOD=12∠AOC∴∠DOE=∠1+∠2=12∠AOC+12∠BOC=90°.18.(1)解:∵∠AOB=120°,OC平分∠AOB ∴∠AOC=∠COB=60°∵∠COD=10°∴∠AOD=60°+10°=70°∵OE平分∠AOD∴∠DOE=35°;(2)解:设∠COD=a∵∠COE=x°∴∠EOD=x°+a∵OE平分∠AOD∴∠AOD=2∠COD=2(x°+a) =2x°+2a∴∠AOC=2x°+a∵OC平分∠AOB∴∠BOC=∠AOC=2x°+a∴∠BOD=∠BOC-∠COD=2x°;(3)解:由上题得∠BOD=2x°∵∠COE与∠BOD互余∴x+2x=90°解得x=30 .∵∠AOB与∠COD互补∴4x+2a+a=180°4×30°+3a=180°a= 20°∴∠AOB=160°。

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)一、单选题(本大题共15小题,共45分)1.如图,将正方体的平面展开图重新折成正方体后,“奋”字对面的字是()A. 者B. 乐C. 的D. 园2.一枚六个面分别标有1−6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是()A. 6B. 2C. 3D. 13.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A. ①B. ②C. ③D. ④4.观察下图,把左边的图形绕着给定直线旋转一周后可能形成的几何体是()A. B.C. D.5.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.6.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=80,BC=60,则MN的长为()A. 10B. 70C. 10或70D. 30或707.已知线段AB=8,延长线段AB至C,使得BC=12AB,延长线段BA至D,使得AD=14AB,则下列判断正确的是()A. BC=12AD B. BD=3BC C. BD=4AD D. AC=6AD8.下列作图语句中,正确的是()A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点9.如图给出的分别有射线,直线,线段,其中不能相交的图形是()A. B.C. D.10.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 两点确定一条直线D. 两点之间,线段最短11.若∠α=5.12°,则∠α用度、分、秒表示为()A. 5°12′B. 5°7′12′′C. 5°7′2′′D. 5°10′2′′12.下列图形中,能用∠α,∠O,∠AOB三种方式正确表示同一个角的图形是()A. B. C. D.13.按图1~图4的步骤作图,下列结论错误的是()∠AOB=∠AOP B. ∠AOP=∠BOPA. 12C. 2∠BOP=∠AOBD. ∠BOP=2∠AOP14.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB=()A. 40°B. 50°C. 90°D. 80°15.如图,准确表示小岛A相对于灯塔O的位置是()A. 北偏东60°B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处二、填空题(本大题共5小题,共15分)16.如图,一个正方块的六个面分别标有A、B、C、D、E、F,从三个不同方向看到的情况如图所示,则A的对面应该是 ______.17.如图,已知点A、B、C、D、在同一条直线上,AB=5,AC=2,点D是线段BC的中点,则BD=______.18.时钟指示2点25分,它的时针与分针所成的锐角是 ______°.19.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角,若∠1=25°,那么∠AOB的度数是 ______°.20.在一次夏令营活动中,小明同学从营地A点出发,要到C地去,先沿北偏东70°方向走了500m到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小明在营地A的______方向.三、解答题(本大题共5小题,共40分)21.如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面A在长方体的底部放置,那么哪一个面会在它的上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)从右面看是面C,面E在左面,那么哪一个面会在上面?22.如图,已知线段AB=14,AP=8,P是OB的中点,求AO的长.AC,D,E分别为AC,AB的中点,求线段DE的23.如图,点C是线段AB上一点,AC=12,CB=23长.24.如图∠AOC为直角,OC是∠BOD的平分线,且∠AOB=28°,求∠BOD的度数.25.如图,点A、O、B在同一条直线上,∠AOD=∠EOC=90°,∠BOC:∠AOE=4:1,求∠COD的度数.参考答案和解析1.【答案】B;【解析】解:由题意,将正方体的平面展开图重新折成正方体后,“斗”字对面的是“的”字,“奋”字对面的字是“乐”字,“者”字对面的是“园”字,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.【答案】A;【解析】解:根据图形可知,与点数1相邻的面的点数有2、3、4、5,∴点数1与6是相对面,对比第一个和第三个图,可知写有“?”的面与点数1是相对面,故写有“?”一面上的点数是6.故选:A.根据与1个点数相邻的面的点数有2、3、4、5可知1个点数的对面是6个点数,再根据1与2、3相邻,从而得解.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻的面上找出一个与另外4个相邻的数是解答该题的关键.3.【答案】A;【解析】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故选:A.由平面图形的折叠及正方体的表面展开图的特点解题.此题主要考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.4.【答案】D;【解析】根据面动成体的原理以及空间想象力即可解.考查学生立体图形的空间想象能力及分析问题,解决问题的能力.解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.5.【答案】D;【解析】该题考查的是点线面的认识有关知识,根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.解:A.圆柱是由一长方形绕其一边长旋转而成的;B.圆锥是由一直角三角形绕其直角边旋转而成的;C.该几何体是由直角梯形绕其下底旋转而成的;D.该几何体是由直角三角形绕其斜边旋转而成的.故选D.6.【答案】C;【解析】解:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴BM=12AB=40,BN=12BC=30;∴MN=BM+BN=40+30=70.(2)当C在AB上时,如图2,同理可知BM=40,BN=30,∴MN=BM−BN=40−30=10;所以MN=70或10,故选:C.根据题意画出图形,再根据图形求解即可.此题主要考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.【解析】解:如图所示:∵AB=8,BC=12AB,∴BC=4,∵AD=14AB,∴AD=2,∴AC=AB+BC=12,BD=AD+AB=10,∴BC=2AD,BD=2.5BC,BD=5AD,AC=6AD.故选:D.根据AB=8,由线段的倍分关系求出BC,AD的长,进一步得到AC,BD的长,依此即可求解.该题考查了两点之间的距离的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出BC,AD,AC,BD的长.8.【答案】B;【解析】这道题主要考查的是直线、射线、线段的特点,掌握直线、射线、线段的特点是解答该题的关键.根据直线向两端无限延伸,两点确定一条直线,射线向一端无限延伸可判断A、C、D是否正确;根据线段的特点可判断B是否正确.解:A.直线向两端无限延伸,无限长,故A错误;B.正确;C. 因为射线无限长,故C错误;D.如果A、B、C三点不在同一直线上,不能作直线使之经过A,B,C三点,过D错误.故选B.9.【答案】B;【解析】解:A.由图中直线AB和射线CD的位置以及直线、射线的意义可得,直线AB与射线CD 能相交,因此A不符合题意;B. 由图中线段AB和线段CD的位置以及线段的意义可知,线段AB与线段CD不相交,故B符合题意;C. 由图中直线a和直线b的位置以及直线的意义可得,直线a与直线b能相交,因此C不符合题意;D. 由图中直线AB和直线CD的位置以及直线的意义可得,直线AB与直线CD能相交,因此D不符合题意;故选:B.根据直线、射线、线段的意义逐项进行判断即可.此题主要考查直线、射线、线段的意义,理解直线、射线、线段的意义是解决问题的关键.【解析】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选:D.根据线段的性质,直线的性质,可得答案.此题主要考查了线段的性质,熟记性质并能灵活应用是解题关键.11.【答案】B;【解析】解:∠α=5.12°=5°+0.12×60′=5°+7′+0.2×60′′=5°7′12′′.故选:B.利用度分秒之间的换算关系进行计算即可求解.此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60′′.12.【答案】C;【解析】解:A、不能表示为∠O,故本选项错误;B、不能表示为∠O,故本选项错误;C、能用∠α,∠O,∠AOB三种方式表示,故本选项正确;D、不能表示为∠O,故本选项错误.故选:C.根据角的表示方法解答即可.此题主要考查了角的概念,主要考查了角的表示方法,同一个顶点处有不止一个角时,一定不能用一个大写字母表示角.13.【答案】D;【解析】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=12∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.根据角平分线的定义对各选项进行逐一分析即可.此题主要考查的是角平分线的定义.解答该题的关键是掌握角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.【答案】D;【解析】解:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=20°,∴∠AOC=40°,∴∠AOB=80°.故选D .两次利用角平分线的性质计算.本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.15.【答案】D;【解析】解:由方向角的定义以及平面内位置的确定方法可知,小岛A 在灯塔O 的北偏东60°且距灯塔2km 处,故选:D.根据平面内,位置的表示方法以及方向角的定义可得答案.此题主要考查方向角,理解方向角的定义以及平面内位置的确定方法是解决问题的关键.16.【答案】C;【解析】解:由图可知,A 相邻的字母有D 、E 、B 、F ,所以A 对面的字母是C.故答案为:C.观察三个正方体,与A 相邻的字母有D 、E 、B 、F ,从而确定出A 对面的字母是C.此题主要考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解答该题的关键.17.【答案】32;【解析】解:∵AB =5,AC =2,∴BC =AB −AC =3,∵点D 是线段AC 的中点, ∴BD =12AC =32.故答案为:32. 先求出线段BC 的长,再由中点得出BD 的长.此题主要考查了两点间的距离,能计算出BC 的长是解答该题的关键.18.【答案】77.5;【解析】解:2时25分的时候,分针指向5,时针在2−3之间,周角为360°,平均分成12份,每格的度数为360°÷12=30°,时针1个小时走30°,每分钟走0.5°,25分钟走0.5°×25=12.5°,∴此时它的时针和分针所成的锐角为90°−12.5°=77.5°,故答案为:77.5.先计算出每个大格的度数是30°,再用90°减去时针走过的度数,即为时针和分针所成的锐角的度数.此题主要考查了钟面角,角度的计算,求出时针所走的度数是解答该题的关键.19.【答案】25;【解析】解:∵点O 在直线AE 上,∴∠AOE =180°.∵OC 平分∠AOE ,∴∠AOC=1∠AOE=90°.2∴∠AOB+∠BOC=90°.∵∠DOB是直角,∴∠DOB=∠BOC+∠COD=90°.∴∠AOB=∠1=25°.故答案为:25.∠AOE=90°.由∠DOB 由点O在直线AE上,得∠AOE=180°.由OC平分∠AOE,得∠AOC=12是直角,根据同角的余角相等得∠AOB=∠COD,从而解决此题.此题主要考查平角的定义、余角的性质以及角平分线的定义,熟练掌握平角的定义、余角的性质以及角平分线的定义是解决本题的关键.20.【答案】北偏东25°;【解析】解:∵小明A点沿北偏东70°的方向走到B,∴∠BAD=70°,∵B点沿北偏西20°的方向走到C,∴∠EBC=20°,又∵∠BAF=90°−∠DAB=90°−70°=20°,∴∠1=90°−20°=70°,∴∠ABC=180°−∠1−∠CBE=180°−70°−20°=90°.∴ΔABC是等腰直角三角形,∵AB=500m,BC=500m,∴∠CAB=45°,∴∠DAC=∠DAB−∠CAB=70°−45°=25°,∴小明在营地A的北偏东25°方向.故答案为:北偏东25°.先根据∠DAB=70°,∠CBE=20°判断出ΔABC的形状,求出∠DAC的度数即可.此题主要考查的是方向角的概念,解答此类题需要从运动的角度,再结合三角函数的知识求解.21.【答案】解:(1)根据“相间、Z端是对面”可知,“A”与“F”相对,“B”与“D”相对,“C”与“E“相对,所以面A在长方体的底部,那么F个面会在它的上面;(2)若面F在前面,左面是面B,则“A”在后面,“D”在右面,此时“C”在上面,“E”在下面,或“E”在上面,“C”在下面,答:如果面F在前面,从左面看是面B,那么“C”面或“E”面会在上面;(3)从右面看是面C,面E在左面,则“B”面或“D”面在上面.;【解析】根据长方体表面展开图的特征进行判断即可.此题主要考查长方体的展开与折叠,掌握长方体表面展开图的特征是解决问题的关键.22.【答案】解:因为AB=14,AP=8,所以BP=AB-AP=6.因为P是OB的中点,所以OP=BP=6,所以AO=AP-OP=8-6=2.;【解析】由线段的和差可求解BP的长,结合中点的定义可求OP的长,进而可求解.此题主要考查两点间的距离,求解OP的长是解答该题的关键.23.【答案】解:∵AC=12,CB=23AC,∴CB=AC+CB=20,∵D,E分别为AC,AB的中点,∴AD=12AC=6,AE=12AB=10,∴DE=AE-AD=10-6=4.;【解析】根据题意AC=12,CB=23AC,可得CB=AC+CB,由已知条件D,E分别为AC,AB的中点,AD=12AC,AE=12AB,即DE=AE−AD,代入计算即可得出答案.此题主要考查了两点间的距离,熟练应用两点间的距离计算方法进行求解是解决本题的关键.24.【答案】解:∵∠AOB=28°,∠AOC为直角,∴∠BOC=∠AOC-∠AOB=90°-28°=62°,∵OC是∠BOD的平分线,∴∠BOD=2∠BOC=124°.;【解析】首先由∠AOB=28°,∠AOC为直角,即可推出∠BOC=62°,然后根据角平分线的性质即可推出∠BOD=2∠BOC=124°.这道题主要考查角平分线的性质,角的计算,直角的定义,关键在于推出∠BOC的度数.25.【答案】解:设∠AOE=x,则∠BOC=4x.∵∠EOC=90°,∠EOC+∠AOE+∠BOC=180°,∴90°+x+4x=180°,∴x=18°.∴∠BOC=4x=72°.又∵∠AOD=90°,∴∠COD=180°-∠AOD-∠BOC=180°-90°-72°=18°.;【解析】根据补角的定义以及角的和差关系解决此题.此题主要考查补角的定义以及角的和差关系,熟练掌握补角的定义以及角的和差关系是解决本题额关键.。

七年级数学几何图形初步单元测试(二)(含答案)

七年级数学几何图形初步单元测试(二)(含答案)

几何图形初步单元测试(二)一、单选题(共12道,每道8分)1.下列说法中正确的是( )A.延长直线ABB.延长线段AB至点C,使AC=BCC.延长射线OAD.延长线段AB至点C,使BC=2AB答案:D解题思路:直线可向两个方向无限延伸,不可度量,所以不需延长,A选项错误;线段可以度量,可以延长,延长线段是有方向的,延长线段AB至点C,不论点C在什么位置,都有AC BC,如图,所以B选项错误;射线可向一个方向无限延伸,不可度量,可以反向延长,但不能延长,C选项错误;延长线段AB至点C,使BC=2AB,是可以做到的,D选项正确.故选D.试题难度:三颗星知识点:直线2.下列说法中错误的是( )A.角是由两条具有公共端点的射线组成的图形B.一条射线绕其端点旋转而成的图形叫做角C.大于直角的角不一定是钝角D.角的两边越长,表示的角就越大答案:D解题思路:角是由两条具有公共端点的射线组成的图形,两条射线的公共端点是这个角的顶点,角的两条边是两条射线,不可度量,与角的大小没有关系.角也可以看成是由一条射线绕着它的端点旋转而成的,因此选项A和选项B说法正确,选项D说法错误;根据角的分类,大于90°而小于180°的角是钝角,等于180°的角是平角,等于360°的角是周角,因此选项C说法正确.故选D.试题难度:三颗星知识点:角的分类3.下列现象中,能用“两点之间,线段最短”来解释的是( )A.墙上钉木条至少需要两颗钉子才能牢固B.把弯曲的公路改直,就能缩短路程C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线D.值日生摆课桌时,总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,很快就能把课桌摆的整整齐齐答案:B解题思路:A选项是两点确定一条直线;B选项是两点之间,线段最短;C选项是两点确定一条直线;D选项是两点确定一条直线.故选B.试题难度:三颗星知识点:线段最短4.把用度分秒表示为( )A. B.C. D.答案:A解题思路:,故选A.试题难度:三颗星知识点:度分秒的换算5.下列各图经过折叠后能围成正方体的是( )A. B.C. D.答案:C解题思路:正方体有11种表面展开图,(1,4,1)型有6种,(2,3,1)型有3种,(2,2,2)型有1种,(3,3)型有1种.C选项中的是(2,3,1)型,因此经过折叠后能围成正方体.故选C.试题难度:三颗星知识点:正方体展开图6.有一正方体,六个面上分别写有数字1,2,3,4,5,6,有三个人从不同的角度观察的结果如图.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为( )A.3B.7C.8D.11答案:B解题思路:本题通过相邻面确定相对面,正方体的每一个面与4个面相邻,1个面相对.比如本题,先找出现次数较多的,不妨先从数字1开始:从第一个图看出1与4,6相邻,从第二个图看出1与2,3相邻,所以1与2,3,4,6相邻,那么与5相对;同样的方法可以判断4与2相对,3与6相对,所以a=3,b=4,那么a+b=3+4=7.故选B.试题难度:三颗星知识点:正方体展开图——相对面、相邻面7.时钟的时针和分针夹角为90°的时刻是( )A.12:15B.3:00C.3:30D.11:45答案:B解题思路:3点整时,时针指向3,分针指向12.钟表上12个数字,每相邻两个数字之间的夹角为30°,故3点整时时针和分针的夹角正好是90°.故选B.试题难度:三颗星知识点:钟面角8.从三个不同方向看一个几何体如图所示,则这个几何体的表面积为(结果保留π)( )A.220πB.50π+120C.120πD.170π答案:D解题思路:由该几何体的三视图可知,该几何体是圆柱,且底面圆的直径为10,高为12,所以几何体的侧面积为,底面积为,表面积为.故选D.试题难度:三颗星知识点:几何体的三视图9.已知线段AB=8,延长AB到C,使BC=AB,则AC的长为( )A.8B.10C.12D.14答案:D解题思路:首先根据题意画出图形,然后设计算法求解.如图,∵,∴∴故选D.试题难度:三颗星知识点:线段的长10.如图,,,则∠AOB=( )A.30°B.40°C.45°D.48°答案:B解题思路:设,由,,得,.因为,所以,解得,即.故选B.试题难度:三颗星知识点:角的计算11.已知:如图,线段AB=12cm,C是线段AB的中点,求BC的长.解:如图,∵C是线段AB的中点∴_________________∵AB=12∴_________________即BC的长为6cm.①;②;③;④;⑤;⑥;⑦.以上空缺处正确的填写序号依次是( )A.①⑦B.②⑦C.④⑥D.①⑥答案:A解题思路:∵C是线段AB的中点∴∵∴答案为①⑦,故选A.试题难度:三颗星知识点:中点12.已知从点O出发的三条射线OA,OB,OC,若∠AOB=50°,∠AOC=30°,则∠BOC的度数为( )A.80°或20°B.40°或10°C.40°或20°D.80°或10°答案:A解题思路:根据题意,射线OC的位置不确定,有两种情况.①如图1,∵∠AOB=50°,∠AOC=30°∴∠BOC=∠AOB+∠AOC=50°+30°=80°②如图2,∵∠AOB=50°,∠AOC=30°∴∠BOC=∠AOB-∠AOC=50°-30°=20°综上,∠BOC的度数为80°或20°.故选A.试题难度:三颗星知识点:角度的计算。

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.下列几何图形中,不能一笔画成的是()A. B. C. D.2.已知∠AOB=30°,∠BOC=45°,则∠AOC等于()A.15°B.75°C.15°或75°D.不能确定3.在数轴上与表示-2的点距离等于3的点所表示的数是()A.1 B.-1或5 C.-5 D.-5或14.已知锐角α,那么∠α的补角与∠α的余角的差是()A.90°B.120°C.60°+αD.180°﹣α5.如图所示,OA是北偏东60︒方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.北偏西30︒B.北偏西60︒C.东偏北30︒D.东偏北60︒6.如图,OE⊥AB,直线CD经过点O,∠COA=35°,则∠BOD的余角度数为()A.35°B.45°C.55°D.60°7.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是()A.文B.明C.全D.运8.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误..的是()A .BC=AB-CDB .BC= 12 (AD-CD)C .BC= 12AD-CD D .BC=AC-BD 二、填空题:9.计算:902648︒-︒'= .10.将一副三角板如图放置,若 20AOD ∠= ,则 BOC ∠ 的大小为 .11.如图,点B 在线段AC 上,已知9cm AB =,4cm BC =点O 是线段AC 的中点,则线段OB = cm.12.如图,点O 是直线AD 上的点,∠AOB ,∠BOC ,∠COD 三个角从小到大依次相差25°,则这三个角的度数是 .13.如图,白纸上放有一个表面涂满染料的小正方体,在不脱离白纸的情况下,转动正方体,使其各面染料都能印在白纸上,且各面仅能接触白纸一次,则在白纸上可以形成的图形有 .(填序号)三、解答题:14.已知:如图,A ,B ,C 在同一条线段上,M 是线段AC 的中点,N 是线段BC 的中点,且 5AM cm = cm = 求线段AB 的长.15.如图是一个正方体的表面展开图,它的每一个面上都写有一个数,并且相对的两个面的数字互为相反数,求2a b c +-的值.16.如图,直线AB ,CD 相交于点O ,OE AB ⊥且OF 平分AOC ∠,且40BOD ∠=︒,求EOF ∠的度数.17.如图,OC AB ⊥于点O ,OD 平分BOC ∠,OE 平分AOD ∠(1)求BOD ∠的度数;(2)求COE ∠的度数.18.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a+24|+|b+10|+(c-10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.参考答案:1.C 2.C 3.D 4.A 5.A 6.C 7.A 8.B9.6312︒'10.160°11.5212.35°,60°,85°13.①③14.解: M 是线段AC 的中点,N 是线段BC 的中点5MC AM cm ∴== 和 3BN CN cm ==16AB AM MC CN NB cm ∴=+++=15.解:因为相对的两个面的两个数字互为相反数所以80a +=,40b +=和50c +=所以845a b c =-=-=-,,所以()()2842584102a b c +-=-+--⨯-=--+=-16.解:∵40BOD ∠=︒∴40AOC BOD ∠=∠=︒∵OF 平分AOC ∠ ∴1202AOF AOC ∠=∠=︒ ∵OE AB ⊥∴90AOE ∠=︒∴9020110EOF AOE AOF ∠=∠+∠=︒+︒=︒.17.(1)解:∵OC AB ⊥∴90BOC AOC ∠=∠=︒∵OD 平分BOC ∠ ∴1452BOD COD BOC ∠=∠=∠=︒ (2)解:由(1)可得9045135AOD AOC COD ∠=∠+∠=︒+︒=︒∵OE 平分AOD ∠ ∴167.52AOE AOD ∠=∠=︒ ∴9067.522.5COE ∠=︒-︒=︒18.(1)解:∵|a+24|+|b+10|+(c-10)2=0∴a+24=0,b+10=0,c-10=0解得:a=-24,b=-10,c=10;(2)解:-10-(-24)=14①点P 在AB 之间,AP=14×221+ = 283 -24+ 283 =- 443点P的对应的数是- 443;②点P在AB的延长线上,AP=14×2=28-24+28=4点P的对应的数是4;(3)解:∵AB=14,BC=20,AC=34∴t P=20÷1=20(s),即点P运动时间0≤t≤20点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s)当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t= 463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t= 623>20(舍去)当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8。

沪科版七年级数学上册 第4章 几何图形初步 单元测试卷

沪科版七年级数学上册  第4章 几何图形初步 单元测试卷

第4章几何图形初步(单元测试卷沪科版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。

1.下图为小文同学的几何体素描作品,该作品中不存在的几何体为()A .棱柱B .圆锥C .圆柱D .球2.激光是20世纪的重大发明,在日常生活中有广泛的用途.例如:医生用激光刀进行手术时,激光经过皮肤便形成了刀口,从数学的角度来解释说明了()A .面动成体B .线动成面C .点动成线D .线动成体3.挂条幅时,要钉两个钉子才能牢固,其中的数学道理是().A .两点之间线段最短B .两点确定一条直线C .两点能够确定多条直线D .点动成线4.观察下图的位置关系,其中说法错误的是()A .学校在公园西偏北50︒方向400米处B .公园在少年宫东偏北70︒方向300米处C .公园在学校东偏南50︒方向400米处D .少年宫在公园东偏北70︒方向300米处5.已知,αβ是两个钝角,计算1()6αβ+的值,甲、乙、丙、丁四位同学算出了四种不同的答案,分别为24︒,48︒,76︒,86︒.其中,只有一个答案是正确的,正确的答案是()A .24︒B .48︒C .60︒D .72︒6.已知A ∠是锐角,A ∠与B ∠互补,A ∠与C ∠互余,则B C ∠-∠等于()A .45︒B .60︒C .90︒D .180︒7.在直线l 上顺次取三点A 、B 、C ,使线段8cm AB =,3cm BC =,则线段AC 的长为()A .5cmB .8cmC .10cmD .11cm8.如图,C 为线段AB 的中点,D 为线段BC 的中点,E 为线段AD 的中点,若10AB =,则EC =().A .52B .53C .54D .19.如图,将一副三角尺叠放在一起,使直角顶点重合于点O ,若3COB AOD ∠=∠,OE 为AOD ∠的角平分线,则COE ∠的度数是()A .45︒B .60︒C .65︒D .67.5︒10.如图,已知线段BC 是圆柱底面的直径,圆柱底面的周长为10,圆柱的高12AB =,在圆柱的侧面上,过点A 、C 两点嵌有一圈长度最短的金属丝.现将圆柱侧面沿AB 剪开,所得的圆柱侧面展开图是()A .B .C .D .二、填空题:共8题,每题3分,共24分。

人教版七年级数学上册《第4章几何图形初步》单元测试含答案解析

人教版七年级数学上册《第4章几何图形初步》单元测试含答案解析

《第4章几何图形初步》一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= .14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= °.15.如图是某几何体的平面展开图,则这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.已知∠A=40°,则它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.《第4章几何图形初步》参考答案与试题解析一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选C.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.故选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC=∠COE=55°,∴∠BOD=∠AOC=55°.故选D.【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.【点评】本题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD=BC=×10=5cm.故选C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错【考点】翻折变换(折叠问题).【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1=×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4=×90°=45°.∴二者的做法都对.故选A.【点评】本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】本题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】本题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数=.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= 52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD ﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】本题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= 40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,则这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】本题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.已知∠A=40°,则它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】本题考查了直线、射线、线段,主要利用了相交线的交点,是基础题.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3(cm);D是AC的中点,AD=DC=3(cm),AB=AD+DB=3+7=10(cm).【点评】本题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得.【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′B D=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.【考点】比较线段的长短.【专题】计算题.【分析】(1)根据中点的概念,可以证明:AB=2DE,故AB的长可求;(2)由CE的长先求得BC的长,再根据C是AB的中点,D是AC的中点求得CD的长,最后即可求得BD的长.【解答】解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC=AC=BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x=(180°﹣x)﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学-几何图形初步单元测试卷
(时间:45分钟,满分:100分)
一、选择题(每小题4分,共32分)
1.下列立体图形中,侧面展开图是扇形的是()
2.下列图形中,∠1和∠2互为余角的是()
3.如图,点A位于点O的方向上.()
A.南偏东35°
B.北偏西65°
C.南偏东65°
D.南偏西65°
4.如图,一个斜插吸管的盒装饮料从正面看到的图形是()
5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()
A.用两个钉子就可以把木条固定在墙上
B.把弯曲的公路改直,就能缩短路程
C.利用圆规可以比较两条线段的大小关系
D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线
6.一块手表如图,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是
()
A.60°
B.80°
C.120°
D.150°
7.将一长方形纸片,按下图的方式折叠,BC,BD为折痕,则∠CBD的度数为()
A.60°
B.75°
C.90°
D.95°
8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()
A.低
B.碳
C.生
D.活
二、填空题(每小题4分,共16分)
9.已知∠A与∠B互补,若∠A=70°,则∠B的度数为.
10.已知一个角的补角等于它的余角的6倍,则这个角的大小为.
11.(1)13°30'=°;
(2)0.5°='=″.
12.平面上有四个点,过每两个点画一条直线,一共可以画条直线.
三、解答题(共52分)
13.(每小题5分,共10分)计算:
(1)40°26'+30°30'30″÷6;
(2)13°53'×3-32°5'31″.
14.(10分)在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?
15.(10分)已知C为线段AB的中点,D在线段BC上,且AD=7,BD=5.求线段CD的长度.
16.(10分)如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.
17.(12分)如图,把一副三角尺的直角顶点O重叠在一起.
(1)如图①,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?
(2)如图②,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?
参考答案
一、选择题
1.B
2.D
3.B
4.A
5.B
6.C
7.C本题考查角平分线和平角的概念.由图的折叠可知BC,BD分别是∠ABA',∠E'BE的角平分线,而∠ABE是一个平角,所以∠CBD=90°.
8.A
二、填空题
9.110°
10.72°设这个角的大小为x°,列方程得180°-x°=6(90°-x°),解得x°=72°.
11.(1)13.5(2)30 1 800
12.1或4或6本题没指明这四个点的位置关系,所以应予以讨论,不要遗漏.(1)当A,B,C,D四点在同一条直线上时,可画1条直线,如图①;(2)当三点(如A,B,C)在同一直线上,而另一个点D在该直线外时,可画出4条直线,如图②;(3)当上述四点没有任何三点在同一直线上时,可画出6条直线,如图③.
三、解答题
13.解:(1)40°26'+30°30'30″÷6=40°26'+5°5'5″=45°31'5″.
(2)13°53'×3-32°5'31″=39°159'-32°5'31″=41°38'60″-32°5'31″=9°33'29″.
14.解:如图,点P就是图书馆所在的位置.
15.解:因为AD=7,BD=5,
所以AB=AD+BD=12.
又因为C为线段AB的中点,
所以AC=AB=6.
所以CD=AD-AC=7-6=1.
16.解:因为∠AOD=∠AOC-∠DOC=60°-∠DOC,
∠BOC=∠BOD-∠DOC=90°-∠DOC,
所以∠AOB=∠AOD+∠COD+∠BOC=60°-∠DOC+∠COD+90°-∠DOC=150°-∠DOC.所以150°-∠DOC=3∠DOC.
所以∠DOC=37.5°.
所以∠AOB=3×37.5°=112.5°.
17.解:(1)∵∠AOB=∠COD=90°,
当OB平分∠COD时,∠DOB=∠BOC=∠COA=45°,
∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.
(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.。

相关文档
最新文档