第十三届华罗庚杯数学竞赛初一试题(二)_3
最新第十三届全国华罗庚金杯少年数学邀请赛初一组决赛全国通用汇总
2008年第十三届全国华罗庚金杯少年数学邀请赛初一组决赛全国通用仅供学习与交流,如有侵权请联系网站删除 谢谢2第十三届“华罗庚金杯”少年数学邀请赛决赛试卷(初一组)(建议考试时间:2008年4月19日10:00~11:30)一、填空(每题10分,共80分)1. 某地区2008年2月21日至28日的平均气温为-1℃,2月22日至29日的平均气温为-0.5℃,2月21日的平均气温为-3℃,则2月29日的平均气温为 .2. 已知新北京×(新+奥+运)=2008,其中每个汉字都代表0到9的数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,则算式)(1)(运奥新京新北+⨯++= . 3. 代数和-1×2008+2×2007-3×2006+4×2005+…-1003×1006+1004×1005的个位数字是 .4. 用一个平面去截一个长方体,裁面是一个多边形, 这个多边形的边数最多有 条.5. 一列数1,3,6,10,15,21,…中,从第二个数开始,每一个数都是这个数的序号加上前一个数的和,那么第2008个数是 .6. 当x 取相反数时,代数式ax +bx 2对应的值也为相反数,则ab 等于.仅供学习与交流,如有侵权请联系网站删除 谢谢37. 已知06)3()9(22=+---x m x m 是以x 为未知数的一元一次方程,如果m a ≤,那么m a m a -++的值为 .8. 在3×4方格网的每个小方格中心都放有一枚围棋子,至少要去掉 枚围棋子,才能使得剩下的棋子中任意四枚都不构成正方形的四个顶点.二、解答下列各题(第题10分,共40分,要求写出简要过程)9. 如果一个锐角三角形的三个角的度数都是正整数,且最大角是最小角的4倍,那么这个三角形的最小角的度数可能是哪些值?10. 小明将164个桃子分给猴子,余下的几个留给了自己,每只猴子得到了数目相同的桃子,小明留给自己的桃子数是一只猴子的四分之一,问共有多少只猴子?11. 下图中,E,F 为三角形ABC 边上的点,CE 与BF 相交于P. 已知三角形PBC 的面积为12, 并且三角形EBP, 三角形FPC 及四边形,求三角形EBP 的面积.12. 现有代数式x +y , x -y , xy 和 yx,当x 和y 取哪些值时,能使其中的三个代数式的值相等?仅供学习与交流,如有侵权请联系网站删除 谢谢4三、解答下列各题(每题15分,共30分,要求写出详细过程)13. 对于某些自然数n , 可以用n 个大小相同的等边三角形拼成内角都为120°的六边形. 例如, n =10时就可以拼出这样的六边形,见右图,请从小到大,求出前10个这样的n .14. 对于有理数x ,用[x ]表示不大于x 的最大整数, 请解方程025********=⎥⎦⎤⎢⎣⎡+-+y y第十三届“华罗庚金杯”少年数字邀请赛决赛试题参考答案(初一组)一、填空(每题10分,共80分)二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 答案:20,21,22.解答: 设最小角为x , 最大角为4x , 另一个角为y . 则由题目的条件得1804=++x y x , x y x 4≤≤, 904 x ①由①的前两个式子得到: x x y x x 918046≤=++≤, 解得3020≤≤x ; 又由①的第三个式子得到5.22 x , 所以2220≤≤x .评分参考: 1) 给出三个关系①给4分; 2)得出范围给4分; 3)给出答案给2分.仅供学习与交流,如有侵权请联系网站删除 谢谢510. 答案:10.解答: 设有n 只猴子, 小明留给自己p 个桃子. 每只猴子分到了4p 个桃子. 则pn p 4164=-, 所以p 是4的倍数, 令14p p =, 则n p p 11441=-, 141p -是4的倍数.令141+=k p , 则n k k )14(4440+=-, kkn 4110+-=, 因为n 是正整数, 所以0=k . 当0=k 时, 10=n .评分参考: 1)给出p , n 的关系给3分; 2)得到n, k 的最终关系给4分; 3)得到答案给3分.11. 答案: 4解答: 设三角形EBP 的面积为X , 连接AP . 若令三角形APF 的面积为Y , 则三角形AEP 的面积为Y X -. 因为Y X S S S S APF FPC BFA BCF :::==∆∆∆∆, )(:::Y X X S S S S AEP EBP AEC BCE -==∆∆∆∆而BCF BCE S S ∆∆=, X X X S S AEC BFA 2=+==∆∆, 所以有)(::Y X X Y X -=, 解得2X Y =, 即1:22:2:)12(:==+=∆∆XX X X S S BFA BCF , 所以X =4. 三角形EBP 的面积为4. 评分参考: 1)引出辅助线给2分; 2)得到X 与Y 的关系给4分; 3)得到答案给4分.12. 答案: 21=x , 1-=y , 21-=x , 1-=y . 解答: 首先必须0≠y , 否则yx没有意义. 若y x y x -=+, 则0=y , 矛盾. 所以仅供学习与交流,如有侵权请联系网站删除 谢谢6y x y x -≠+. 若0=x , 则由xy y x =+, 或xy y x =-都得到0=y , 所以0≠x , 即0≠xy . 因此, 三个相等的式子只有两种可能:(1) yxxy y x ==+. 由后一等式得到, 1=y 或1-=y , 而1=y 是不可能的, 因为此时由第一个等式得到x x =+1, 矛盾. 当1-=y 时, 由第一个等式得到x x -=-1, 即12=x , 所以21=x . (2) yxxy y x ==-. 由后一等式同样得到, 1=y 或1-=y , 同样, 1=y 是不可能的, 而当1-=y 时, 由第一个等式得到12-=x , 所以21-=x .评分参考: 1) (1)之前给2分; 2) (1)和(2)各给4分.三、解答下列各题(每题15分,共30分,要求写出详细过程)13. 答案: 6,10,13,14,16,18,19,22,24,25.解答: 设所用的等边三角形的边长单位为1. 任何满足条件的六边形的外接三角形一定是一个边长为l 的大等边三角形. 该六边形可以通过切去边长分别为c b a ,,的等国三角形的角而得到, 其中c b a ,,为正整数, 并且满足1≥≥≥c b a , b a l + .又由于用边长为1的等边三角形拼成的一个边长为x (正整数)的等边三角形所需要的个数是2)12(531x x =-++++ . 因此, )(2222c b a l n ++-=, 其中3≥l , b a l + ,1≥≥≥c b a .(1) 3=l 时, n 可以为639)111(32222=-=++-.(2) 4=l 时, n 可以为10616)112(42222=-=++-. 13316)111(42222=-=++-. (3) 5=l 时, 与上面不同的n 可以为仅供学习与交流,如有侵权请联系网站删除 谢谢7141125)113(52222=-=++-, 16925)122(52222=-=++-. 19625)112(52222=-=++-, 22325)111(52222=-=++-.(4) 6=l 时,与上面不同的n 可以为181836)114(62222=-=++-, 251136)113(62222=-=++-. 241236)222(62222=-=++-, 27936)122(62222=-=++-. 30636)112(62222=-=++-, )111(62222++-=36-3=33.(5) 7=l 时, 与上面不同的n 都比27大. (6) 8≥l 时, 可以证明满足要求的n 都不小于26.由(1)到(6)可得,前10个满足要求的n 为6,10,13,14,16,18,19,22,24,25评分参考: 1)写出10个中的1个给1分; 2)给出足够的理由,例如(1)之前的部分给5分.14. 答案:310-=y 或10=y . 解答: 因为方程左边的第1、3项都是整数, 所以y 3是整数. 注意到⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+2512512525222y y y , 代入方程, 得到025********=⎥⎦⎤⎢⎣⎡--+y y , 02510312=⎥⎦⎤⎢⎣⎡-+y y . 所以103y是整数, y 3是10的倍数. 令k y 103=, k 是整数, 代入得⎭⎬⎫⎩⎨⎧+-+=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡⨯-+=94941941259100102222k k k k k k k ,仅供学习与交流,如有侵权请联系网站删除 谢谢8其中, 对于有理数x , {}x =[]x x -. 所以有⎭⎬⎫⎩⎨⎧-=-+9494122k k k , 094112≤-+-k k . 当k 取不同整数时, 9412k k -+的情况如下表:K 的可能值是1-和3, 相应的3-=y 和y =10. 代入验算得到3-=y 或10=y . 评分参考: 1) 得到103y是整数给3分; 2)得到关于k 的不等式给5人; 3)得到列表的结果给5分; 3)每个答案各给1分.。
初一数学竞赛试题及答案
初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果是多少?A. 3 + 4B. 5 - 2C. 6 × 2D. 8 ÷ 2答案:C3. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C4. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 下列哪个选项是偶数?A. 2B. 3C. 4D. 5答案:C6. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B7. 计算下列表达式的结果是多少?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. 2 × 3答案:A8. 一个数的倒数是1/2,这个数是:A. 2B. 1/2C. 0D. -2答案:A9. 下列哪个选项是奇数?A. 2B. 3C. 4D. 5答案:B10. 计算下列表达式的结果是多少?A. 10 × 0B. 10 ÷ 0C. 10 - 0D. 10 + 0答案:C二、填空题(每题4分,共20分)11. 一个数的平方是36,这个数是____。
答案:±612. 一个数的立方是27,这个数是____。
答案:313. 计算下列表达式的结果:(-3) × (-4) = ____。
答案:1214. 一个数的绝对值是7,这个数是____。
答案:±715. 计算下列表达式的结果:(-5) ÷ (-1) = ____。
答案:5三、解答题(每题10分,共50分)16. 计算下列表达式的结果:(1) 2 × 3 + 4 × 5(2) (-3) × 2 - 5 × (-2)答案:(1) 2 × 3 + 4 × 5 = 6 + 20 = 26(2) (-3) × 2 - 5 × (-2) = -6 + 10 = 417. 求下列方程的解:(1) 2x + 3 = 7(2) 3x - 4 = 11答案:(1) 2x + 3 = 72x = 7 - 32x = 4x = 2(2) 3x - 4 = 113x = 11 + 43x = 15x = 518. 一个数的平方是49,求这个数。
华罗庚金杯赛初一初赛试题及答案
华罗庚金杯赛初一初赛试题及答案文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-1.代数和的个位数字是().(A)7(B)8 (C)9(D)02.已知则下列不等式成立的是().3.在数轴上,点A和点B分别表示数a和b,且在原点O的两侧.若AO=2OB,则a+b=().4.如右图所示,三角形ABC是直角三角形,∠ABC=60度.若在直线AC或BC上取一点P,使得三角形PAB为等腰三角形,那么这样的点P的个数为().(A)4(B)5(C)6(D)75.如右图,乙是主河流甲的支流,水流流向如箭头所示.主流和支流的水流速度相等,船在主流和支流中的静水速度也相等.已知AC=CD,船从A处经C开往B处需用6小时,从B经C到D需用8小时,从D经C到B需用5小时.则船从B经C 到A,再从A经C到D需用()小时.6.甲、乙、丙、丁四种商品的单价分别为2元, 3元, 5元和7元.现从中选购了6件共花费了36元.如果至少选购了3种商品,则买了()件丁商品.(A)1(B)2(C)3(D)4二、填空题(每小题10分,共40分)7.如右图,在平行四边形ABCD中,AB=2AB.点O为平行四边形内一点,它到直线AB, BC, CD的距离分别为a,b,c,且它到AD和CD的距离相等,则2a-b+c=.8.如右图所示,韩梅家的左右两侧各摆了3盆花.韩梅每次按照以下规则往家中搬一盆花:先选择左侧还是右侧,然后搬该侧离家最近的.要把所有的花搬到家里,共有种不同的搬花顺序.9.如右图,在等腰梯形ABCD中, AB//CD, AB=6, CD=14, ∠AEC=90度, CE=CB,则10.已知四位数x是完全平方数,将其4个数字各加1后得到的四位数仍然是完全平方数,则x=.。
数学竞赛试题初一及答案
数学竞赛试题初一及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a和b是两个非零实数,且a+b=5,那么a-b的最大值是多少?A. 5B. 4C. 3D. 23. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 44. 下列哪个选项是4的倍数?A. 7B. 8C. 9D. 105. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°二、填空题(每题2分,共10分)6. 一个数的绝对值是它与____的距离。
7. 圆的周长公式是C=__。
8. 如果一个数的立方等于它本身,那么这个数可能是____。
9. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是____。
10. 一个数的倒数是1/这个数,那么1的倒数是____。
三、简答题(每题5分,共15分)11. 解释什么是有理数,并给出两个有理数的例子。
12. 什么是质数?请列出前5个质数。
13. 描述如何使用勾股定理来计算直角三角形的斜边长度。
四、计算题(每题10分,共20分)14. 计算下列表达式的值:(2+3)×(2-3)。
15. 解下列方程:2x + 5 = 13。
五、解答题(每题15分,共30分)16. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。
17. 一个班级有40名学生,其中1/4是男生,1/3是女生,剩余的是教师。
求男生、女生和教师的人数。
答案:一、选择题1. B2. A3. A4. B5. A二、填空题6. 07. 2πr(或πd,d为直径)8. 0, ±19. 5 10. 1三、简答题11. 有理数是可以表示为两个整数的比的数,例如1/2和3。
12. 质数是大于1的自然数,且除了1和它本身外,不能被其他自然数整除的数。
华罗庚初中数学竞赛题
华罗庚初中数学竞赛模拟题华罗庚初中数学竞赛是中国数学竞赛的一种,旨在纪念数学家华罗庚并激发学生学习数学的兴趣。
这种竞赛的题目通常涉及广泛的数学知识,包括代数、几何、概率等,旨在挑战学生的数学思维和问题解决能力。
例如,一些典型的华罗庚初中数学竞赛题目可能包括:1.代数题:例如,给定一个二次方程,求解该方程的根,或者证明某个代数恒等式。
2.几何题:例如,求解某个几何图形的面积或体积,或者证明某个几何定理。
3.组合数学题:例如,求解某个组合问题的计数公式,或者证明某个组合恒等式。
4.数论题:例如,求解某个数论方程的解,或者证明某个数论定理。
此外,华罗庚初中数学竞赛还可能包括应用题,这类题目将数学知识应用于实际生活中,旨在考查学生运用数学知识解决实际问题的能力。
以下是一份模拟的华罗庚初中数学竞赛题,包含代数、几何和数论等多个领域的题目。
请注意,这些题目是为了模拟竞赛风格而设计的,难度可能较高。
华罗庚初中数学竞赛模拟题一、选择题(每题5分,共20分)1.设x和y是正实数,且满足x+y=1,则x1+y4的最小值为:A. 4B. 5C. 9D. 162.在三角形ABC中,角A、B、C所对的边分别为a、b、c,若a2+b2=2c2,则角C的最大值为:A. 30∘B. 45∘C. 60∘D. 90∘3.对于任意正整数n,定义f(n)为n的各位数字之和。
则f(2023)+f(20232)+f(20233)的值为:A. 29B. 35C. 37D. 414.已知x和y是整数,且满足方程7x+5y=38,则(x,y)的解有:A. 1组B. 2组C. 3组D. 无穷多组5.已知x和y都是正整数,且满足x1+y1=51,则有序对(x,y)的个数为:A. 1B. 2C. 3D. 无穷多6.在平面直角坐标系中,点A的坐标为(3,4),点B在x轴上,且△AOB是等腰三角形(O为坐标原点),则点B的坐标为:A. (6,0)B. (8,0)C. (−3,0) 或(8,0)D. (6,0) 或(−6,0)7.对于任意正整数n,定义f(n)为n的各位数字之积。
华杯赛决赛第13~16届(初一组)试题及答案
y 的, 而当 y 1时, 由第一个等式得到 2x 1, 所以 x 1 .
2 评分参考: 1) (1)之前给 2 分; 2) (1)和(2)各给 4 分.
三、解答下列各题(每题 15 分,共 30 分,要求写出详细过程)
1 k
4k 2 9
4k
2
9
,
其中,
对于有理数
x,
x= x x.
所以有1 k2
,
9
1
1
k
4k 9
2
0.
当 k 取不同整数时, 1 k 4k 2 的情况如下表: 9
k
2
1
0
=1
=2
xy 0 . 因此, 三个相等的式子只有两种可能:
(1) x y xy x . 由后一等式得到, y 1或 y 1, 而 y 1是不可能的, 因为 y
此时由第一个等式得到 x 1 x , 矛盾. 当 y 1 时, 由第一个等式得到 x 1 x , 即 2x 1 , 所以 x 1 .
第十三届全国“华罗庚庚金杯”少年数学邀请赛决赛试卷(初一组)
第十三届“华罗庚金杯”少年数学邀请赛 决赛试卷(初一组)
(建议考试时间:2008 年 4 月 19 日 10:00~11:30)
一、填空(每题 10 分,共 80 分)
1. 某地区 2008 年 2 月 21 日至 28 日的平均气温为-1℃,2 月 22 日至 29 日的平
枚围棋
第十三届全国“华罗庚庚金杯”少年数学邀请赛决赛试卷(初一组)
第十三届华罗庚杯数学竞赛初一考试试题
第十三届华罗庚杯数学竞赛初一试题1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为。
2、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利元。
3、求多位数111……11(2000个)222……22(2000个)333……33(2000个)被多位数333……33(2000个)除所得商的各个数上的数字的和为。
4、计算(1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+......+9/(1×2×3× (10)的值为。
5、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为()千米。
6、某电视机厂计划15天生产1500台,结果生产5天后,由于引进新的生产线生产效率提高25%,则这个电视机厂会提前()天完成计划。
7、从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有()种不同的选法。
8、某书的页码是连续的自然数1,2,3,4,…9,10…当将这些页码相加时,某人把其中一个页码错加了两次,结果和为2001,则这书共有()页。
9、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得()朵鲜花。
10、三名工人师傅张强、李辉和王充分别加工200个零件。
他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。
当张强加工200个零件的任务全部完成时,王充还有__个零件没有加工。
11、有一块表在10月29日零点比标准时间慢4分半,一直到11月5日上午7时,这块表比标准时间快了3分钟,那么这块表正好指向正确的时间是在11月日时。
12、一个水箱中的水以等速流出箱外,观察到上午9:00时,水箱中的水是2/3满,到11点,水箱中只剩下1/6的水,那么到什么时间水箱中的水刚好流完?()13、清华大学附中共有学生1800名,若每个学生每天要上8节课,每位教师每天要上4节课,每节课有45名学生和1位教师,据此请推出清华大学附中共有教师名?14、某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有人?15、一个数先加3,再除以3,然后减去5,再乘以4,结果是56,这个数是_______。
数学竞赛试题及答案初一
数学竞赛试题及答案初一【试题一】题目:计算下列表达式的值:\[ 2^3 + 3 \times 4 - 5^2 \]【答案】首先计算指数部分:\[ 2^3 = 8 \]\[ 5^2 = 25 \]然后进行乘法运算:\[ 3 \times 4 = 12 \]接下来,按照运算顺序,先进行加法和减法:\[ 8 + 12 - 25 = 20 - 25 = -5 \]所以,表达式的值为 -5。
【试题二】题目:如果一个数的平方等于该数的两倍,求这个数。
【答案】设这个数为 \( x \),根据题意,我们有:\[ x^2 = 2x \]将等式两边同时除以 \( x \)(注意 \( x \neq 0 \)):\[ x = 2 \]所以,这个数是 2。
但我们还应该检查 \( x = 0 \) 的情况,因为 0 的平方也是 0 的两倍:\[ 0^2 = 2 \times 0 \]所以,这个数也可以是 0。
【试题三】题目:一个长方形的长是宽的两倍,如果长和宽都增加 2 米,那么面积增加了 24 平方米。
求原长方形的长和宽。
【答案】设原长方形的宽为 \( w \) 米,那么长为 \( 2w \) 米。
根据题意,长和宽都增加 2 米后,新的长为 \( 2w + 2 \) 米,新的宽为 \( w + 2 \) 米。
新的面积与原面积的差为 24 平方米:\[ (2w + 2)(w + 2) - 2w \times w = 24 \]展开并简化:\[ 2w^2 + 4w + 2w + 4 - 2w^2 = 24 \]\[ 6w + 4 = 24 \]\[ 6w = 20 \]\[ w = \frac{20}{6} = \frac{10}{3} \]所以原长方形的宽为 \( \frac{10}{3} \) 米,长为 \( 2 \times \frac{10}{3} = \frac{20}{3} \) 米。
【试题四】题目:一个班级有 40 名学生,其中 25% 的学生是男生。
数学竞赛试题初一及答案
数学竞赛试题初一及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个选项的结果等于10?A. 3 + 7B. 4 × 2C. 5 - 3D. 6 ÷ 2答案:A3. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?A. 20B. 30C. 50D. 60答案:C5. 一个数加上它的相反数等于:A. 0B. 1C. 2D. 无法确定答案:A6. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:D7. 一个圆的直径是14厘米,那么它的半径是多少厘米?A. 7B. 14C. 28D. 无法确定答案:A8. 如果一个三角形的两个内角分别是40度和60度,那么第三个内角是多少度?A. 40B. 60C. 80D. 无法确定答案:C9. 一个数的立方等于8,那么这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:A10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。
答案:1612. 如果一个数的一半是10,那么这个数是______。
答案:2013. 一个数的倒数是2,那么这个数是______。
答案:1/214. 一个数的立方等于27,那么这个数是______。
答案:315. 一个数的绝对值是3,那么这个数可能是______或______。
答案:3或-3三、解答题(每题10分,共50分)16. 计算下列表达式的值:(3x - 2) + (4x + 5),其中x = 2。
答案:首先将x的值代入表达式,得到(3×2 - 2) + (4×2 + 5) = 6 + 8 + 5 = 19。
第十三届“华杯赛”小学组决赛试题答案
圖1第十三届“华罗庚金杯”少年数学邀请赛决赛试题参考答案(小学组)一、填空(每题10分,共80分)注:第6题,每答对1个给5分.二、解答下列各题 (每题10分,共40分, 要求写出简要过程)9. 答案:2900元.解答: 根据已知条件,五种职位的月薪分别为:A, B, C, D 和E , 那么:A+B =3000 (1)B+C =3200 (2)C+D =4000 (3)D+E =5200 (4)E+A=4400 (5)(5)-(1) 得:E -B =1400, (4)-(3)+(2) 得:E +B =4400. 因此E =2900(元). 因此,主任的月薪为2900元.评分参考:①每列对一个方程给1分;② 正确解出方程给5分.10. 解答:54)444(=÷+⨯,64)44(4=÷++,74444=÷-+,84444=-++,94444=÷++.评分参考:答案不唯一,每列对一个算式给2分.11. 答案:49.5 cm 2.解答:如图1,连接AC ,FG ,那么四边形ACGF 是梯形,三角形ACF 和三角形CAG 同底同高, 因而面积相等, 因此有6cm C H G A H F S S ∆∆==2();(2分) 由于11116cm 2236CHG S CH CG CF CG CG CG ∆=⨯=⨯⨯=⨯=2(). 因此,6cm CG =;(2分)因为62313122121==⨯=⨯=⨯⨯=⨯=∆AD AD CG AD CF AD CH AD FH S AHF (cm 2),(2分) 因此,3=AD cm. 易得3cm FD CF CD CG AD =-=-=,所以5.4933213366=⨯⨯+⨯+⨯=++=∆ADF CGEF ABCD ABGEF S S S S (cm 2). (4分) 注:不做参考线,通过下面推导同样可以得出6cm CHG AHF S S ∆∆==2(), BC AB CG AB BC CG AB S ABG ⨯+⨯=+=∆2121)(21 ABCF S BC AB CF BC AB CF BC =⨯+=⨯+⨯=)(212121. 四边形ABCF 和三角形ABG 有公共的部分四边形ABCH ,因此6cm CHG AHF S S ∆∆==2()评分参考:①可依据上述的采分点给分; ② 仅有正确(或猜出)答案,无过程,只给2分.③ 步骤正确,推导合理,计算错误,适当给分.12. 答案:111111, 102564.解答:设abcde x =,依题意得100000(10)f x f x f +=+.(3分)整理得:(101)(100000)f x f f -=-,其中19f ≤≤.当1f =时,999999x =,所以11111x =,即111111abcdef =;3分)当4f =时,39499996x =⨯,所以10256x =,即102564abcdef =;(3分)当2,3,5,6,7,8,9f =时,x 无整数解. (5分)因此,满足条件的六位数是111111和102564.(1分) 评分参考:①列出解式, 给3分; ②能给出全部求解过程,并判断正确,共给11分; 计算错误,适当减分; ③最后给出正确答案,给1分; ④仅给出正确答案,给5分.三、解答下列各题 (每题15分,共30分, 要求写出详细过程)13. 答案:甲共走了11266分钟, 乙走了77593833米. 解答:记跑道周长为l ,则甲的速度为4l ,乙的速度为7l .甲走完10圈需40分钟,乙走完10圈需70分钟,同向行进时,甲两次相邻追上乙(同向而行的相邻两次击掌的时间间隔)所需时间为32874=-l l l分钟;(2分). 相向行进时,甲、乙二人相遇(击掌)到下一次相遇所需时间为112874=+l l l分钟;(2分). 所以在开始40分钟里,即甲走完10圈时,二人击掌的次数为小于32840÷的最大整数次,即4次.(2分)第40分钟时,乙已走过的路程为l l 740407=⨯,所以甲和乙相距(根据题意,较短的那段)的路程为l 72;(1分).从此开始,甲改变行进方向,甲乙相向而行,所以,二人到第5次相遇(击掌)时需 282811711⨯= 分钟;(1分).接下来,二人还需要相遇(击掌)10次,需时 28280101111⨯=分钟,(1分).因此,二人到第15次相遇(击掌),需要828024066111111++= 分钟.(3分) 因此,甲行走共享了26611分钟,此时,乙行走也用了26611分钟,因此,乙行走了24007385966383371171177l ⨯=⨯=米.(3分) 评分参考:①可依据上述的采分点给分;② 仅有正确(或猜出)答案,无过程,两问都对,只给3分. ③ 步骤正确,推导合理,计算错误,适当给分.14. 答案:647、638和836.解答:① 因为 “梦”、“想”、“成”和“真”代表2、3、4、5、6、7和8中 4个不同的数字,并且“梦想成真”所代表的四位数能被9整除,因此它们代表的数字的和也能被9整除,并且由于13<“梦”+“想”+“成”+“真”<27,所以“梦”+“想”+“成”+“真”=18. (5分)② 由1+2+3+4+5+6+7+8+9=45和“北”+“京”+“梦”+“想”+“成”+“真”=1+9+18=28, 可以得到“奥”+“运”+“会”=17,从而“奥”、“运”和“会”所代表的3个不同的数字相应地就应当是:{4,6,7}、{4,5,8}、{3,6,8}和{2,7,8}. (5分)③ 由{4,6,7}、{4,5,8}、{3,6,8}和{2,7,8}四组数,可以组成24个三位数,分别乘9,仅有647×9=5823,638×9=5742,836×9=7524符合要求,即算式中的8个数字不同,没有1和9.所以,“奥运会”所代表的三位整数是647、638和836. (5分) 评分参考:①能给出全部推断过程,分析正确,每步骤给5分;②推理正确,分析合理,但计算错误,适当减分;③仅给出正确答案,给5分.。
13届数学竞赛试题及答案
13届数学竞赛试题及答案一、选择题(每题5分,共20分)1. 若a和b是两个非零实数,且a + b = 5,求a² + b²的最小值。
A. 5B. 10C. 25D. 502. 一个圆的半径为r,其面积与半径平方的比值是多少?A. πB. 2πrC. πrD. r²3. 一个等差数列的首项是2,公差是3,第10项是多少?A. 23B. 29C. 32D. 354. 如果一个函数f(x) = ax² + bx + c,其中a ≠ 0,且f(0) = 1,f(1) = 2,f(-1) = 0,求a的值。
A. -1B. 1C. 2D. 3二、填空题(每题5分,共30分)5. 若一个多项式P(x) = x³ - 6x² + 11x - 6可以被分解为(x -1)(x - 2)(x - 3),那么P(4)的值是______。
6. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是______。
7. 一个正六边形的内角是______度。
8. 如果一个数列的前三项分别为1, 1, 2,且每一项都是前两项的和,那么第5项的值是______。
三、解答题(每题25分,共50分)9. 证明:对于任意正整数n,n³ - n 总是能被6整除。
10. 解不等式:|x - 1| + |x - 4| ≥ 5。
答案一、选择题1. B(根据平方和公式a² + b² = (a + b)² - 2ab,代入得25 -10 = 15)2. A(圆的面积公式为πr²,所以面积与半径平方的比值为π)3. C(等差数列的通项公式为an = a1 + (n - 1)d,代入得2 + 9*3= 29)4. B(根据函数值代入求得a = 1)二、填空题5. 10(将x=4代入多项式P(x)中计算)6. 5(根据勾股定理3² + 4² = 5²)7. 120(正六边形的内角和为(n-2)*180°,代入n=6得720°,除以6得120°)8. 5(根据数列规律1, 1, 2, 3, 5...)三、解答题9. 证明:n³ - n = n(n² - 1) = n(n + 1)(n - 1),因为n, n+1, n-1是三个连续的整数,根据连续整数的性质,其中必有一个是6的倍数,所以n³ - n能被6整除。
七年级数学竞赛试题
七年级数学竞赛试题一、选择题(每题3分,共30分)1. 若公式与公式互为相反数,则公式()A. 公式B. 公式C. 公式D. 公式解析:因为互为相反数的两个数和为0,所以公式,即公式,公式,解得公式。
答案为A。
2. 已知公式是方程公式的解,则公式()A. 公式B. 公式C. 公式D. 公式解析:把公式代入方程公式,得到公式,公式,公式。
答案为A。
3. 把方程公式去分母后,正确的是()A. 公式B. 公式C. 公式D. 公式解析:方程公式去分母,因为2和3的最小公倍数是6,所以等式两边同时乘以6,得到公式,即公式。
答案为B。
4. 若公式,公式,则公式为()A. 公式B. 公式C. 公式D. 公式解析:公式。
答案为C。
5. 一个角的补角是这个角的余角的公式倍,则这个角的度数为()A. 公式B. 公式C. 公式D. 公式解析:设这个角的度数为公式,则它的补角为公式,余角为公式。
根据题意得公式,公式,公式,公式,公式。
答案为C。
6. 下列图形中,不是正方体展开图的是()A. “一四一”型B. “二三一”型C. “田田”型D. “三三”型解析:正方体展开图有11种基本情况,分别为“一四一”型、“二三一”型、“三三”型、“二二二”型,其中“田田”型不是正方体的展开图。
答案为C。
7. 若公式为有理数,则公式一定是()A. 零B. 非负数C. 正数D. 负数解析:当公式时,公式;当公式时,公式。
所以公式一定是非负数。
答案为B。
8. 已知有理数公式、公式在数轴上的位置如图所示,则下列结论正确的是()A. 公式B. 公式C. 公式D. 公式解析:由数轴可知公式,公式,且公式。
公式,因为公式,公式,公式,公式,公式。
答案为无正确选项。
9. 某商店把一商品按标价的九折出售(即优惠公式),仍可获利公式,若该商品的标价为每件公式元,则该商品的进价为()A. 公式元B. 公式元C. 公式元D. 公式元解析:设该商品的进价为公式元,商品标价为公式元,按九折出售后的售价为公式元。
历届华罗庚杯初一试题及答案
历届华罗庚杯初一试题及答案一、选择题1. 下列哪个数是质数?A. 4B. 8C. 11D. 15答案:C2. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A二、填空题1. 计算 \((a+b)^2\) 的结果是 \(a^2\) 加上 \(2ab\) 再加上\(b^2\)。
答案:正确2. 一个数的平方根是它自身的数是 \_\_\_\_\_\_\_\_\_。
答案:0 或 1三、解答题1. 证明:对于任意正整数 \(n\),\(1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}\)。
答案:证明过程略。
(注:此处应提供详细的证明过程,但因篇幅限制,此处省略。
)2. 一个长方体的长、宽、高分别是 \(a\)、\(b\) 和 \(c\),求其体积。
答案:体积 \(V = abc\)。
四、综合题1. 某校举办了一次数学竞赛,共有100名学生参加。
其中,获得一等奖的有10人,二等奖的有20人,三等奖的有70人。
假设获奖学生的成绩呈正态分布,求平均成绩和标准差。
答案:平均成绩 \(\mu\) 略。
(注:此处应提供详细的计算过程,但因篇幅限制,此处省略。
)标准差 \(\sigma\) 略。
结束语华罗庚杯数学竞赛不仅能够锻炼学生的数学思维,还能培养他们解决问题的能力。
希望以上的试题及答案能够帮助同学们更好地准备竞赛,也祝愿所有参赛者能够取得优异的成绩。
华罗庚金杯赛数学试题与答案[第1至15届]
华罗庚金杯赛数学试题与答案[第1至15届]目录第1届华罗庚金杯赛数学试题与答案 (1)第2届华罗庚金杯赛数学试题与答案 (6)第3届华罗庚金杯赛数学试题与答案 (14)第4届华罗庚金杯赛数学试题与答案 (21)第5届华罗庚金杯赛数学试题与答案 (26)第6届华罗庚金杯赛数学试题与答案 (31)第7届华杯赛初赛试题及解答 (38)第8届华杯赛初赛试题及解答 (41)第9届华杯赛初赛试题及解答 (45)第10届华杯赛初赛试题及解答 (49)第11届华杯赛初赛试题及解答 (53)第12届华杯赛初赛试题及解答 (60)第13届华杯赛少年邀请赛初赛摸拟试卷 (64)第14届华罗庚金杯少年数学邀请赛 (66)第15届华杯赛决赛真题及答案解析 (68)第1届华罗庚金杯赛数学试题与答案1、甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人。
问甲班和丁班共多少人?2、一笔奖金分一等奖、二等奖、三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。
如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?3、一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩。
问另一个长方形的面积是多少亩?4、在一条公路上,每隔一百公里有一个仓库,共有五个仓库。
一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。
现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输一公里需要0.5元的运费,那么最少要花多少运费才行?5、有一个数,除以3余数是2,除以4余数是1。
问这个数除以12余数是几?6、四个一样的长方形和一个小的正方形(如图)拼成了一个大正方形。
大正方形的面积是49平方米,小正方形的面积是4平方米。
问长方形的短边长度是几米?7、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带剪下同样长的一段以后,发现短纸带剩下的长度是长纸带的长度的八分之十三。
第十三届华罗庚杯数学竞赛初一试题.doc
第十三届华罗庚杯数学竞赛初一试题1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为。
2、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利元。
3、求多位数111……11(2000个)222……22(2000个)333……33(2000个)被多位数333……33(2000个)除所得商的各个数上的数字的和为。
4、计算(1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+......+9/(1×2×3× (10)的值为。
5、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为()千米。
6、某电视机厂计划15天生产1500台,结果生产5天后,由于引进新的生产线生产效率提高25%,则这个电视机厂会提前()天完成计划。
7、从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有()种不同的选法。
8、某书的页码是连续的自然数1,2,3,4,…9,10…当将这些页码相加时,某人把其中一个页码错加了两次,结果和为2001,则这书共有()页。
9、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得()朵鲜花。
10、三名工人师傅张强、李辉和王充分别加工200个零件。
他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。
当张强加工200个零件的任务全部完成时,王充还有__个零件没有加工。
11、有一块表在10月29日零点比标准时间慢4分半,一直到11月5日上午7时,这块表比标准时间快了3分钟,那么这块表正好指向正确的时间是在11月日时。
12、一个水箱中的水以等速流出箱外,观察到上午9:00时,水箱中的水是2/3满,到11点,水箱中只剩下1/6的水,那么到什么时间水箱中的水刚好流完?()13、清华大学附中共有学生1800名,若每个学生每天要上8节课,每位教师每天要上4节课,每节课有45名学生和1位教师,据此请推出清华大学附中共有教师名?14、某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有人?15、一个数先加3,再除以3,然后减去5,再乘以4,结果是56,这个数是_______。
华罗庚杯竞赛题初中
华罗庚杯竞赛题初中
(原创版)
目录
1.华罗庚杯竞赛简介
2.华罗庚杯竞赛题目:初中阶段
3.华罗庚杯竞赛对初中生的意义
4.如何准备华罗庚杯竞赛
正文
【华罗庚杯竞赛简介】
华罗庚杯竞赛,是以我国著名数学家华罗庚先生命名的一项全国性数学竞赛,旨在激发青少年学习数学的兴趣,培养他们的数学思维能力和创新能力。
该竞赛分为小学、初中、高中三个阶段,每年在不同地区举行。
【华罗庚杯竞赛题目:初中阶段】
初中阶段的华罗庚杯竞赛题目涵盖了初中数学课程的全部内容,包括代数、几何、组合等。
题目难度适中,既有基础题型,也有提高题型。
这样的设置旨在考察学生的数学基本功和解题能力。
【华罗庚杯竞赛对初中生的意义】
对于初中生来说,参加华罗庚杯竞赛有重要的意义。
首先,它可以激发学生学习数学的兴趣,提高他们的学习积极性。
其次,通过竞赛,学生可以了解自己的数学水平,找出自己的不足之处,从而提高自己的数学能力。
最后,如果取得好成绩,还可以为学生的升学简历增色。
【如何准备华罗庚杯竞赛】
要参加华罗庚杯竞赛,首先要打好数学基础,这包括熟悉课本内容,掌握基本概念和定理。
其次,要多做题目,通过做题来提高解题能力。
同
时,也要关注竞赛动态,了解竞赛的规则和题型,以便更好地应对竞赛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三届华罗庚杯数学竞赛初一试题(二)
41、一根长方体木料,体积是0.078立方米。
已知这根木料长1.3米,宽为3分米,高该是多少分米?孙健同学把高错算为3分米。
这样,这根木料的体积要比0.078立方米多多少?
42、有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米。
小正方形的面积是多少平方厘米?
43、有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形的面积是45平方厘米,求这个大长方形的周长。
44、 77×13+255×999+510
45、a=8.8+8.98+8.998+8.9998+8.99998,a的整数部分是____。
46、1995的约数共有____。
47、等式“学学×好好+数学=1994”,表示两个两位数的乘积,再加上一个两位数,所得的和是1994。
式中的“学、好、数”3个汉字各代表3个不同数字,其中“数”代表____。
48、如图1,“好、伙、伴、助、手、参、谋”这7个汉字代表1~7这7个数字。
已知3条直线上的3个数相加、2个圆圈上3个数相加所得的5个和都相等。
图中间的“好”代表____。
49、农民叔叔阿根想用20块长2米、宽1.2米的金属网建一个*墙的长方形鸡窝(如图2)。
为了防止鸡飞出,所建鸡窝高度不得低于2米。
要使所建的鸡窝面积最大,BC的长应是米。
50、小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274;小涂看错了甲数的十位数字,计算结果为819。
甲数是____。
51、1994年“世界杯”足球赛中,甲、乙、丙、丁4支队分在同一小组。
在小组赛中,这4支队中的每支队都要与另3支队比赛一场。
根据规定:每场比赛获胜的队可得3分;失败的队得0分;如果双方踢平,两队各得
1分。
已知:
(1)这4支队三场比赛的总得分为4个连续奇数;
(2)乙队总得分排在第一;
(3)丁队恰有两场同对方踢平,其中有一场是与丙队踢平的。
根据以上条件可以推断:总得分排在第四的是____队。
52、一块空地上堆放了216块砖(如图3),这个砖堆有两面*墙。
现在把这个砖堆的表面涂满石灰,被涂上石灰的砖共有____块。
53、南方某城市的一家企业有90%的员工是股民,80%的员工是“万元户”,60%的员工是打工仔。
那么,这家企业的“万元户”中至少有____%是股民;打工仔中至少有____(填一个分数)是“万元户”。
54、方格纸(图4)上有一只小虫,从直线 AB上的一点 O出发,沿方格纸上的横线或竖线爬行。
方格纸上每小段的长为1厘米。
小虫爬过若干小段后仍然在直线AB上,但不一定回到O点。
如果小虫一共爬过2厘米,那么小虫的爬行路线有____种;如果小虫一共爬过3厘米,那么小虫爬行的路线有____。
55、自然数按一定的规律排列如下:
从排列规律可知,99排在第____行第____列。
56、如图5,AF=2FB,FD=2EF,直角三角形ABC的面积是36平方厘米,求平行四边形EBCD的面积。
57、利民商店从日杂公司买进一批蚊香,然后按希望获得的纯利润,每袋加价40%定价出售。
但是,按这种定价卖出这批蚊香的90%时,夏季即将过去。
为加快资金周转,商店以定价打七折的优惠价,把剩余蚊香全部卖出。
这样,实际所得纯利润比希望获得的纯利润少了15%。
按规定,不论按什么价钱出售,卖完这批蚊香必须上缴营业税300元(税金与买蚊香用的钱一起作为成本)。
问利民商店买进这批蚊香用了多少元?
58、A、B、C三个油桶各盛油若干千克。
第一次把A桶的一部分油倒入
B、C两桶,使B、C两桶内的油分别增加到原来的2倍;第二次从B桶把油倒入
C、A两桶,使C、A两桶内的油分别增加到第二次倒之前桶内油的2倍;第三次从C桶把油倒入A、B两桶,使A、B两桶内的油分别增加
到第三次倒之前桶内油的2倍,这样,各桶的油都为16千克。
问A、B、C三个油桶原来各有油多少千克?
59、园林工人要在周长300米的圆形花坛边等距离地栽上树。
他们先沿着花坛的边每隔3米挖一坑,当挖完30个坑时,突然接到通知:改为每隔5米栽一棵树。
这样,他们还要挖多少个坑才能完成任务?
60、一个学雷锋小组的大学生们每天到餐馆打工半小时,每人可挣3元钱。
到11月11日,他们一共挣了1764元。
这个小组计划到12月9日这天挣足3000元,捐给“希望工程”。
因此小组必须在几天后增加一个人。
问:增加的这个人应该从11月几日起每天到餐馆打工,才能到12月9日恰好挣足3000元钱?
61、有男女运动员各一名在一个环形跑道上练长跑,跑步时速度都不变,男运动员比女运动员跑得稍快些。
如果他们从同一起跑点同时出发沿相反方向跑,那么每隔25秒钟相遇一次。
现在,他们从同一起跑点同时出发沿相同方向跑,经过13分钟男运动员追上了女运动员,追上时,女运动员已经跑了多少圈?(圈数取整数)
62、在555555的倍数中,有没有各位数字之和是奇数的?如果有,请举出一个例子;如果没有,请说明理由。
63、右图是一个直角梯形。
请你画一条线段,把它分成两个形状相同面积相等的四边形。
(请标明表示线段位置的数据及符号或写出画法)。
64、下面5个图形都具有两个特点:(1)由4个连在一起的同样大小的正方形组成;(2)每个小正方形至少和另一个小正方形有一条公共边。
我们把具有以上两个特点的图形叫做“俄罗斯方块”。
如果把某个俄罗斯方块在平面上旋转后与另一个俄罗斯方块相同(比如上面图中的B与E),那么这两个俄罗斯方块只算一种。
除上面4种外,还有好几种俄罗斯方块,请你把这几种都画出来。
65、在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=1992
66、一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。
那么,这个等腰梯形的周长是__厘米。
67、一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
原来至少有__人已经就座。
68、用某自然数a去除1992,得到商是46,余数是r,a=__,r=__。
69、“重阳节”那天,延龄茶社来了25位老人品茶。
他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。
其中年龄最大的老人今年____岁。
70、学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。
那么,至少____个学生中一定有两人所借的图书属于同一种。
71、五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。
那么得分最少的选手至少得____分,至多得____分。
(每位选手的得分都是整数)
72、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。
那么,只有当锯得的38毫米的铜管为____段、90毫米的铜管为____段时,所损耗的铜管才能最少。
73、甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。
现由甲工程队先修3天。
余下的路段由甲、乙两队合修,正好花6天时间修完。
问:甲、乙两个工程队每天各修路多少米?
74、一个人从县城骑车去乡办厂。
他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。
又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡
办厂,求县城到乡办厂之间的总路程。
75、一个长方体的宽和高相等,并且都等于长的一半(如图12)。
将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米。
求这个大长方体的体积。
76、有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输。
问:保证一定获胜的对策是什么?
77、有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒。
现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米?
78、个体铁铺的金师傅加工某种铁皮制品,需要如图13所示的(a)、(b)两种形状的铁皮毛坯。
现有甲、乙两块铁皮下脚料(如图14、图15),图13、图14、图15中的小方格都是边长相等的正方形。
金师傅想从其中选用一块,使选用的铁皮料恰好适合加工成套的这种铁皮制品(“成套”,指(a)、(b)两种铁皮同样多),并且一点材料也不浪费。
问:(1)金师傅应当从甲、乙两块铁皮下脚料中选哪一块?(2)怎样裁剪所选用的下脚料?(请在图上画出裁剪的线痕或用阴影表示其中一种形状的毛坯)
79、只修改21475的某一位数字,就可以使修改后的数能被225整除。
怎样修改?
80、(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?
(2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如果不好分,为什么?。