直动式溢流阀的键合图建模与仿真分析
先导式溢流阀建模与仿真的探讨
![先导式溢流阀建模与仿真的探讨](https://img.taocdn.com/s3/m/0d6e84194afe04a1b171de1d.png)
先导式溢流阀建模与仿真的探讨0 引言在大多數液压系统中,溢流阀是一个不可缺少的压力控制元件,其通常的作用是维持系统压力的恒定,由于这种阀的动态性能对整个系统的性能有直接的影响,所以近年来国内外对溢流阀的静、动态特性研究的比较普遍[1-2]。
本文采用的是基于功率键合图的基本方法,以Y-25B型先导式溢流阀为例,建立先导式溢流阀的键合图模型,在20-sim软件上进行动态特性分析,研究溢流阀内部的结构参数及外部参数对其动态特性的影响,对提高溢流阀的性能甚至整个液压系统的可靠性有重要意义。
1 键合图法的基本原理键合图理论是20世纪50年代末首先由美国Paynter教授提出的[3]。
几十年来,以Kamopp DC和Rosenberg RC为代表的一批学者在此领域做了大量的研究工作[4]。
键合图是一种功率流图,它表示一个系统的输入功率在系统中的流向及在系统中各元上的作用情况,其实质是表示了系统中的能量变化、转换的形式及其相互的逻辑关系。
包含4种广义变量:势变量()、流变量()、变位变量()及动量变量()。
其中势、流为功率变量,变位变量及动量变量为能量变量。
在液压系统中,势变量和流变量分别对应于压力和流量。
功率键合图是彼此间用功率键连接起来的键图元的集合。
功率键是一个带有半箭头的有向短线段,半箭头的指向即表示键上功率的流向,见图1。
各键上的功率可视为系统总功率的分量,每根键上分别标有表示该功率的两个分量,如液压力与流量,功率的大小等于与的乘积。
图1 功率键示意图Fig.1 Power Bond schematic diagram2 20-sim 的功能和特点2.1 软件概述20-sim软件被广泛用于航空航天、汽车、制造、工程、化学等领域的设计、建模和仿真的研究中。
其最大特点是可以实现基于键合图的自动建模与仿真。
除此之外,还支持方块图、图标、方程形式的建模。
2.2 建模方式20-sim拥有一个门类齐全的模型库,提供了大量预先定义好的模型,分为键合图、图标、信号和系统四个部分。
基于20sim的典型液压系统建模仿真解读
![基于20sim的典型液压系统建模仿真解读](https://img.taocdn.com/s3/m/3acef725580216fc700afd6a.png)
基于20-sim 的液压系统键图建模与仿真前言本文在20-sim 环境下,以典型液压系统为对象,建立了液压管道、液压泵、溢流阀等元件的键合图模型与整个系统的键合图模型,用实际参数进行动态仿真,其仿真结果表明,得到的活塞杆响应速度、泵的输出压力以及液压缸工作压力的动态变化正确合理,通过键合图建立的模型可以用20-sim 软件进行参数的选择与优化研究。
1 典型液压系统典型液压系统由油泵、溢流阀、电液比例控制系统等部分组成,其回路如图1所示。
油泵1为系统提供动力,溢流阀2用于卸荷,比例控制阀3主要完成主压力的调整、卸荷、油流转换等功能,油缸4用于驱动负载5,油箱6为系统提供油源,并存储工作油液。
图1 典型液压系统回路2 典型液压系统键合图模型在液压系统中,组件间的负载效应及系统中功率流动情况都可以用功率键合图图形的方式描述。
液压系统和键合图元的对应关系如表1所示。
表1 液压系统和键合图元的对应关系液压系统液容液感液阻负载体积压动量压力流量键合图元CIRSeq(tp(te(tf(t2.1 液压泵键合图模型液压泵是液压系统中的能量转换元件,将机械能转换成液压能。
变量泵的动态模型用图2所示的键合图模拟,其中,R l 表示泄漏液阻,R f 表示转动部分的摩擦,Cy 表示压油腔的液容,MTF 是一个调制变换器,其变换比1/k是可变参数C 的函数,对于径向柱塞泵,C 是斜盘的倾角。
CCbRR100SfSf1图2 泵的键合图模型在液压泵中,产生泄漏的缝隙一般很小,泄漏都是层流流动,泄漏液阻可以看作与泵的输出压力成正比。
根据泵的容积效率的定义可以求得泵的泄漏液阻qn PR V 1(1η-=(1式中,P ,ηV ,q ,n 分别代表泵的输出压力、容积效率、排量和转速。
假设液压泵的泄漏系数K L =1/Rl ,泵的液容KVC y = (2其中V ,K 分别是液压泵的容积和油液体积弹性模量。
2.2 电磁溢流阀键合图模型溢流阀的响应速度比较快,在此可以忽略它的动态特性,只考虑它的静态特性。
直动式减压阀压力特性与流量特性仿真
![直动式减压阀压力特性与流量特性仿真](https://img.taocdn.com/s3/m/a2c060c44028915f814dc204.png)
当流量增加时,阀口开度增加,P2 会减小;当 P1 增加时,为了保证流量不变,阀口
开度会减小,P2 会增加。由于减压阀在工作时在阀口处还受到稳态液动力,因此有:
(
)
小孔处气体流速为
流经小孔的的流量为
小孔面积:
(
)
如果忽略小孔稳态液动力的话,则有:
根据起受力分析以及锥形阀流量与压力的关系可以得到
其中 Pb 大气压强,取 三,仿真实验与结果
二、受力分析 作用在主阀芯及膜片受力分析:
“向上的力”有 P1 作用在主阀芯底部的力,P2 作用在膜片上的向上的力;“向下的力” 有弹簧力 FS,P2 作用在主阀芯的向下的力假设作用在主阀芯的面积为 A2,大气对于膜片
向下的力,弹簧预紧压缩量为 X0,弹簧刚度为 K,阀口开度为ΔX,则力学平衡方程如下:
2、压力特性分析: 由受力分析可知气体 P1-P2 的关系如下
取 q=500dm3/min,通过 matlab 作图得到 P1—P2 图像如下图所示
其 matlab 程序如下: r1=0.015;%主阀芯底部半径 A1=1.257;%主阀芯底部作用面积 A2=6.362;%P2 作用膜片面积(上部) K=167000;%弹簧刚度 T=293;%温度 R=8.31;%气体状态常数 Pb=1e6;%大气压 k=2; P1=1000:10000:1e8;%入口处压力 P2=1000:1000:1e7;%将 P2 从 1000 变到 1000000,其中每次变化的数值为 1000 q=500;%初始流量 a=45;%主阀芯底部倾斜角 Cv=0.98;
Cq=0.7; for i=1:10000 P2(i)=Pb*A2+K*((2*r1/sin(a))^2-sqrt(2*q/(Cq*Cv*pi*P1(i)*(P2(i)/P1(i).^(2/k)-P2(i)/P 1(i).^(1+1/k))*sinቤተ መጻሕፍቲ ባይዱa)*sqrt(2*k/(R*T*(k-1))))))/(A1+A2); end plot(P1,P2) xlabel P1 ylabel P2 由 matlab 仿真图像可知,在 P1 增加时,为了保证流量恒定,由于阀口开度的减小,导致 P2 的增加,而其增加的趋势也不与 P1 成线性关系。这一点与理想状态有很大的差距。 四、作业感想
功率键合图
![功率键合图](https://img.taocdn.com/s3/m/e95b2fcff90f76c661371acf.png)
有相等的电压值,而输入电流值等于输出
的电流值即在该节点上输入、输出电流的
代数和为零。
p2q2
p1q1
p
p3q3
p2 q2
p1 o p3
q1
q3
p1=p2=p3 q1-q2-q3=0
用o结点表示三通管路
b.1结点-相当于一个串联电路,在该节点上电流相等, 而上流的电压值等于下流的电压值加上该电
路中的电压损耗值,即电压的代数和为零。
利用功率键合图和MATLAB进行液压系统的 数字仿真,不仅可以对液压系统的动态特性进行 仿真分析,还可以通过改变仿真条件对液压系统 的工作过程进行仿真试验。
用键合图和MATLAB进行数字仿真应注意的几个 问题:
(1)功率键合图全过程的代表性 (2)关于功率的流向 (3)功率键合图中各变量的关系 (4)MATLAB仿真程序的选择 (5)MATLAB仿真算法的选择
p1
p3
q1
△p=p2
p2 q2
p1 1 p3
q1
q3
p1=p2+p3
用1结点表示带有液阻的管路
q1=q2=q3=q
c. 变换器TF(transformer)
TF是一种能量变换器 用于不同类 型能量之间的转换; 或同类型能量 之间的转换。
表示形式:
e1 f1
TF :m
e2 f2
e1m=e2 f2=f1/m
阀体 上阻 尼孔 参数 值的 仿真 曲线
(a)R1=2.063e8 (b)R1=2.063e9
(c)R1=2.063e10
(d)R1=2.063e11
结果分析
一般的分析认为,这种结构的先导式溢流阀的阀体 上阻尼孔的作用主要为在油液流过阻尼孔之后,当先导 腔的压力达到系统调定的压力之后,先导阀芯开启,油 液经过阀体上的阻尼孔时有压力损失,使主阀芯上、下 腔产生压力差,在压力差的作用下主阀芯开启溢流。
合肥工业大学-直动式溢流阀仿真
![合肥工业大学-直动式溢流阀仿真](https://img.taocdn.com/s3/m/24246c4a312b3169a551a40d.png)
计算机仿真直动式溢流阀仿真实验班级:机设13-4班学号: 2013210360姓名:杨尚武授课教师:翟华日期: 2016年4月13日一、实验目的本实验要求学生能掌握连续系统仿真的一般过程,状态变量法的一般过程,键合图法仿真的一般过程,以四阶定步长龙格——库塔法的计算机程序的编写。
二、实验要求本实验要求学生能掌握连续系统仿真的一般过程,状态变量法的一般过程,键合图法仿真的一般过程,以及四阶定步长龙格—库塔法的计算机程序的编号要求每个学生参考上述源程序,独立编写C语言源程序或其他高级语言程序,正确计算仿真结果,并绘制压力P(t)和时间t的关系图,以及阀芯位移x(t)和时间t的关系。
三、参考C语言程序#include "stdio.h"#include "math.h"void main(){FILE * fp;int i,j,e,g,l,s,n1,n2,b[3][2];float d1,r1,r2,i1,c1,c2,x1,h1,a1,c,p0,pp,q1,x2,t;float a[3][3],y[3],u[2],k[3][5],h[5],p[3][5],z[3],d[3][5];if((fp=fopen("fz1","wb"))==NULL){printf("cannot open file\n");}fprintf(fp,"digital simulation of hydraulic relief valve\n");d1=0.012;r1=0.39e+11;r2=0.147e+12;i1=0.0614;c1=0.8e-12;c2=0.2e-4;x1=0.0014;p0=0.6e+6;pp=0.3e+7;q1=0.46e-3;h1=0.0003;t=0.0;n1=5;n2=55;a1=0.785*d1*d1;a[0][0]=-a1*a1*r1/i1;a[0][1]=-1.0/c2;a[0][2]=a1/c1;a[1][0]=1/i1;a[1][1]=0.0;a[1][2]=0.0;a[2][0]=-a1/i1;a[2][1]=0.0;a[2][2]=-1/(r2*c1);for (i=0;i<=2;i++){for (j=0;j<=1;j++)b[i][j]=0;}b[0][0]=-1;b[2][1]=1;y[0]=0.0;y[1]=0.0;y[2]=p0*c1;x2=q1/(0.7*3.14*d1*sqrt(2.0*pp/900.0));u[0]=pp*a1-(x1+x2)/c2;u[1]=q1;c=-0.7*3.14*d1*sqrt(2.0/900.0);for(i=0;i<=2;i++){k[i][0]=0.0;}h[0]=0.0;h[1]=h1/2.0;h[2]=h1/2.0;h[3]=h1;fprintf(fp," T P(T) X(T)\n"); for (e=1;e<=n2;e++){for (g=1;g<=n1;g++){t=t+h1;for(j=1;j<=4;j++){for(i=0;i<=2;i++){p[i][j]=h[j-1]*k[i][j-1];z[i]=y[i];z[i]=z[i]+p[i][j];}if(z[1]<0.0) z[1]=0.0;if(y[1]==0.0&&z[0]<0.0)z[0]=0.0;if(z[2]<0.0) z[2]=0.0;for (i=0;i<=2;i++){d[i][j]=0.0;for(l=0;l<=2;l++){d[i][j]=d[i][j]+a[i][l]*z[l];}k[i][j]=d[i][j];for(s=0;s<=1;s++){k[i][j]=k[i][j]+b[i][s]*u[s];}}if(y[1]==0.0&&k[0][j]<0.0)k[0][j]=0.0;if(y[1]==0.0&&k[1][j]<0.0)k[1][j]=0.0;if(y[2]==0.0&&k[2][j]<0.0)k[2][j]=0.0;if(y[1]>x1){k[2][j]=k[2][j]+c*(z[1]-x1)*sqrt(z[2]/c1);if(y[2]==0.0&&k[2][j]<0.0) k[2][j]=0.0;}}for(i=0;i<=2;i++){y[i]=y[i]+h1*(k[i][1]+2*k[i][2]+2*k[i][3]+k[i][4])/6.0; }if(y[1]<0.0)y[1]=0.0;if(y[1]==0.0&&y[0]<0.0)y[0]=0.0;if(y[2]<0.0)y[2]=0.0;}fprintf(fp,"%7.5f %e %e\n",t,y[2]/c1,y[1]); }}四、输出结果digital simulation of hydraulic relief valveT P(T) X(T)0.00150 1.449418e+06 0.000000e+000.00300 2.288071e+06 0.000000e+000.00450 3.099895e+06 1.151061e-040.00600 3.868414e+06 4.654126e-040.00750 4.600404e+06 1.006565e-030.00900 4.988608e+06 1.692020e-030.01050 3.161974e+06 2.095751e-03 0.01200 1.816280e+06 1.854696e-03 0.01350 1.982722e+06 1.433021e-03 0.01500 2.839527e+06 1.252615e-03 0.01650 3.644874e+06 1.364071e-03 0.01800 3.882667e+06 1.673995e-03 0.01950 3.016941e+06 1.839893e-03 0.02100 2.377060e+06 1.706981e-03 0.02250 2.531030e+06 1.497600e-03 0.02400 3.156087e+06 1.446740e-03 0.02550 3.501333e+06 1.583777e-03 0.02700 3.186811e+06 1.717583e-03 0.02850 2.736281e+06 1.695083e-03 0.03000 2.673098e+06 1.579036e-03 0.03150 2.970536e+06 1.515308e-03 0.03300 3.243553e+06 1.563448e-03 0.03450 3.179934e+06 1.648301e-03 0.03600 2.923158e+06 1.665780e-03 0.03750 2.805473e+06 1.611564e-03 0.03900 2.920318e+06 1.561015e-03 0.04050 3.096681e+06 1.568833e-03 0.04200 3.124609e+06 1.614838e-03 0.04350 3.001740e+06 1.639431e-03 0.04500 2.899607e+06 1.619705e-03 0.04650 2.925323e+06 1.587159e-03 0.04800 3.023885e+06 1.580377e-03 0.04950 3.071301e+06 1.601658e-03 0.05100 3.024275e+06 1.621452e-03 0.05250 2.955756e+06 1.617937e-03 0.05400 2.946312e+06 1.600020e-03 0.05550 2.993725e+06 1.590586e-03 0.05700 3.033829e+06 1.598347e-03 0.05850 3.023208e+06 1.611109e-03 0.06000 2.984370e+06 1.613578e-03 0.06150 2.966569e+06 1.605188e-03 0.06300 2.985009e+06 1.597548e-03 0.06450 3.011714e+06 1.598983e-03 0.06600 3.015217e+06 1.606013e-030.06750 2.996430e+06 1.609634e-03 0.06900 2.980998e+06 1.606533e-03 0.07050 2.985335e+06 1.601573e-03 0.07200 3.000486e+06 1.600654e-03 0.07350 3.007349e+06 1.603957e-03 0.07500 2.999997e+06 1.606921e-03 0.07650 2.989607e+06 1.606318e-03 0.07800 2.988369e+06 1.603569e-03 0.07950 2.995737e+06 1.602179e-03 0.08100 3.001721e+06 1.603411e-03 0.08250 2.999946e+06 1.605345e-03五、实验报告1.直动式溢流阀键合图模型是:2.直动式溢流阀系统状态方程是:1214321221211211121212121)111(11I R A p Q V C R R R p I A V p IxS V C A x C p e ++---==-+--=3.系统压力随时间变化曲线为:4.阀芯位移随时间变化的曲线为:。
大流量溢流阀的压力特性AMESim仿真分析
![大流量溢流阀的压力特性AMESim仿真分析](https://img.taocdn.com/s3/m/e87f5753dd88d0d232d46a5e.png)
大流量溢流阀的压力特性AMESim仿真分析摘要:根据溢流阀的结构原理建立了阀的数学模型和仿真模型。
理论分析了压差节流孔在溢流阀控制中的作用,选择了主弹簧和压差节流孔对压力特性的影响进行了仿真分析。
通过对溢流阀的仿真,可以提高设计效率和保证设计质量,提前发现不足之处,在液压系统调试中做好准备工作,保证试验的顺利进行。
关键词:压力阀;节流孔;压差;仿真;AMESim0 引言随着工业设备和工程机械的不断发展,对各种配套件都提出了高的要求,特别是对液压传动系统和元件提出了更高的要求,提高效率和节能是最重要的方向,往集成化和高功率比方向发展,集成度高就可以缩小体积和减轻重量;提高工作压力,提高工作可靠性和使用寿命;降低噪声等等。
因此,近年来液压控制元件的发展趋势大致可以归结为大流量、超高压、高度集成、低噪声和节能等。
在这种新形势下,液压件的发展从管式结构发展为板式安装结构,再发展到插装式阀结构。
插装式阀具有一系列独特的优点,如通流能力大,流阻小、结构紧凑、响应快、抗污染能力强、工作可靠、适用于多种介质,具有多种机能、变型方便、可以高度集成、三化程度高等,因此,这种插装式阀控制技术已得到了广泛应用。
插装式阀采用插装式安装,二级或多级控制方式,先导元件作为控制级,大通径阀作为主级。
主级是大功率元件,插装在阀体或集成块体中,通过它的开启关闭动作和开启量的大小来控制液流的通断、压力的高低,以及流量的大小,亦即实现对液压执行机构的方向、压力和速度的控制。
插装式溢流阀在液压系统中国应用广泛,可以说必不可少,在系统中起到限制液压系统压力的作用。
插装式溢流阀先导控制级至少有一个起到压差作用的阻尼孔,大多情况下有多个阻尼孔。
当然,具有多个阻尼孔的插装式阀不同位置的阻尼孔所起到的作用各不相同。
阻尼孔对插装式溢流阀的正常工作影响很大,有些是必不可少的,有些是用于优化其性能的。
在安装有插装式溢流阀的液压系统应用中,往往会出现各种各样的问题,维修人员在判断故障点时,由于对插装式溢流阀的理解不是很彻底,不能很快判断出故障的原因。
应用键合图法仿真溢流阀动态性能
![应用键合图法仿真溢流阀动态性能](https://img.taocdn.com/s3/m/e765907fdcccda38376baf1ffc4ffe473368fd37.png)
应用键合图法仿真溢流阀动态性能
崔维娅
【期刊名称】《石家庄铁道大学学报:自然科学版》
【年(卷),期】1991(000)003
【摘要】本文应用键合图法建模,对差动式单级溢流阀的动态过程进行了数字仿真研究,预测了某些结构参数改变后对动态性能的影响,并经实验证明了动态模型的正确性。
【总页数】6页(P37-42)
【作者】崔维娅
【作者单位】石家庄铁道学院机械系
【正文语种】中文
【中图分类】N
【相关文献】
1.仿真直动式溢流阀瞬态响应的键合图法 [J], 郑红梅
2.基于功率键合图的液压节流调速动态性能仿真研究 [J], 张立军;赵升吨;陈晓华
3.基于键合图和SIMULINK的比例溢流阀建模与仿真 [J], 周伟安;沈雪明;柯敏
4.利用功率键合图和SIMULINK实现溢流阀的动态仿真 [J], 胡勇;周建军;贾方
5.用功率键合图计算机模拟仿真分析西德高压型溢流阀的动态特性 [J], 杨征瑞因版权原因,仅展示原文概要,查看原文内容请购买。
最新直动式溢流阀的键合图建模与仿真分析电子教案
![最新直动式溢流阀的键合图建模与仿真分析电子教案](https://img.taocdn.com/s3/m/ed7b453d84868762caaed5bd.png)
直动式溢流阀的键合图建模与仿真分析溢流阀一种压力控制阀,在液压设备中主要起定压溢流作用,稳压作用,系统卸荷作用和安全保护作用。
系统正常工作时,阀门关闭,只有负载超过规定的极限(系统压力超过调定压力)时开启溢流,进行过载保护,使系统压力不再增加。
将直动式溢流阀并联在液压缸的两腔,手动调节溢流压力,可以当做模拟负载器。
1 液压系统及动态过程任何一个液压元件总是在某一定的液压系统中工作的。
在绘制功率键合图,进行动态分析时,总是针对某一具体动态过程进行研究的。
本研究的直动式溢流阀调压系统的液压原理图如图1所示。
在图中所示情况下,液压泵的供油经电磁阀流回油箱,当电磁阀突然通电关闭时,直动式溢流阀由原来的关闭状态到打开溢流,直到系统达到新的静平衡状态的瞬态响应过程。
图1 直动式溢流阀调压系统的液压原理图在上图中,因重点研究的是溢流阀,因此对溢流阀本身的影响特性的因素考虑的多一点,其他不必要的可忽略不计。
为了便于分析,需要画出直动式溢流阀的的结构简图,该结构简图及其与系统其他部分的关系如图2。
图2 所研究系统的结构简图在建立数学模型时,所考虑的的影响因素主要有:溢流阀本身的弹簧柔度C弹、阀芯质量I阀、阀口液阻R阀、阻尼孔液阻R孔,及阀芯底部控制油压力p控。
此外,系统其他部分考虑的因素有:泵的泄露液阻R泄、管道(主要是软管)液容C管及模拟负载的节流阀液阻R节。
2 功率键合图按照键合图理论,描述一个系统主要使用容性元件C、阻性元件R、惯性元件I、流源S f、力源Se、转换器TF。
将这些基本元件按照功率流程连接起来,构成系统的键合图,如图3。
图3 功率键合图图中带箭头的直线表示功率键,箭头表示功率流向。
每一根功率键上有表示构成功率的两个变量,一般用力变量e和流变量f表示,但在传递不同类型能量的系统中,力变量和流变量各有其不同的物理变量。
每根键上的变量都有脚标,以示区别。
图中功率流程是从左向右的。
第一个结点是0结点,表示定量泵供给的具有确定流量q1的流源Sf,在同一压力下有5个分支功率从容腔流出,其中有4个是受作用元控制的,即控制泵泄漏量q3的泄露液阻R泄、控制管道中油液压缩所补充的流量q2的液容C管、控制供给负载流量q4的节流阀液阻R节以及控制溢流量q5的溢流阀阀口液阻R阀,另一个分支功率是用于控制阀芯运动的P6.q6。
直动式纯水溢流阀的动态特性仿真
![直动式纯水溢流阀的动态特性仿真](https://img.taocdn.com/s3/m/8b6ede0b58eef8c75fbfc77da26925c52cc59174.png)
直动式纯水溢流阀的动态特性仿真*袁桂锋#赵连春#王传礼!安徽理工大学机械工程系#安徽淮南23200l "摘要I 纯水液压已成为液压发展的新方向 纯水溢流阀作为纯水液压系统的关键部件之一 已成为液压界研究的新热点O 本文建立了直动式纯水溢流阀动态特性的数学模型 利用Ma t i ab 软件仿真分析了其动态性能 得到了影响其动态性能的主要参数O 仿真结果表明直动式纯水溢流阀的动态性能良好 满足实用要求 在解决腐蚀等问题的基础上 能够代替油压溢流阀O关键词I 纯水液压;溢流阀;动态特性;仿真中图分类号I T~l37.52+l 文献标识码I A 文章编号I l00l -388l 2006 6-088-3N u m e r i c al s i m u l at i onof wat e r h yd r au l i c r e l i e f v al veY U A Ng ui f e ng Z ~A Ol i a nc hun W A N gc hua ni iD e pt .o f M e c ha ni c a i e ng i ne e r i ng A nhui U ni v e r s i t y o f Sc i e nc e a nd T e c hno i o g y ~ua i na n A nhui 23200l c hi naA b s t r ac t 1T he w a t e r hy dr a ui i c t e c hni gue ha s be e n t he t r e nd i n o f hy dr a ui i c t e c hni gue .A s o ne o f t he ke y c o m po ne nt s o f t he w a t e rhy dr a ui i c s y s t e mw a t e r r e i i e f v a i v e i s f o c us e d o n i n m a ny r e s e a r c he s .A ppi y i ng s i m ui a t i o n s o f t w a r e M a t i a b t he dy na m i c c ha r a c t e r i s -t i c s o f t he w a t e r hy dr a ui i c r e i i e f v a i v e w e r e pr e s e nt e d by s i m ui a t i o n a na i y s i s .T he s i m ui a t i o n r e s ui t s i ndi c a t e t ha t t he w a t e r r e i i e f v a i v e ha s g o o d dy na m i c pe r f o r m a nc e a nd c a n be a do pt e d i n pr a c t i c a i a ppi i c a t i o n ba s e d o n a v o i di ng t he pr o bi e m s a s c o r r o s i o n e t c .K e yw or d s 1W a t e r hy dr a ui i c ;R e i i e f v a i v e ;D y na m i c c ha r a c t e r i s t i c s ;Si m ui a t i o n纯水作为液压传动介质具有价格低廉\环境友好\阻燃性好\清洁无毒\传动效率高等优点 因此成为液压技术发展的新方向之一O 溢流阀在液压系统中可起稳压作用 是液压系统中的关键部件 这类阀在工作中除保证在稳态情况下有足够的控制精度外 还须保证具有足够的动态品质O 故纯水溢流阀的动态性能对于纯水液压系统是十分重要的O 当溢流阀在一个确定的调定压力下工作 其溢流流量g 随着负载工况的变化而变化O 溢流阀的动态特性就是指当流过溢流阀的流量发生阶跃变化时 溢流阀所控制的液体压力随时间的变化过程O 其动态品质是指溢流阀在接受一个流量阶跃信号@s 以后 由一个稳定的压力转变到另一个稳定压力的变化过程;它包含有动态超调量和过渡时间两个内容O 它决定溢流阀的快速响应性能 也影响整个液压系统的动态精度O 下面将建立直动式纯水溢流阀的数学模型并使用Ma t i ab 软件和其软件包Sim ui i nk 对其进行动态特性分析O 1 直动式溢流阀动态数学模型的建立图l 直动式溢流阀的工作原理图如图l 所示为直动式溢流阀的工作原理图O 其中R 为节流阻尼孔O 为了分析简化 作如下假设1l 阀芯的自重忽略不计O2 阀芯运动时只考虑粘性阻力的影响O3 不考虑泄漏量Ol.l 阀口的流量方程@=c d cx 2p p s -p 0!式中1@为阀口的流量 m 3/s ; c d 为流量系数;c 为阀口周长 m ; x 为阀口开度 m ; p s 为泵供液压力 P a ; p 0为回液压力 Pa ; p 为水的密度 kg/m 3O l.2 阻尼孔的流量方程@l =s g n p s -p l c A R A R2p p s -p l !式中1@l 为阻尼孔的流量 m 3/s ; c A R为阻尼孔流量系数; A R 为阻尼孔过流面积 m 2;p l 为阀下腔压力 Pa O l.3 阀芯的运动微分方程md 2x d t2+B d xd t + s p s + x =A l p l - x 0式中1 s 为稳态液动力系数 且 s =c d c l c x c o s 9; B 为阀芯运动粘性阻尼系数 N s /m ;m 为阀芯质量 kg ;为弹簧刚度 N /m ;88 机床与液压 2006.N o .6*基金项目I 安徽省教育厅自然科学基金资助 项目编号为12005kj042z dA l 为阀芯下端面积*m 2x 0为弹簧预压缩量*ml.4 控制腔连续性方程@s -@-@l=V B G d p sd t式中E @s 为泵供液流量*m 3/s V 为控制腔的容积*m 3B G 为水的弹性体积模量l.5 敏感腔连续性方程@l =V l B G d p ld t+A ld x d t 式中E V l 为敏感腔容积*m 3表l 溢流阀动态仿真参数参数数值参数数值参数数值参数数值参数数值@s l >l0-4c A R 0.7m l.0>l0-2B 7.5>l0-2V 6>l0-4B G 2.4>l09A R 5.0>l0-7p l.0>l03A l 3.l4>l0-5V ll.6>l0-62>l05c 0.03x 0l.25>l0-3c d0.6c o s 90.358c l0.9p 02 M a t i a b 和Si m ui i nk 简介M a t i a b 软件作为目前国际最为流行的计算机辅助设计及科学计算软件*提供了强大的矩阵处理和二~三维图形绘制功能*具有较高的可信度和灵活的使用方法*非常合适用于计算机辅助设计 Sim ui i nk 是集成在Ma t i ab 中的动态系统建模~仿真工具*具有开放性*可以用来模拟线性或非线性的以及连续或离散的或者两者混合的动态系统*因此功能十分强大 其特点在于E 一方面*它是Ma t i ab 的扩展*保留了所有Ma t i ab 的函数和特性 另一方面*它用模块组合的方法来使用户能够快速~准确地创建动态系统的计算机模型*方便地实现系统动态特性的仿真与优化 与此同时仿真结果的可视化使得设计者很直观地分析影响系统的因素*从而方便地实现系统的优化 使设计者可以将更多的精力集中在系统的设计和矫正上*使得系统的计算机辅助设计向可视化的方向迈进了一大步3 仿真结果图2~3为控制腔容积V 取不同值时的仿真曲线*从两图中可以看出控制腔容积对阀的动态性能有很大的影响E 当控制腔容积较小时阀的压力有一定量的超调*上升的时间较短*随着控制腔容积的增大*压力的超调量减小*但响应较慢 由于控制腔包括管路的容积*故在连接溢流阀时需合理的选择连接管路的长度 同时由图2~3可以看出控制腔容积对输出压力图2 不同前腔容积V<l >时阀位移 的仿真曲线图3 不同前腔容积V<l >时阀输出 压力的仿真曲线和位移的稳态值几乎无影响 而且稳态输出压力达到了9M P a 左右*后面的分析可以看出在适当的参数下其稳态输出压力可以达到llM P a 左右 基本达到油压溢流阀的水平*故此在解决腐蚀等问题的基础上*可以代替油压溢流阀 另外经过仿真可以发现敏感腔的容积V l 对溢流阀的动态性能影响很小<图未给出>为解决纯水溢流阀的腐蚀~气蚀和润滑问题*一些新型材料<如工程塑料~陶瓷等>被用于制造纯水溢流阀阀芯和阀套 采用不同材料制造的阀芯具有不同的质量*采用不同的材料制造的阀套与阀芯匹配时*其阻尼也不相同 为考察不同材料的阀芯和阀套对阀动态性能的影响*需对不同阀芯质量~阻尼的溢流阀进行仿真 图4~5为不同阀芯质量时溢流阀动态特性的响应曲线 图6~7为不同阻尼时溢流阀动态特性的响应曲线 从图中可知E 在其它条件相同的情况下阀的输出压力~阀芯的输出位移与阀芯质量并无直接的比例关系 而阻尼对阀芯的输出位移和溢流图4 不同质量<kg>时阀 输出位移的仿真曲线图5不同质量<kg>时阀 输出压力的仿真曲线图6 不同阻尼<N-s /m > 时阀位移的仿真曲线图7 不同阻尼<N-s /m > 时阀输出压力的仿真曲线-8-&机床与液压’2006.N o .6阀的输出压力的动态品质有较大的影响O 当阻尼较大时,阀的输出压力有一定的超调量,但当阻尼减小到一定值后超调量变得很小O 图6~7中的曲线5为阻尼很小的情况下溢流阀的动态响应O 当阻尼很小时,几乎无超调量,但输出压力降低O为了考察阀芯结构参数对其动态特性的影响,对具有不同阻尼孔直径的纯水溢流阀进行了仿真O 图8~9为阻尼孔直径变化时溢流阀的动态响应曲线O 从图8中可知当其它条件不变时,随着阻尼孔直径的增大,输出压力减小,其上升时间和达到稳态值的时间也较短,但两者相差很小O 从图9中可以看出与输出压力相反,随着阻尼孔直径的增大,阀芯的输出位图8 不同阻尼孔直径 (m m >时阀的输 出压力响应曲线图9 不同阻尼孔直径(m m>时阀的输 出位移响应曲线图l0不同端面直径(mm > 时阀的输出压力响应曲线图ll 不同端面直径(mm > 时阀的输出位移响应曲线移增大,但达到稳态后其位移相差相对较小O图l0~ll 所示为改变阀芯端面直径对纯水溢流阀的动态性能影O 从图中可以看出阀芯端面面积对阀的动态性能有很大的影响O 随着端面直径的增大,阀芯输出位移和输出压力下降很快O 因此在设计纯水溢流阀时,合理选择其结构尺寸是很重要的O4 结束语本文建立了直动式纯水溢流阀的动态数学模型,对直动式纯水溢流阀的动态特性进行了仿真,结果表明其动态性能良好;前腔容积及端面直径对其动态性能影响明显,阻尼~阀芯质量及阻尼孔直径影响较小O 分析结果对纯水溢流阀的设计有一定的借鉴和参考意义O参考文献H l H 盛敬超.液压流体力学 M ].北京:机械工业出版社,l980.H 2H 王春行.液压伺服控制系统 M ].北京:机械工业出版社,l982.H 3H 张志涌,等.精通M a t i a b 6.5版 M ].北京:北京航空航天大学出版社,2003.H 4H 姚俊,马松辉.Si m ui i nk 4建模与仿真 M ].西安:西安电子科技大学出版社,2002.H 5H 樊瑞,张明.导控溢流阀动态数学模型的建立及动态性能分析 J ].郑州纺织工学院学报,l997(8>.H 6H T a ka y uki N A K A N I S~I ,e t a i .N um e r i c a i s i m ui a t i o n o f w a -t e r hy dr a ui i c r e i i e f v a i v e c ].F i ui d P o w e r .F o ur t h J ~P S I nt e r na t i o na i Sy m po s i uml999J ~P S.I SB N 4-93l070-04-3.作者联系方式I 袁桂锋,电话:0554-*******,e -m a i i :g f y ua n2003@2lc n.c o mO 收稿日期$一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一2005-05-ll !上接第57页"均在设备给定的t l ~t 2范围之内O 经过迭代获得的Z c i ,比优化前的制造成本大大降低O (2>对于同一设备,当加工范围发生变化时,设备所能达到的最低精度t l 也在变化,且加工范围越大,t l 的变化也越大O2 结论在分析了公差与制造成本的基础上,给出满足装配精度下,最低制造成本的公差分配原则O 建立的数学模型~优化计算方法简捷~快速O 对设计工作者在产品的设计初级阶段,结合本厂的实际情况进行公差的优化分析具有实际的指导意义O参考文献H l H A c c o unt i ng f o r m a nuf a c t ur i ng t o i e r a nc e s a nd c o s t s i n f unc -t i o n g e ne r a t i ng pr o bi e m s J ].A SM eJ e ng I nd 98:283-286.H 2H 姚智慧,等.机械制造技术 M ].哈尔滨工业大学出版社,2002.H 3H 赵松年,等.现代机械创新产品分析与设计 M ].北京:机械工业出版社,2000.H 4H 杨继全,等.先进制造技术 M ].北京:化学工业出版社,2004.H 5H 王凤歧,等.现代设计方法 M ].天津:天津工业出版社,2004.H 6H 张世琪,等.现代制造引论 M ].北京:科学出版社,2003.作者简介I 付宝琴(l959->,女,陕西西安人,长安大学副教授,学士,机械制造及自动化实验室主任O 电话:l389l972l67,e -m a i i :c hds nf u@l63.c o m O 收稿日期$2005-04-29~~ 机床与液压 2006.N o .6直动式纯水溢流阀的动态特性仿真作者:袁桂锋, 赵连春, 王传礼, YUAN Guifeng, ZHAO Lianchun, WANG Chuanli作者单位:安徽理工大学机械工程系,安徽淮南,232001刊名:机床与液压英文刊名:MACHINE TOOL & HYDRAULICS年,卷(期):2006(6)被引用次数:6次1.盛敬超液压流体力学 19802.王春行液压伺服控制系统 19823.张志涌精通Matlab 6.5版 20034.姚俊;马松辉Simulink 4建模与仿真 20025.樊瑞;张明导控溢流阀动态数学模型的建立及动态性能分析 1997(08)6.Takayuki NAKANISHI Numerical simulation of water hydraulic relief valve1.贺小峰.王学兵.李壮云.HE Xiao-feng.WANG Xue-bing.LI Zhuang-yun直动式水压溢流阀的动态特性分析与试验[期刊论文]-机械与电子2007(2)2.叶献华.王传礼.袁桂锋.YE Xian-hua.WANG Chuan-li.YUAN Gui-feng直动式纯水溢流阀的流场仿真[期刊论文]-煤矿机械2007,28(3)3.黄雪峰直动式水压溢流阀压力特性研究[学位论文]20084.柴光远.黄楠.颜丽娜.CHAI Guang-yuan.HUANG Nan.YAN Li-na直动式纯水溢流阀的动态特性分析[期刊论文]-组合机床与自动化加工技术2008(10)5.朱碧海.李壮云.贺小峰.朱玉泉.张铁华一种新型水压直动式溢流阀的动态性能仿真和实验研究[期刊论文]-流体机械2004,32(8)6.黄雪峰.刘桓龙.柯坚.HUANG Xue-feng.LIU Huan-long.KE Jian直动式水压溢流阀阀口压力特性研究[期刊论文]-机械工程与自动化2009(2)7.刘轶.贺小峰.LIU Yi.HE Xiao-feng基于MATLAB的水压溢流阀动态特性仿真[期刊论文]-机械工程与自动化2007(5)8.蒲昌顺.黄星德.谭宗柒基于Matlab/Simulink的先导式溢流阀研究[期刊论文]-机电信息2010(6)9.韩新苗.聂松林.葛卫.刘谦.HAN Xinmiao.NIE Songlin.GE Wei.LIU Qian先导式水压溢流阀静动态特性的仿真研究[期刊论文]-机床与液压2008,36(10)1.叶献华.王传礼.袁桂锋直动式纯水溢流阀的流场仿真[期刊论文]-煤矿机械 2007(3)2.王洪英.刘元林.刘春生阀口动压反馈直动式溢流阀的结构设计研究[期刊论文]-鸡西大学学报 2009(6)3.罗鹏.田宁.赵丹洋二级管道节流过程中气蚀数值模拟[期刊论文]-沈阳化工大学学报 2011(1)4.刘轶.贺小峰基于MATLAB的水压溢流阀动态特性仿真[期刊论文]-机械工程与自动化 2007(5)5.黄雪峰.刘桓龙.柯坚直动式水压溢流阀阀口压力特性研究[期刊论文]-机械工程与自动化 2009(2)6.胡勇.周建军.贾方利用功率键合图和SIMULINK实现溢流阀的动态仿真[期刊论文]-河南科技大学学报(自然科学版) 2009(4)。
直动溢流阀功率键合图simulink、amesim建模仿真
![直动溢流阀功率键合图simulink、amesim建模仿真](https://img.taocdn.com/s3/m/19f8544dbe1e650e53ea9902.png)
2.MATlab\Simulink 建模仿真........................................................................................................... 2 3.运用功率键合图建立数学模型......................................................................................................5 3.1 键合图的建立......................................................................................................................5 3.2 状态方程..............................................................................................................................6 3.2.1 确定状态变量...........................................................................................................6 3.2.2 推导状态方程...........................................................................................................7 3.2.3 确定状态方程中的各量值.......................................................................................8 3.4 Matlab 仿真...........................................................................................................................9 4. AMEsim 建模仿真....................................................................................................................... 12 4.1 模型的建立.........................................................................................................................12 4.2 动态响应对比....................................................................................................................13 参考文献:.......................................................................................................................................14
基于Fluent的直动式纯水溢流阀内部流场建模与仿真分析
![基于Fluent的直动式纯水溢流阀内部流场建模与仿真分析](https://img.taocdn.com/s3/m/216887e0856a561252d36f5d.png)
了 , 壁 面的 冲击基 本消 失 了 ; 对 其最 小负 压值 提 高 了 , 阀 口处 的气蚀 现 象 明显 降低 ; 量 耗散 率减 小 , 能 即局
部损 失 的能量 变小 了.
表 2 结构 优 化 前 后 内部 流 场 参数 比较
由图 6可 以看 出 , 在 流过 锥 阀 阀 口时 , 动 速 水 流 度有 大 幅度 的增 加. 流进 入 阀体 后 , 要形 成 两 部 水 主 分 : 部分 作为 主 流 流 出 阀体 ; 一 部 分 出现 与壁 面 一 另 脱离 的现 象 , 贴 近 壁 面处 的速 度 较低 , 阀 座 拐 角 在 在 处下 方形 成 了一个 十分 明显 的涡流 .
纯 水液 压技 术是 以天然 淡水 、 海水 或 自来 水代 替 矿 物油作 为液 压 系统工 作介 质 的新技术 , 具 有环 境 它 友好、 阻燃性 、 安全 性好 等特 点 , 同时有 利 于提 高绿 色 意识. 但是 , 由于 水 的 润滑 性 很 差 、 蚀 性 较 强 、 度 腐 密
大 学 ,0 5 20.
[] 张 功 晖 , 锡 胜 , 志 鸿 , . 于 Fun 的 阀 门 开 启 过 4 胡 周 等 基 le t 程 阀 芯 气 动 力 仿 真 研 究 [] 液 压 气 动 与 密 封 , 0 1 3 : J. 2 1 ( )
1 21 3— .
口开度 1 mm 和半 锥角 a 5 的条 件下 , 阀结 构进 一4 。 锥 行优化 前后 相 比较 , 体 数 值 分 析 见 表 2 最 大 流动 具 .
基 于 Fu n 的直 动式 纯水 溢 流 阀 内 部 流 场建 模 与仿 真 分析 let
7 1
由 图 5可 以看 出 , 阀的进 口处 压力 分 布 最 密 , 阀 内压力 的降低 主要 发生 在 阀 口; 阀座和 阀芯 拐 角处 的 负压值 比较 低 , 明水 压 锥 阀 会 产 生 严 重 的气 蚀 腐 表
基于Fluent的直动式纯水溢流阀内部流场建模与仿真分析
![基于Fluent的直动式纯水溢流阀内部流场建模与仿真分析](https://img.taocdn.com/s3/m/46d5619aa1116c175f0e7cd184254b35eefd1a76.png)
美国芝加哥设计学院研究生教育体系探析佚名【摘要】作为美国第一个具有博士学位授予资格的设计学院及全美最大的具有设计专业研究生教学资格的全日制学院,芝加哥设计学院(IIT,ID)的研究生教育体系独具特色,并且在全球设计教育界享有盛誉.芝加哥设计学院跨界设计的教育理念强调通过人才培养类型的多层次性、课程设置的跨学科性、师资力量的多学科背景拓宽设计维度,创新学术视野;批判性思维的培养理念通过召开高端学术会议、突出设计研究的教学重点和开展工作室小班制的互动模式,来培养学生的创造性、技术性和社会性思维,不断挑战设计的边界;以人为本的设计理念立足设计项目,用职业导向贯穿产学研的合作,发挥以人为本在设计及设计教育中的建构作用,推动设计与生活的有机整合,注重设计与生活的全面融通.这为我国设计教育提供了有益的借鉴.【期刊名称】《创意与设计》【年(卷),期】2019(000)003【总页数】5页(P90-94)【关键词】芝加哥设计学院;硕士教育体系;研究【正文语种】中文20世纪30年代纳粹占领德国,流离失所的包豪斯大师们纷纷迁往美国避难,其中就有芝加哥设计学院的创办者拉斯洛•莫霍利—纳吉。
1937年他受美国艺术与工业协会的邀请,前往芝加哥开始了“新包豪斯”的创办之路。
两年后,这所学校更名为设计学院(Institute of Design,Chicago)并于1949年并入伊利诺伊理工学院(IIT)。
作为新包豪斯学派的创世学院,自1937年成立以来,芝加哥设计学院在20世纪中叶曾一度成为全球现代主义设计的中心,引领了现代设计教育的发展并推动了现代设计教育理念在全球的传播,设计学院在设计史及设计教育发展史上发挥了重要的作用,且至今仍在全球设计教育界备受瞩目。
作为全美第一个具有博士学位授予资格的设计学院及全美最大的具有设计专业研究生教学资格的全日制学院,芝加哥设计学院致力于培养能“创造性地解决社会紧迫问题的设计领导者”,在追求技术进步的同时承担设计的社会担当,履行设计的社会责任。
基于AMESim的直动式溢流阀的特性分析研究
![基于AMESim的直动式溢流阀的特性分析研究](https://img.taocdn.com/s3/m/397ad3eeb8f67c1cfad6b89d.png)
9.76 MPa,最小值出现在第 11 s 左右,其值为 2.47
参考文献:
MPa;第 15 s 以后,此时带式输送机的带速已经降到 很低,系统直接将油液压力降到 0,制动油缸很快将制 动盘抱死,带式输送机就完全停了下来。
[1]包继华,于岩,周满山. 下运带式输送机盘式制动系统的研究[J]. 煤 矿 自 动 化 ,2000(5) :9-10.
大大地增强了 AMESim 的功能。 现在通过 HCD 库
对图 1 进行模型建立,如图 2 所示。
M
图4
0 0.00 0.05 0.10 0.15 0.20 0.25 0.30
时 间 /s
不同阻尼孔直径 d 的压力时间响应曲线
1. d=1.5 mm 2. d=2 mm 3. d=2.5 mm
从图 5 中可以看出, 溢流阀的大小直接影响阀
8
p/MPa p/MPa
当 t=15 s 时,p=3.36 MPa。
以上述各控制点为坐标绘出实际压力控制曲线
如图 5 所示。
10 9 8 7 6 5 4 3 2 1 2 4 6 8 10 12 14 16 18 t/s
图6
7
6
5
1
4
2
3
2
0 2 4 6 8 10 12 14 16 t/s
实际输出压力曲线与压力控制曲线叠加图
的动作产生阻尼,以提高阀的工作平衡性,调整螺钉
5 改变弹簧的预紧力, 这样也就调整了溢流阀的进
口处油液压力 p。
Fs
5
6
0 0.00 0.05 0.10 0.15 0.20 0.25 0.30
时 间 /s
图 3 不同阻尼 B 的压力时间响应曲线
直动式溢流阀动态优化设计_宋俊
![直动式溢流阀动态优化设计_宋俊](https://img.taocdn.com/s3/m/baafa5e781c758f5f61f6782.png)
C0
=2ωζn -2ωζ00
d
2
=
1 ω2n
d
1
=2ωζn d
0
=1
由上 式 可 见 , 欲 提 高 阀 的 静 态 刚 度
由式(25)得 :
W (0), 可以增加滑阀阀芯的直径 D (相当于 增加 W 和 A)或减小调节弹簧刚度 K 1 。
J
=C
2 1
d
0
2d0
+C20 d d 1d2
2
=ω1n[
11 -0005 -05 Dynamic optimum design of direct relief valve
Song Jun Wang Jie
Abstract:T he mathematic mo del of the direct relief valve is g iven under the functio n of disturbance signal.Acco rding to the objective of the ability to resist the disturbance of the step sig nal and the alternate signal, the structure parameter optimum is made and the principle of parameter optimum design is fixed. Key words:relief valve ;dynamic ;optimum
得
式中 E(s)=L [ e(t)] =1S
- σ2 K0
p
s(s)=
1 S
-
σ2 K0s
Υ (s ) =
利用功率键合图和SIMULINK实现溢流阀的动态仿真
![利用功率键合图和SIMULINK实现溢流阀的动态仿真](https://img.taocdn.com/s3/m/52618659842458fb770bf78a6529647d2728349d.png)
第30卷第4期2009年8月河南科技大学学报: 自然科学版Journal of Henan University of Science and Technolog y: Natural ScienceVo l. 30 No. 4Aug. 2009文章编号: 1672 - 6871 ( 2009) 04 - 0020 - 04利用功率键合图和S M I ULN IK实现溢流阀的动态仿真胡勇1 ,周建军1 ,贾方2(1. 河南职业技术学院汽车工程系,河南郑州450046; 2.洛阳拖拉机研究所研发三部, 河南洛阳471039)摘要:借助于功率键合图建立了溢流阀调压系统的动态模型(即非线性状态方程) ,给出了仿真模型,介绍了在S im ulink环境下利用状态方程进行溢流阀动态特性仿真的方法,同时讨论了如何通过改变参数来确定影响溢流阀动态特性的主要因素。
仿真结果表明溢流阀的阻尼小孔直径及主阀下腔连通容积的变化对先导式溢流阀动态性能的影响比较明显。
关键词:功率键合图;液压建模;动态仿真;溢流阀中图分类号: TH l37. 5 文献标识码: A0 前言近年来,由于科技的发展和经济建设的需要,液压技术的应用场合日益广泛。
随着液压元件和系统的可靠性、精确性和快速性等性能的不断提高, 农业机械和装备也广泛采用液压系统作为其动力源进行驱动。
在中高压液压系统中,为了使液压能源的压力基本上保持恒定,广泛采用先导式溢流阀。
在这种阀中有二次压力腔,根据二次压力和回路压力之差控制阀的位移,因此其动作准确而稳定。
先导式溢流阀在使用中要求其具有较高的调压精度,由于问题的复杂性,先导式溢流阀的压力流量特性曲线一般都是通过实验取得,传统上主要通过分析力平衡、流量与压力关系解释特性曲线,此法不能确切地解释各参数对调压精度的影响[ 1 - 3 ] 。
本文应用功率键合图和S IMUL I N K对先导式溢流阀的动态特性进行计算机仿真,并通过仿真帮助优化阀的参数设计。
直动式溢流阀建模及Matlab仿真
![直动式溢流阀建模及Matlab仿真](https://img.taocdn.com/s3/m/daea913ba32d7375a41780dd.png)
直动式溢流阀建模及Matlab仿真攀枝花学院本科学生课程设计任务书题目直动式溢流阀MATLABEL仿真1、课程设计的目的学生在完成各综合课程学习的基础上,运用所学的液压知识、MATLABEL仿真知识,各种阀的功能与用途的知识,独立完成直动式溢流阀MATLABEL仿真设计任务;从而使学生在完成该课程设计过程中,强化对液压只是的掌握。
能够对学生起到加深MATLABEL仿真软件的应用和强化实际运用能力的锻炼。
2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等)1、元件为直动式溢流阀,绘制结构简图,以及相应参数表。
2、完成直动式溢流阀的数学建模,并画出动态结构方框图。
3、用MATLABEL的simulink仿真并检验结果。
4、编写设计说明书3、主要参考文献[1]陈德义主编《金属切削机床液压传动》科学出版社,1987年[2]王正林主编《MATLAB/Simulink与控制系统仿真》电子工业出版社,2002年4、课程设计工作进度计划内容学时直动式溢流阀的结构6直动式溢流阀的参数选择6直动式溢流阀的数学建模18直动式溢流阀的动态结构方框图36直动式溢流阀的MATLABEL的simulink仿真36检验结果图18合计3周指导教师(签字)日期年月日教研室意见:年月日学生(签字):接受任务时间:年月日课程设计(论文)指导教师成绩评定表题目名称评分项目分值得分评价内涵工作表现20%01学习态度6遵守各项纪律,工作刻苦努力,具有良好的科学工作态度。
02科学实践、调研7通过实验、试验、查阅文献、深入生产实践等渠道获取与课程设计有关的材料。
03课题工作量7按期圆满完成规定的任务,工作量饱满。
能力水平35%04综合运用知识的能力10能运用所学知识和技能去发现与解决实际问题,能正确处理实验数据,能对课题进行理论分析,得出有价值的结论。
05应用文献的能力5能独立查阅相关文献和从事其他调研;能提出并较好地论述课题的实施方案;有收集、加工各种信息及获取新知识的能力。
直动溢流阀的动态特性
![直动溢流阀的动态特性](https://img.taocdn.com/s3/m/517724dd5022aaea998f0fcd.png)
(一)结构简图为了建立直动式溢流阀的数学模型,需要首先画出它的结构简图。
结构简图并不代表所研究对象的具体结构,但是要能反映出该研究对象的物理特征,以能正确的写出数学模型。
直动式溢流阀的结构简图见图1-1。
系统中的工作油液在压力p下,以流量q进入溢流阀,其中一部分流量q经阀口排人油箱,另一部分流量流经阻尼空进入阀芯地部,以控制阀芯发开口量x。
因为阻尼孔有液阻R,油液流经阻尼孔时有压力消耗,所以阀芯地部的油压Pa 可能与系统中的压力p不一样。
阀芯上部受弹簧力作用,弹簧刚度为K弹,阀芯的下部有控制油压的作用力,承压面积为A,阀口处液流使阀芯受有液动力,其中稳态液动力的作用可以看成是弹簧的附加刚度K动,阀芯等运动件质量为m,在运动中有关心。
有关变量和量都注在图1-1中直动溢流阀的结构简图(二)在动态分析中所考虑的因素在一个研究对象中,影响动态性能的因素是比较多的。
在分析时,这些因素不可能都考虑,也没有必要都考虑,但是影响动态性能的主要因素必须考虑。
有些因素对动态性能虽有影响,但影响不大,为了使分析研究简化起见,这些因素就可以忽略掉。
在本例中,考虑的因素有:阀芯等运动件的质量,弹簧的刚度,阻尼孔处的液阻,阀口处的流量特征以及阀口液流产生的稳态液动力等。
同时对一些因素予以忽略。
因一般阀口处的排油直接回油箱,且回油管道较短,所以排油管道中的液阻忽略不计,同时忽略了与排油腔相通的阀芯顶部容腔油液的作用。
如果回油管较长,或排油管路中还有其他元件,则要考虑它们的影响。
油液的可压缩性对动态性能是有影响的,但在本例中,如阀芯底部的容腔等,容积都很小,其中液体的可压缩性影响不大,所以可以忽略不计。
溢流阀中液流通道很短,所以其中液流运动中惯性力可以忽略不计。
此外,为了简化起见,也忽略了阀芯与阀套配合间隙处的泄漏,阀芯运动中的摩擦阻力以及液流的瞬态液动力等。
(三)数学模型的建立建立所研究对象的数学模型,就是用数学方程式来描述所研究对象在动态过程中各参量之间的相互关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直动式溢流阀的键合图建模与仿真分析溢流阀一种压力控制阀,在液压设备中主要起定压溢流作用,稳压作用,系统卸荷作用和安全保护作用。
系统正常工作时,阀门关闭,只有负载超过规定的极限(系统压力超过调定压力)时开启溢流,进行过载保护,使系统压力不再增加。
将直动式溢流阀并联在液压缸的两腔,手动调节溢流压力,可以当做模拟负载器。
1 液压系统及动态过程任何一个液压元件总是在某一定的液压系统中工作的。
在绘制功率键合图,进行动态分析时,总是针对某一具体动态过程进行研究的。
本研究的直动式溢流阀调压系统的液压原理图如图1所示。
在图中所示情况下,液压泵的供油经电磁阀流回油箱,当电磁阀突然通电关闭时,直动式溢流阀由原来的关闭状态到打开溢流,直到系统达到新的静平衡状态的瞬态响应过程。
图1 直动式溢流阀调压系统的液压原理图在上图中,因重点研究的是溢流阀,因此对溢流阀本身的影响特性的因素考虑的多一点,其他不必要的可忽略不计。
为了便于分析,需要画出直动式溢流阀的的结构简图,该结构简图及其与系统其他部分的关系如图2。
图2 所研究系统的结构简图在建立数学模型时,所考虑的的影响因素主要有:溢流阀本身的弹簧柔度C弹、阀芯质量I阀、阀口液阻R阀、阻尼孔液阻R孔,及阀芯底部控制油压力p控。
此外,系统其他部分考虑的因素有:泵的泄露液阻R泄、管道(主要是软管)液容C管及模拟负载的节流阀液阻R节。
2 功率键合图按照键合图理论,描述一个系统主要使用容性元件C、阻性元件R、惯性元件I、流源S f、力源Se、转换器TF。
将这些基本元件按照功率流程连接起来,构成系统的键合图,如图3。
图3 功率键合图图中带箭头的直线表示功率键,箭头表示功率流向。
每一根功率键上有表示构成功率的两个变量,一般用力变量e和流变量f表示,但在传递不同类型能量的系统中,力变量和流变量各有其不同的物理变量。
每根键上的变量都有脚标,以示区别。
图中功率流程是从左向右的。
第一个结点是0结点,表示定量泵供给的具有确定流量q1的流源Sf,在同一压力下有5个分支功率从容腔流出,其中有4个是受作用元控制的,即控制泵泄漏量q3的泄露液阻R泄、控制管道中油液压缩所补充的流量q2的液容C管、控制供给负载流量q4的节流阀液阻R节以及控制溢流量q5的溢流阀阀口液阻R阀,另一个分支功率是用于控制阀芯运动的P6.q6。
第二个结点是1结点,表示功率流p6.q6在同一流量下又分成两个功率流,其一是受阻尼孔液阻R孔控制,具有压力损失p7,相应的功率损失为p7.q7,另一支液压功率流p8.q8,经变换器TF转换成机械功率F9.v9,作用在阀芯底部来控制阀芯运动。
最后一个结点为1结点,功率流F9.v9在同一运动速度下,其力变量F 经3个分支功率流,分别用于克服弹簧的预压紧力F10、弹簧继续受压产生的弹性力F11、以及用于克服惯性力F12以产生阀芯的加速度a12 。
3 状态方程3.1 确定状态变量在推导系统动态过程的数学模型——状态方程时,首先要确定状态变量系统的状态方程是一阶微分方程组,在其变量间有导数关系;而在系统的功率键合图中,只有储能作用元,(容性元C 和感性元I )中才有导数或积分关系,所以应当从C 和I 作用元各自的变量间取一个变量作为状态变量。
对于C 作用元,其自变量为流变量,力变量与流变量间的关系有⎰=vdt C F 1或⎰=qdt C p 1对于I 作用元,其自变量为力变量,流变量与力变量间的关系有⎰=Fdt I v 1或⎰=pdt Iq 1为了便于建立状态方程,可以取C 元和I 元功率键上自变量对时间的积分为状态变量,即在以下各式中:⎰⎰==V qdt x vdt , 和 ⎰⎰==P pdt P Fdt ,取液体体积V 、运动件位移x 、固体或液体动量P 为状态变量,这些状态变量的一阶导数即为原来的自变量。
这样原来的功率键上的变量之间的积分关系就可以转换为状态变量和原来的因变量之间的代数关系,即 v C p x C F 1,1== 和 P Iq P I v 1,1==按照上述方法,在图2-1所示的直动式溢流阀的功率键合图中,C 管和C 弹功率键上的自变量分别为流量q2和速度v11;I 阀功率键上的自变量为F12,取自变量对时间的积分为状态变量,即12121111,,2F P v x q V === 3.2 推导状态方程① 先写出功率键合图中储能元功率键上原来因变量与状态变量间的关系,即12121P I v 阀=, 11111x C F 弹=, 212V C p 管= ② 应用键合图的规则及其变量间的逻辑关系,将各状态变量的一阶导数推导成储能元功率键上的因变量及输入变量的代数式函数关系,如下列各式:12222121111111222118111091212)111(Av p R R R S q V v v xF S v R A Ap F S Ap F F F F P f e e -++-====---=--=--==阀节泄孔③ 将第一步中的各关系式带入第二步中,并在所得的右端的代数式中,按所列函数的顺序写出状态变量P12、x11、V2的各项,再写出输入变量的各项。
如下列各式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++--==-+--=fe S V C R R R P I A V P I x S V C A x C P I R A P 21221211211122121)111(11管阀节泄阀阀管弹阀孔 这就是一个三阶的状态方程,它由3个一阶微分方程组成。
当电磁阀关闭时,∞=节R ,即01=节R 。
由R 节可以确定系统压力的初始值。
在确定溢流阀口液阻R 阀时,当溢流阀阀芯的位移量x11未超过阀口的遮盖量x1时,无溢流,∞=阀R ,当x11>x1时,才有溢流,此时2111211122)(22)(V x x C dC p x x d C Q R p R C V d d -=-===管溢阀阀管ρπρπ式中 C d ——阀口的流量系数;d ——阀芯直径;ρ——油液密度。
可以看出Q 溢是x 11和V 2的非线性函数。
因此系统的模型也必须用非线性的状态方程表示,即⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧>--+++--=≤+++--==-+--=)( )(21)111( 1)111(11111211121221112122121121112212x x V x x C d C S V C R R R P I A V x x S V C R R R P I A V P I x S V C A x C P I R A P d f f e 管管阀节泄阀管阀节泄阀阀管弹阀孔)(ρπ3.3 确定状态方程中的各量值阀芯承压面积24d A π=,取d=1.2cm ,得A=1.13cm 2 ;移动件的等效质量kg m m I 2-1015.631⨯=+=弹阀阀;阻尼孔液阻3/1092.34cm s Pa R ⋅⨯=孔; 弹簧柔度C 弹=0.002cm/N ; 泄油液阻35/1047.1cm s Pa R ⋅⨯=泄; 软管液容3/108.06-cm Pa C ⨯=管;阀芯的遮盖量取x1=0.14cm ,弹调C x x A p Se /)21(+-⋅=,s m S f /106.434-⨯=。
4 Matlab 仿真在仿真过程中需对模型加3个约束。
①011≥x ,;②02≥P ,否则为0;③011=x 时,F 12<0,令F 12=0。
用Matlab 仿真对直动式溢流阀进行动态仿真,程序清单如附录所示,得到阀出口油压P2和阀芯位移的仿真曲线,如图4-(a)和4-(b)所示。
(a )溢流阀压力曲线图(b )阀芯位移曲线图 图4 直动式溢流阀动态仿真曲线从仿真结果看出,直动式溢流阀在以上参数下,经历0.01s 后,基本趋于稳定,在阀芯位移为0.15cm 时,溢流阀的压力稳定在30bar 左右不变。
压力超调量%30%73303052>=-=∆=p p η 压力/bar时间/s时间/s位移/cm附录:%define the sequence of the programfunction syms[A,B,U,Y,M]=defination_matrix();[H,D,I,R1,C2,C1,R2,P,Cd,RO,Q0,X1,P0,G]=input_parameters();[X2,C,A1] = calculation_parameters(Q0,Cd,P,R2,D,RO,G);[M]=calculation_matrix(M,A,B,U,Y,I,R1,C2,C1,R2,P0,P,X1,X2,A1,Q0,H ,C);graph_plot(M);function [A, B ,U, Y, M] = defination_matrix()%A_state_matrixA=zeros(3,3);%B_input_matixB=zeros(3,2);%U_input_vectorU=zeros(2,1);%Y=_state_vectorY=zeros(3,1);%output_matrixM=zeros(1000,4)function[H,D,I,R1,C2,C1,R2,P,Cd,RO,Q0,X1,P0,G] = input_parameters()%步长H(s),阀芯直径D(cm),惯性质量I(kg),阀孔阻尼R1(bar_s/cm3),弹簧柔度C2(cm/kg),%管道液容C1(cm3/bar),泄油系数Cd,油液密度RO(kg/cm3),泵理论流量Q0(cm3/s), %阀口遮盖量X1(cm),重力加速度G(cm/s2)H=6e-5;D=1.2;I=6.3e-5;R1=0.4;R2=1.5;C2=0.02;C1=0.08;P=30;Cd=0.7;RO=0.0009;Q0=460;X1=0.14;P0=6;G=981;function[X2,C,A1]=calculation_parameters(Q0,Cd,P,R2,D,RO,G)PI=3.1415926;X2=(Q0-P/R2)/(Cd*PI*D*sqrt(2*G*P/RO));C=-Cd*PI*D*sqrt(2*G*P/RO);A1=PI*D*D/4;function[M]=calculation_matrix(M,A,B,U,Y,I,R1,C2,C1,R2,P0,P,X1,X2 ,A1,Q0,H,C)T=0;A(1,1)=-A1*A1*R1/I; A(1,2)=-1/C2; A(1,3)=A1/C1;A(2,1)=1/I; A(3,1)=-A1/I; A(3,3)=-1/(R2*C1);B(1,1)=-1; B(3,2)=1;U(1)=P*A1-(X1+X2)/C2; U(2)=Q0;Y(1)=0; Y(2)=0; Y(3)=P0*C1;M(1,1)=0; M(1,2)=Y(1)/I; M(1,3)= Y(2);M(1,4)=P0;for j=1:5000[Y,T]=R_T(A,B,U,Y,H,X1,C,C1,T);M(j+1,1)=T; M(j+1,2)=Y(1)/I; M(j+1,3)=Y(2); M(j+1,4)=Y(3)/C1;endfunction[Y,T]=R_T(A,B,U,Y,H,X1,C,C1,T)%constrainif Y(2)<0Y(2)=0;endif Y(2)==0&&Y(1)<0Y(1)=0;end%nonlinear_situationif Y(2)>X1A(3,3)=A(3,3)+C*(Y(2)-X1)*sqrt(Y(3)/C1); endW=1/3*[0.5,1,1,0.5];Q=[0.5,0.5,1,0];TW=T; BB=Y; YW=Y;%初始化for i=1:4Dy=A*Y+B*U;T=TW+W(i)*H;Y=YW+H*Q(i).*Dy;BB=BB+H*W(i).*Dy;endY=BB;if Y(2)<0Y(2)=0;elseif Y(2)==0&&Y(1)<0Y(1)=0;endendfunction graph_plot(M)%%plot_graphfigure(1);plot(M(:,1),M(:,2))figure(2);plot(M(:,1),M(:,3))figure(3);plot(M(:,1),M(:,4));。