华东理工大学物理练习第十章作业提示
大学物理第10章课后习题
(3) nm 2.45 1025 5.311026 1.30 kgm
3
( 4 ) 因 为 气 体 分 子 可 视 为 立 方 模 型 : nl 1 , 因 此 分 子 间 的 平 均 距 离 l 为
1 l ( )1 3 3.44 10 9 m n
(5)平均速率 v 为 v
(2) 质子的方均根速率为
v2
3kT 3 8.31 108 1.57 106 ms-1 m 1.67 1027
10.12(1)在一个具有活塞的容器中盛有一定量的气体。如果压缩气体并对它加热, 使它的温度从 27℃升到 177℃、体积减少一半,求气体压强变化多少?(2)这时气体分子 的平均动能变化多少?分子的方均根速率变化多少? 解 (1)由理想气体状态方程 p nkT 可得压缩前后分别满足
: 7 因 为 p氖:p氦 1
且 p氖 p氦 2.4mmHg ,
所 以 p氖 0.3 mmHg ,
p氦 2..01 105 0.3 p 760 n氖 氖 9.63 1021 m-3 23 kT 1.38 10 300
N v0 2 v0
v0
2N 3
2 v0
av (3)平均速率 v vf (v ) v dv v0 0 0
所以
v0
avdv
11 2 2 av0 , 又因为 a 6 3v0
v
11 v0 9
10.8 求速率在 2v p 到 2.01v p 之间的气体分子数占总数的百分之几?
n氦 p氦 kT 6.74 10 22 m-3
3
10.4 一热气球的容积为 2200m ,气球本身和负截质量共 725kg,若其外部空气温度为 20℃,要想使气球上升,其内部空气最低要加热到多少度? 解 由理想气体状态方程 PV
东华理工大学物理练习册答案
一质点作简谐振动,周期为T.当它由平衡位置向x轴正方向运动时,
(C) T /6.
4.(5186)
(D) T /4.[ C ]
已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间
单位为秒.则此简谐振动的振动方程为:
2 2 (B). x2 (A).x2 cos ( t- ) cos( t )
1.(0580)
振动习题
一长为l的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图
所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量,此 摆作微小振动的周期为
(A)
(C) .
l 2 g
2l 2 3g
(B) . 2
(D) .
O
l 2g
l
l 3g
A
[ C]
y y A
2.(3031) 已知一质点沿y轴作简
t (s)
4.(3013) 一单摆的悬线长l = 1.5 m,在顶端固定点的竖直下方0.45 m处有 一小钉,如图示.设摆动很小,则单摆的左右两方振幅之比 A1/A2的近似值为_______________ . 0.84
0.45 m l
小钉
5.(3570) 1 一物体同时参与同一直线上的两个简谐振动: x 0 . 05 cos( 4 t ) 1 3 2 (SI) ,x 合成振动的振幅为 0 . 03 cos( 4 t- ) (SI) 2 3 __________________m . 0.02
x (cm) t (s) 1
2 2 3 3 O 3 3 -1 4 2 4 2 (C). cos ( t- ) -2 x2 cos( t ) (D).x2 3 3 3 3
4 1 (E) .x2 cos ( t- ) 3 4
大学物理学练习册参考答案全
大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
大学物理第10章练习答案
第十章 机械振动与电磁振荡计算题1. 解:(1)设cos()()x A t m ωϕ=+由图2可知,A =0.10m ,x 0=A /2=0.05m ,v 0>0 所以3ϕπ=-t =1s 时,x 1=0,故56πω=所以质点振动的运动方程为50.10cos()()63x t m =-ππ(2)P 点的相位为零 (3)由5063P t ππϕ=-=得t =0.4s2. 解:已知A =24cm ,T =4.0s ,故ω=π/2 t =0时,x 0=A =24cm ,v 0=0,故0ϕ= 所以振动方程为0.24cos()()2x t m π=(1)0.50.17t x m == (2)2220.50.50.419/t t d x a m s dt ====-,故30.50.5 4.1910t t F ma N -====-⨯指向平衡位置。
(3)由振动方程得0.12=0.24cos t 2π,即1cos t 22π=,23t =±ππ,因为此时v <0,相位取正值,所以t =0.67s 。
(4)dx v dt ==-0.24sin(t )22ππ⨯,将t =0.67s 代入得 0.326/v m s =- 2415.31102k E mv J -==⨯2224111.781022P E kx m x J -===⨯ω47.0910k p E E E J -=+=⨯*3. 证明:小球平衡时有00p S mg pS +-=图2小球偏离x 时,设容器内气体状态为(p 1,V 1),有2012d xp S mg p S m dt +-=,则212p S p S d x dt m-= 由于气体过程是绝热过程,有111()pV p V xS pV γγγ=-=,则1()(1)V x S p p p V x S V-==--γγ小球作微小位移时xS 远小于V ,则上式可写为1(1)xS p p Vγ=+ 所以,小球的运动方程为2222d x pS x x dt mVγω=-=-此式表示小球作简谐振动,振动周期为22T πω==所以比热容比为222224()mV mVp TS pS T ππγ==三. 计算题1.解:由阻尼振动周期2T '=='πω得阻尼因子为3/rad s ===δ 阻力系数为235.3/m kg s ==γδ 阻力为0.353N f v ==γ 2. 解:阻尼振动的振幅为0t A A e -=δ1t 10A A e -δ=,1t 01A e A δ=将t =0,A 0=0.03m 和t 1=10s ,A 1=0.01m 代入上式解得01111ln ln 310A t A ==δ 则振幅减为A 2=0.003m 所需时间为0221ln21A t s A ==δ3. 解:由题意知弹簧的劲度系数为3731010 1.2510/0.810m g k N m x -'⨯===⨯⨯则车厢的固有频率为015/rad s ω== 当火车以速率v 匀速行驶时,受撞击的角频率为22lυωπνπ==当ω0=ω时车厢将发生共振,此时速率即为危险速率,则030/108/2lm s km h υωπ=== 解决火车提速问题的措施之一是采用长轨无缝铁轨。
华东理工大学《物理化学》 练习题答案
第1章 物质的pVT 关系和热性质基本概念1.(1) (3)。
2. (1)分子无体积;(2)分子间无相互作用。
3.气。
4.气液共存区的边界线;不稳定区的边界线。
375.0ccc c ==RT V p Z ,得到普遍化的范德华方程以及对应状态原理。
5.a 气体;b 饱和气体;c 气液共存;d 饱和液体;e 液体。
6.不能,MPa 8.59=p7.状态一定,状态函数的量值一定;状态函数量值的变化仅与系统的初终状态有关。
对于一个均相系统,如果不考虑除压力以外的其他广义力,为了确定平衡态,除了系统中每一种物质的数量外,还需确定两个独立的状态函数。
8. (1) 外p p =,(2) =常数外p p =。
9. (1)封闭系统;(2)封闭系统,恒容过程,非体积功为零;(3)封闭系统,恒压过程,非体积功为零。
10. 压力为0.1MPa 下处于理想气体状态的气态纯物质。
压力为0.1MPa 下的液态和固态纯物质。
压力为0.1MPa 下浓度为3dm mol 1-⋅或1kg mol 1-⋅的理想稀溶液中的溶质。
11. 降低;=。
12.BB B )0(νζn n -=。
从数量上统一表达反应进行的程度。
13.<, =。
14.=, <。
15.=, >。
16. (1)×;(2)×;(3)√。
17. 实验测定;经验半经验方法;理论方法。
18. 反应前后气体的物质的量之差。
计算题1. 解:mol 1071.6mol )15.27330(3145.8101001021.169363--⨯=⎥⎥⎦⎤⎢⎢⎣⎡+⨯⨯⨯⨯==RT pV n []211122112211 )-(1 M y M y n M n y M y n M n M n m +=+=+= []2211) -( M M M y n +=836.001.4601.30101.461071.6219.0132121=-⋅⎪⎭⎫ ⎝⎛-⨯=-⋅⎪⎭⎫⎝⎛-=∴-M M M n m y 2. 解:以“1”代表空气,以“2”代表H 2O ,()mol 613.0mol 15.273253145.8100.1510325.1013311=⎥⎦⎤⎢⎣⎡+⨯⨯⨯⨯==-RT pV n3.174kPa kPa 01982.0613.001982.0325.10121222=⎪⎭⎫⎝⎛+⨯=+⋅==n n n p y p p331121dm 5.15dm 0.15613.001982.0613.0=⨯+=⋅+=V n n n V3. 解:以“1”代表NO ,以“2”代表“Br 2”,以“3”代表NOBr 开始时,p 1(0) = 23.102kPa9.76kPa Pa 10055.13003145.8)81.159/660.0()/()0(32222=⨯⨯⨯===-V RT M m V RT n p 平衡时,[]3213323132121)0()0(21)0()0(p p p p p p p p p p p p -+=+⎥⎦⎤⎢⎣⎡-+-=++=[]14.25kPa kPa )737.2576.9102.23(2)0()0(2213=-+=-+=∴p p p p 8.85kPa kPa )25.14102.23()0(311=-=-=p p p 2.64kPa kPa )25.142176.9(21)0(322=⨯-=-=p p p 4. 解:()RT b V p =-m , b pRTV +=m ,1,m 2,m kV V = 即kb p RT k b p RT k b p RT +=⎪⎪⎭⎫ ⎝⎛+=+112, ⎪⎪⎭⎫ ⎝⎛-=-=-21121)1(p p k p RT p RT p RT k k b ⎪⎪⎭⎫ ⎝⎛-⋅-=∴21111p p k p RT k b 133mol m 10132.5101.3250.01107510101.325273.15)(08.31450.01107511-⋅⎪⎭⎫ ⎝⎛-⋅⨯+⨯⋅-=135mol m 102.437--⋅⨯=A 3*m 3444N r V b ⋅⋅==π0.134nm m 100.134m 10022.61610437.2316393/12353/1A =⨯=⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=∴--ππN b r5. 解:(1) I ,液-固;II ,气-液;III ,气-固。
华东理工大学大学物理作业答案2
所以
I4 1 COS 6 30 0 21 .1% I0 2
47
大学物理习题册解答
13、自然光射到叠放在一起的两偏振片上(1)如透射光的最大强度为最大透射光强度 的 , 则两偏振片的偏振方向的夹角为多少? (2) 如果透射光的强度为入射光强度的 , 则两偏振片的偏振化方向的夹角又为多少? 解: 设入射光为 I0,通过偏振片的光强为 I1、I2 (1)透射光最大 即 I 2 I 1 据题意任一角度时可得:
2 2 2 x a sin Байду номын сангаас a 4 f
2f 2 1 600 10 9 3 10 3 m a 0.4 10 3 (2)由 a sin k (k 1) 得 x sin 1.5 10 3 r a d a
8、波长λ =600nm 的单色光垂直入射到光栅上,已知第二级主极大出现在θ =30 处,第 三级缺级。求: (1)光栅常数 a+b; (2)光栅每个缝的宽度 a; (3)光屏上可以看到的明条纹数 N。 解: (1) (a+b)sin =2λ
2 2 600 2400 nm sin sin 30 0 ab 3 (2)由第三级缺级可知 a a 800 nm d ab
i 48 010 / 对 O 光线 sin i n 0 sin 0 1.66 sin 48 010'
600
0 26 0 40 /
e光 光 路 图 o光
18、如图所示,一束自然光入射到方解石晶体上,其光轴垂直于纸面,已知方解石对 O 光的折射率 n0=1.658,对 e 光的折射率 ne=1.486。 (1)在图中标出哪一束是 O 光?哪一束是 e 光?并画出光矢量的振动方向。 (2)若方解石晶体的厚度 t=1.0cm,自然光入射角 i = 450,求 a、b 两束光的折射角。
大学物理第十章课后练习
02
基础练习题
力学基础
01
考察学生对力学基本概念、定理和公式的理解和应用能 力。
02
•·
03
质点和质点系问题:涉及牛顿第二定律的应用,包括分析 受力、确定加速度和运动轨迹等。
04
动量守恒和角动量守恒问题:考察学生对守恒定律的理解 和应用,如弹性碰撞和非弹性碰撞、行星运动等。
05
万有引力定律问题:涉及天体运动和地球重力场的分析, 如计算地球质量和地球同步卫星轨道等。
原子物理提高
01
总结词
理解原子结构的基本理论,掌握原子能级的计算方法。
02 03
详细描述
通过解决复杂原子结构问题,如能级计算、光谱分析等, 加深对玻尔理论、量子力学等原子物理基本理论的理解。 同时,通过解决具有多个未知数的问题,提高解决复杂问 题的能力。
示例题目
一束能量为E的单色光照射到氢原子上,求光电子的最大 动能和最小波长。
题目2:答案与解析
答案:C 解析:这道题考查了学生对动量守恒定律的掌握,通过分析碰撞前后系统 的动量关系,可以得出正确的选项。
提高练习题答案与解析
• 总结词:这些题目难度有所提升,需要学生灵活运用所学知识解决实际问题。
提高练习题答案与解析
01
题目1:答案与解析
02
答案:D
03
解析:这道题考查了学生对机械能守恒定律的理解,通过分析物体在 竖直平面内的圆周运动,可以得出重力势能和动能之间的转化关系。
光学提高
总结词
理解光学的基本原理,掌握光学 仪器的使用方法。
详细描述
示例题目
通过解决复杂光学问题,如干涉、 衍射、光谱分析等,加深对光的 波动性、光的干涉和衍射等光学 基本原理的理解。同时,通过解 决具有多个未知数的问题,提高 解决复杂问题的能力。
江苏专用2019版高考物理大一轮复习第10单元电磁感应作业手册2018051028
第10单元电磁感应课时作业(二十六)第26讲电磁感应现象、楞次定律时间/40分钟基础巩固1.[2017·江西师大附中、临川一中联考] 从奥斯特发现电流周围存在磁场后,法拉第坚信磁一定能生电.他使用如图K26-1所示的装置进行实验研究,以致经过了10年都没发现“磁生电”.主要原因是()图K26-1A.励磁线圈A中的电流较小,产生的磁场不够强B.励磁线圈A中的电流是恒定电流,不会产生磁场C.感应线圈B的匝数较少,产生的电流很小D.励磁线圈A中的电流是恒定电流,产生稳恒磁场2.(多选)[2017·昆明模拟] 用如图K26-2所示的实验装置研究电磁感应现象,下列说法正确的是()图K26-2A.当把磁铁N极向下插入线圈时,电流表指针发生偏转B.当把磁铁N极从线圈中拔出时,电流表指针不发生偏转C.保持磁铁在线圈中与线圈相对静止时,电流表指针不发生偏转D.若磁铁和线圈一起以同一速度向上运动,则电流表指针发生偏转3.某磁场的磁感线如图K26-3所示,有一铜线圈由A位置下落至B位置,在下落的过程中,自上往下看,线圈中感应电流的方向()图K26-3A.始终沿顺时针B.始终沿逆时针C.先沿顺时针再沿逆时针D.先沿逆时针再沿顺时针4.(多选)[2017·武汉调研] 如图K26-4所示,在两根竖直放置的平行长直导线M、N中通入大小、方向均相同的恒定电流,圆形导线框在图示位置,线框和两导线在同一竖直平面(纸面)内.下列说法正确的是()图K26-4A.若线框从图示位置由静止释放,则线框做直线运动B.若线框从图示位置由静止释放,则线框做曲线运动C.若线框沿着水平方向自右向左在两导线间匀速移动,则线框中感应电流一直沿逆时针方向D.若线框沿着水平方向自右向左在两导线间匀速移动,则线框中感应电流先沿逆时针、后沿顺时针方向5.[2017·闽粤大联考]如图K26-5所示,Ⅰ和Ⅱ是一对异名磁极,ab为放在其间的金属棒,ab和cd导线连成一个闭合回路.当ab棒向左运动时,cd导线受到向下的安培力,则由此可知()图K26-5A.d点电势高于c点电势B.Ⅰ是S极C.Ⅰ是N极D.ab棒受到向左的安培力6.(多选)如图K26-6所示,在一竖直平面内,三条平行导线串有两个电阻R1和R2,导体棒PQ与三条导线均接触良好.匀强磁场的方向垂直于纸面向里,导体棒的电阻可忽略.若导体棒向左加速运动,则()图K26-6A.流经R1的电流方向向上B.流经R2的电流方向向下C.流经R1的电流方向向下D.流经R2的电流方向向上技能提升7.[2017·北京海淀期末]如图K26-7所示,左侧闭合电路中的电流大小为I1,ab为一段长直导线;右侧平行金属导轨的左端连接有与ab平行的长直导线cd,在远离cd导线的右侧空间存在与导轨平面垂直的匀强磁场,在磁场区域放置垂直于导轨且与导轨接触良好的导体棒MN,当导体棒沿导轨匀速运动时,可在cd 上产生大小为I2的感应电流.已知I1>I2,不计匀强磁场对导线ab和cd的作用,用f1和f2分别表示导线cd对ab的安培力大小和ab对cd的安培力大小.下列说法中正确的是()图K26-7A.若MN向左运动,则ab与cd两导线相互吸引,f1=f2B.若MN向右运动,则ab与cd两导线相互吸引,f1=f2C.若MN向左运动,则ab与cd两导线相互吸引,f1>f2D.若MN向右运动,则ab与cd两导线相互吸引,f1>f28.(多选)[2017·昆明调研]如图K26-8所示,在一空心螺线管内部中点处悬挂一铜环.在电路接通的瞬间, 下列说法正确的是()图K26-8A.从左往右看,铜环中有逆时针方向的感应电流B.从左往右看,铜环中有顺时针方向的感应电流C.铜环有收缩的趋势D.铜环有扩张的趋势9.自从英国物理学家狄拉克提出磁单极子以来,寻找磁单极子一直是人类的一个追求.如图K26-9所示,设想一个磁N单极子从远处沿一个闭合金属线圈的轴线向右匀速通过,设从右向左观察时顺时针方向为电流的正方向,则与该线圈串联的仪表中记录到的线圈中感应电流的i-t图像是图K26-10中的()图K26-9图K26-1010.为了测量列车运行的速度和加速度的大小,可采用如图K26-11甲所示的装置,它由一块安装在列车车头底部的强磁体和埋设在轨道地面的一组导线圈及电流测量记录仪组成(测量记录仪未画出).当列车经过线圈上方时,线圈中产生的电流被记录下来,P、Q为接测量仪器的端口.若俯视轨道平面时磁场垂直于地面向下(如图乙所示),则在列车经过测量线圈的过程中,流经线圈的电流()图K26-11A.始终沿逆时针方向B.先沿逆时针方向,再沿顺时针方向C.先沿顺时针方向,再沿逆时针方向D.始终沿顺时针方向11.(多选)如图K26-12所示,倾角为α的固定斜面上放置着两条光滑的平行金属导轨,金属棒KN置于导轨上,在以ab和cd为边界的区域内存在磁感应强度为B的匀强磁场,磁场方向垂直于导轨平面向上.在cd左侧的无磁场区域cdPM内有一半径很小的金属圆环L,圆环与导轨在同一平面内.金属棒KN在重力作用下从磁场右边界ab处由静止开始沿斜面向下运动后,下列说法正确的是()图K26-12A.圆环L有收缩趋势B.圆环L有扩张趋势C.圆环内产生的感应电流变小D.圆环内产生的感应电流不变挑战自我12.如图K26-13所示,A为水平放置的胶木圆盘,在其侧面均匀分布着负电荷,在A的正上方用绝缘丝线悬挂一个金属圆环B,使B的环面水平且与圆盘面平行,其轴线与胶木盘A的轴线OO'重合.现使胶木盘A由静止开始绕其轴线OO'按箭头所示方向加速转动,则()图K26-13A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大13.(多选)如图K26-14所示,铁芯上有两个导线圈A和B.线圈A跟电源和开关S相连,LED(发光二极管, 具有单向导电性)M和N并联后接在线圈B两端.图中所有元件均正常,则()图K26-14A.S闭合瞬间,A中有感应电动势B.S断开瞬间,A中有感应电动势 C.S闭合瞬间,M亮一下,N不亮D.S断开瞬间,M和N二者均不亮课时作业(二十七)第27讲法拉第电磁感应定律、自感和涡流时间/40分钟基础巩固1.随着科技的不断发展,无线充电已经进入人们的视线.小到手表、手机,大到电脑、电动汽车,都已经实现了无线充电从理论研发到实际应用的转化.如图K27-1所示为某品牌的无线充电手机利用电磁感应方式充电的原理图.关于无线充电,下列说法中正确的是()图K27-1A.无线充电时手机接收线圈部分的工作原理是电流的磁效应B.只有将充电底座接到直流电源上才能对手机进行充电C.接收线圈中交变电流的频率与发射线圈中交变电流的频率相同D.只要有无线充电底座,所有手机都可以进行无线充电2.图K27-2中有A、B两个导线圈.线圈B连接一电阻R,要使流过电阻R的电流大小恒定,且方向由c点流经电阻R到d点,设线圈A中电流i从a点流入线圈的方向为正方向,则线圈A中的电流随时间变化的图像应为图K27-3中的()图K27-2图K27-33.(多选)如图K27-4所示,一导线弯成直径为d的半圆形闭合回路.虚线MN右侧有磁感应强度大小为B的匀强磁场,方向垂直于回路所在的平面.回路以速度v向右匀速进入磁场,直径CD始终与MN垂直.从D点到达边界开始到C点进入磁场为止,下列说法中正确的是()图K27-4A.感应电流的方向为逆时针方向B.CD段直导线始终不受安培力C.感应电动势的最大值E max=BdvD.感应电动势的平均值πBdv技能提升4.(多选)[2017·湖南株洲质检]用导线绕成一圆环,环内有一用同种导线折成的内接正方形线框,圆环与线框绝缘,如图K27-5所示.把它们放在磁感应强度为B的匀强磁场中,磁场方向垂直于圆环和线框所在平面(纸面)向里.当磁感应强度均匀减弱时()图K27-5A.圆环和线框中的电流方向都为顺时针方向B.圆环和线框中的电流方向都为逆时针方向C.圆环和线框中的电流大小之比为∶1D.圆环和线框中的电流大小之比为2∶15.(多选)有一半径为a且右端开小口的导体圆环和一长为2a的导体直杆,它们单位长度电阻均为R0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B.杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,如图K27-6所示.从圆环中心DO开始,杆的位置由θ确定,则()图K27-6A.θ=0时,杆产生的感应电动势为2BavB.θ= 时,杆产生的感应电动势为BavC.θ=0时,杆受的安培力大小为D.θ= 时,杆受的安培力大小为6.(多选)[2017·苏北三市联考]如图K27-7所示的电路中,自感线圈L的自感系数很大,电阻可忽略,D为理想二极管,L1、L2为两个小灯泡.下列说法正确的是()图K27-7A.当S闭合时,L1立即变亮,L2逐渐变亮B.当S闭合时,L1一直不亮,L2逐渐变亮C.当S由闭合断开时,L2立即熄灭D.当S由闭合断开时,L1突然变亮,然后逐渐变暗至熄灭7.如图K27-8所示,虚线MN表示甲、乙、丙三个相同正方形金属框的一条对称轴,金属框内均匀分布有界匀强磁场,磁感应强度随时间变化规律都满足B=kt,金属框按照图示方式处于磁场中,测得金属框甲、乙、丙中的感应电流分别为I甲、I乙、I丙,则下列判断正确的是()图K27-8A.I乙=2I甲,I丙=2I甲B.I乙=2I甲,I丙=0C.I乙=0,I丙=0D.I乙=I甲,I丙=I甲8.[2017·青岛质检]如图K27-9所示,虚线间有一垂直于纸面向里的匀强磁场,磁场宽度为L,磁感应强度大小为B.有总电阻为R的直角三角形导线框,两条直角边的边长分别为2L和L,在该线框以垂直于磁场边界的速度v匀速穿过磁场的过程中,下列说法正确的是()图K27-9A.线框中的感应电流方向始终不变B.线框中的感应电流一直在增大C.线框所受安培力方向始终相同D.当通过线框的磁通量最大时,线框中的感应电动势为零9.(1)如图K27-10甲所示,两根足够长的平行金属导轨间距L=0.3 m,在导轨间有垂直于纸面向里的匀强磁场,磁感应强度B1=0.5 T.一根直金属杆MN以v=2 m/s的速度向右匀速运动,杆MN始终与导轨垂直且接触良好.杆MN的电阻r1=1 Ω,导轨的电阻可忽略.求杆MN中产生的感应电动势E1.(2)如图乙所示,一个匝数n=100的圆形导线圈面积为S1=0.4 m2,电阻为r2=1 Ω.在线圈中存在面积S2=0.3 m2且垂直于线圈平面(指向纸外)的匀强磁场区域,磁感应强度B2随时间t变化的关系如图丙所示. 求圆形线圈中产生的感应电动势E2.(3)将一个R=2 Ω的电阻分别与图甲和图乙中的a、b端相连接,然后b端接地.以上两种情况中,哪种情况a端的电势较高?求出较高的电势φa.图K27-10挑战自我10.[2017·江苏卷]如图K27-11所示,两条相距d的平行金属导轨位于同一水平面内,其右端接一阻值为R的电阻.质量为m的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ的磁感应强度大小为B、方向竖直向下.当该磁场区域以速度v0匀速地向右扫过金属杆后,金属杆的速度变为v.导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN刚扫过金属杆时,杆中感应电流的大小l;(2)MN刚扫过金属杆时,杆的加速度大小a;(3)PQ刚要离开金属杆时,感应电流的功率P.图K27-11专题训练(十)专题10电磁感应中的电路和图像问题时间/40分钟基础巩固1.如图Z10-1所示,竖直平面内有一金属环,其半径为a,总电阻为2r(金属环粗细均匀),磁感应强度大小为B0的匀强磁场垂直于环面,在环的最高点A处用铰链连接长度为2a、电阻为r的导体棒AB.AB由水平位置紧贴环面摆下,当摆到竖直位置时,B点的线速度为v,则此时A、B两端的电压为()图Z10-1A.B0avC.B0avD.B0av2.(多选)[2017·湖南株洲联考]如图Z10-2甲所示,一个刚性圆形导线圈与电阻R构成闭合回路,线圈平面与所在处的匀强磁场方向垂直,磁场的磁感应强度B随时间t的变化规律如图乙所示.关于线圈中产生的感应电动势e、电阻R消耗的功率P随时间t变化的图像,图Z10-3中可能正确的是()图Z10-2图Z10-33.[2018·河北正定中学月考]在如图Z10-4甲所示的虚线框内有匀强磁场,设图示磁场方向为正,磁感应强度随时间的变化规律如图乙所示.边长为L、电阻为R的正方形均匀导线框abcd有一半处于磁场中,磁场方向垂直于线框平面,此时线框的发热功率为P,则()图Z10-4A.线框中的感应电流方向会发生改变B.cd边所受的安培力大小不变,方向改变C.线框中的感应电动势为D.线框中的电流大小为4.(多选)如图Z10-5甲所示,一个半径为r1、匝数为n、电阻为R的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,导线的电阻不计.在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场(图中未画出),磁感应强度B随时间t变化的图像如图乙所示,图线在横、纵坐标轴的截距分别为t0和B0.0~t1时间内,下列分析正确的是()图Z10-5A.R1中电流的方向由a到bB.电流的大小为C.线圈两端的电压为D.通过电阻R1的电荷量为技能提升5.一个匀强磁场的边界是MN,MN左侧无磁场,右侧是范围足够大的匀强磁场区域,如图Z10-6甲所示.现有一个金属线框沿ab(ab⊥MN)方向以恒定速度从MN左侧垂直进入匀强磁场区域,线框中的电流随时间变化的I-t图像如图乙所示,则线框可能是图Z10-7中的()图Z10-6图Z10-76.光滑的平行金属导轨所在平面与水平面的夹角为θ,导轨上端接一阻值为R的电阻,导轨所在空间有垂直于导轨平面向上的匀强磁场,有一质量为m、电阻为r的金属棒ab垂直放在导轨上且与导轨保持良好接触,其余部分电阻不计.要使金属棒始终处于静止状态,则磁场随时间变化的图像可能是图Z10-8中的()图Z10-87.(多选)如图Z10-9所示,导体棒沿两平行金属导轨从图中位置以速度v向右匀速通过以正方形abcd为边界的磁场区域,磁场方向均垂直于导轨平面,ac垂直于导轨且平行于导体棒,ac右侧的磁感应强度是左侧的2倍且方向与左侧相反,导轨和导体棒的电阻均不计.关于导体棒中感应电流和所受安培力随时间变化的图像(规定电流由M经R到N为正方向,安培力向左为正方向),可能正确的是图Z10-10中的()图Z10-9图Z10-108.[2017·深圳一模]一根阻值为12 Ω的金属导线绕成如图Z10-11甲所示形状的闭合回路,大正方形边长为0.4 m,小正方形边长为0.2 m,共10匝,放在粗糙的水平桌面上,两正方形对角线间存在竖直向下的匀强磁场,磁感应强度随时间变化的规律如图乙所示,整个过程中线框始终未动.求:(1)线框中产生的感应电动势;(2)线框的电功率;(3)线框在第1 s末受到的摩擦力大小.图Z10-11挑战自我9.[2017·唐山模拟]在同一水平面上的光滑平行金属导轨P、Q相距l=1 m,导轨左端接有如图Z10-12 所示的电路.其中水平放置的平行板电容器两极板M、N相距d=10 mm,定值电阻R1=R2=12 Ω,R3=2 Ω,金属棒ab的电阻r=2 Ω,其他电阻不计.磁感应强度B=0.5 T的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间的质量m=1×10-14 kg、电荷量q=-1×10-14 C的微粒恰好静止不动.g取10 m/s2.在整个运动过程中金属棒与导轨始终保持垂直并接触良好,且速度恒定.试求: (1)匀强磁场的方向; (2)ab棒两端的电压;(3)金属棒ab运动的速度大小.图Z10-1212专题训练(十一)专题11涉及电磁感应的力电综合问题时间/40分钟基础巩固1.如图Z11-1所示,用横截面积之比为4∶1的铜丝做成边长分别为L和2L的两只闭合线框a和b,以相同的速度从磁感应强度为B的匀强磁场区域中将a和b匀速拉到磁场外,若外力对线框做的功分别为W a、W b,则W a∶W b为()图Z11-1A.1∶4B.1∶2C.1∶1D.不能确定2.(多选)两根足够长的光滑平行金属导轨竖直放置,间距为L,顶端接阻值为R的电阻.质量为m、电阻为r的金属棒在磁场上边界上方某处由静止释放,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图Z11-2所示,不计导轨的电阻,重力加速度为g,则()图Z11-2A.金属棒在磁场中运动时,流过电阻R的电流方向为a→bB.金属棒在磁场中运动的速度为v时,金属棒所受的安培力大小为C.金属棒的最大速度为D.金属棒以稳定的速度运动时,电阻R的热功率为R3.(多选)[2017·南昌三校联考]在如图Z11-3所示的倾角为θ的光滑斜面上存在着两个磁感应强度大小均为B的匀强磁场区域,区域Ⅰ的磁场方向垂直于斜面向上,区域Ⅱ的磁场方向垂直于斜面向下,磁场宽度HP及PN均为L.一个质量为m、电阻为R、边长为L的正方形导线框由静止开始沿斜面下滑,t1时刻ab 边刚好越过GH进入磁场区域Ⅰ,此时导线框恰好以速度v1做匀速直线运动;t2时刻ab边下滑到JP与MN的中间位置,此时导线框又恰好以速度v2做匀速直线运动.重力加速度为g.下列说法中正确的是()图Z11-3A.当ab边刚越过JP时,导线框的加速度大小为a=g sin θB.导线框两次做匀速直线运动的速度之比v1∶v2=4∶1C.从t1时刻到t2时刻的过程中,导线框克服安培力做的功等于重力势能的减少量D.从t1时刻到t2时刻的过程中,有的机械能转化为电能4.(多选)[2017·贵州黔南州三校联考]如图Z11-4所示,竖直放置的光滑平行金属导轨上端接入一定值电阻R,C1和C2是半径都为a的两圆形磁场区域,两区域内的磁场方向均垂直于导轨平面向外,区域C1中磁场的磁感应强度随时间按B1=b+kt(k>0)变化,C2中磁场的磁感应强度恒为B2.一质量为m、电阻为r、长度为L的金属杆AB穿过区域C2的圆心垂直地跨放在两导轨上,且与导轨接触良好,并恰能保持静止,重力加速度为g,则()图Z11-4A.通过金属杆的电流大小为B.通过金属杆的电流方向为从B到AC.定值电阻的阻值为R=-rD.整个电路中的热功率P=5.[2018·辽宁实验中学月考]如图Z11-5所示,相距为d的两条水平虚线之间是方向水平向里的匀强磁场,磁感应强度为B.正方形金属线圈abcd边长为L(L<d),质量为m,电阻为R.将线圈在磁场上边界上方h 高处由静止释放,cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,则线圈穿过磁场(从cd边刚进入磁场起一直到ab边离开磁场为止)的过程中(重力加速度为g) ()图Z11-5A.感应电流所做的功为mgdB.感应电流所做的功为mg(d-L)C.线圈的最小速度一定是2D.线圈的最小速度可能为技能提升6.[2017·南昌三校联考]如图Z11-6所示,空间分布着水平方向的匀强磁场,磁场区域的水平宽度d=0.4 m,竖直方向足够长,磁感应强度B=0.5 T.正方形导线框PQMN边长L=0.4 m,质量m=0.2 kg,电阻R=0.1 Ω,开始时放在光滑绝缘水平板上“Ⅰ”位置.现用一水平向右的恒力F=0.8 N 拉线框,使其向右穿过磁场区域,最后到达“Ⅱ”位置(MN边恰好出磁场).已知线框平面在运动中始终保持在竖直平面内,PQ边刚进入磁场时线框恰好做匀速运动,g取10 m/s2.试求:(1)线框进入磁场前运动的距离D;(2)上述整个过程中线框内产生的焦耳热;(3)线框进入磁场过程中通过其某一截面的电荷量.图Z11-67.如图Z11-7所示,竖直放置的两光滑平行金属导轨置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b垂直放置在导轨上且与导轨接触良好,可自由滑动.先固定a,释放b,当b的速度达到10 m/s时,再释放a,经过1 s后,a的速度达到12 m/s,则:(g取10 m/s2)(1)此时b的速度是多大?(2)假若导轨很长,试分析a、b棒最后的运动状态.图Z11-7挑战自我8.如图Z11-8所示,宽度为L的光滑平行金属导轨左端是半径为r1的四分之一圆弧导轨,右端是半径为r2 的半圆导轨,中部是与它们相切的水平导轨.水平导轨所在的区域有磁感应强度为B、方向竖直向上的匀强磁场.一根质量为m的金属杆a置于水平导轨上,另一根质量为M的金属杆b由静止开始自左端导轨最高点滑下,当b滑至水平导轨某位置时,a滑到右端半圆导轨最高点(b始终运动且a、b未相撞),并且a在最高点对导轨的压力大小为mg(g为重力加速度),此过程中通过a的电荷量为q.已知a、b杆的电阻分别为R1、R2,其余部分电阻不计.在b由静止释放到a运动至右端半圆导轨最高点过程中,a、b均始终与导轨垂直且接触良好,求:(1)b在水平导轨上运动时的最大加速度;(2)上述过程中系统产生的焦耳热;(3)a刚到达右端半圆导轨最低点时b的速度大小.图Z11-8教师详解(作业手册)课时作业(二十六)1.D[解析] 励磁线圈A中的电流是恒定电流,产生稳恒磁场,穿过线圈B的磁通量不发生变化,不产生感应电流,D正确.2.AC[解析] 当把磁铁N极向下插入线圈时,穿过线圈的磁通量发生变化,故线圈中产生感应电流,电流表指针发生偏转,选项A正确;当把磁铁N极从线圈中拔出时,线圈中也会产生感应电流,故选项B错误;保持磁铁在线圈中与线圈相对静止时,穿过线圈的磁通量不变,故无感应电流产生,所以电流表指针不发生偏转,选项C正确;若磁铁和线圈一起以同一速度向上运动,则线圈与磁铁没有相对运动,故穿过线圈的磁通量也不变,电路中无感应电流,电流表指针不发生偏转,选项D错误.3.C[解析] 线圈由A位置下落至O位置的过程中,向上的磁通量增大,由O位置下落至B位置的过程中,向上的磁通量减小,根据楞次定律可知线圈中感应电流的方向(自上往下看)先沿顺时针后沿逆时针,故选项C正确.4.AC[解析] 线框从图示位置释放后,先在重力作用下向下运动,穿过线框的磁通量不变,故不产生感应电流,此后一直只受到重力,因此线框做直线运动,A正确,B错误;线框自右向左移动时,穿过线框的磁通量先向外减小,再向里增加,根据楞次定律可知线框中感应电流一直沿逆时针方向,C正确,D错误.5.B[解析] cd导线受到的安培力向下,由左手定则可知,cd导线中电流方向是由c指向d,所以c点的电势高于d点的电势,故A错误;结合A的分析可知,ab棒中的电流由b流向a,ab棒向左运动时,由右手定则可知,ab棒所处位置磁场方向竖直向上,则Ⅰ是S极,Ⅱ是N极,故B正确,C错误;根据楞次定律可知ab棒受到向右的安培力,故D错误.6.AD[解析] 导体棒向左加速运动时,由右手定则可判断出,导体棒PQ中感应电流的方向从P到Q,PQ上半部分与R1构成闭合回路,流经R1的电流方向向上,选项A正确,选项C错误.PQ下半部分与R2构成闭合回路,流经R2的电流方向向上,选项D正确,选项B错误.7.B[解析] 导体棒MN向左运动时,由右手定则可知,感应电流方向为MNdcM,而ab中的电流是由a到b 的,即ab、cd中电流方向相反,则两导线相互排斥,故选项A、C错误;MN向右运动时,由右手定则可知,cd中的感应电流由c到d,而ab中的电流仍是由a到b的,故两导线相互吸引,虽然两导线中的电流不相等,但是根据力的作用是相互的规律可知,这两个力大小相等,故选项B正确,选项D错误.8.BC[解析] 由楞次定律可知,电路接通的瞬间,螺线管中的电流从无到有,穿过铜环的磁通量向左增大,从左往右看,铜环中产生顺时针方向的感应电流,铜环有收缩的趋势,选项A、D错误,选项B、C正确.。
华东理工大学2020版大学物理(下)习题册答案
解:设电子在无穷远处初动能为 Ek ,0 点电子动能 0
R2
A e(U 0 U ) EK EK
R1
U 0
dq R2 2rdr 4 0 r R1 4 0 r
2 0 (R2 R1 )
EK
eU 0
e 2 0
(R2
R1 )
17、一电偶极子原来与均匀电场平行,将它转到与电场反平行时,外力作功为 A,则当 此电偶极子与场强成 45角时,此电偶极子所受的力矩为多少?
0
r R1
q1 0
E1 0
R1 r R2
q2 1h
E2
1 2 0r
r R2
q3 (1 2 )h
E3
1 2 2 0r
(2) E1 和 E2 不变, E3 0
9、一厚度为 d 的无限大平板,均匀带电,体电荷密度 为 ,求平板体内、外场强的分布,并以其对称面为 坐标原点作出 E x 的分布曲线。
解:设内球带电量为 q 内,依据题意可知电场分布
0
q内
E
4 0q内
0
r2 Q
40r 2
r R1 R1 r R2 R2 r R3 r R3
U
R2
R1
q内 40
r
2
dr
R 3
q内 Q 40 r 2
dr
q内 40
面,q 在该平面的轴线上的 A 点处.求通过此圆平面的 R
电通量。
O
解法一:以 A 为中心,r 为半径作一球面,则通过圆平
面的电通量与通过以圆平面为底的球冠电通量相等。
设球面积 S0 4r 2 , 通量
q 0 0
球冠面积 S 2r(r r c o s) 通量
r A q
华东理工大学大学物理作业答案
第十七章 量子物理基础1、 某黑体在某一温度时,辐射本领为5.7W/cm 2,试求这一辐射本领具有的峰值的波长λm ?解:根据斯忒藩定律 )K m J 1067.5(T )T (E 3284⋅⋅⨯=σσ=-得 4)T (E T σ= 再由维恩位移定律 )K m 10898.2b ( b T 3m ⋅⨯==λ- m 1089.21067.5107.510898.2)T (E bTb68434m --⨯=⨯⨯⨯=σ==λ2、在天文学中,常用斯特藩—玻尔兹曼定律确定恒星半径。
已知某恒星到达地球的每单位面积上的辐射能为28m /W 102.1-⨯,恒星离地球距离为m 103.417⨯,表面温度为 5200 K 。
若恒星辐射与黑体相似,求恒星的半径。
解:对应于半径为m 103.417⨯的球面恒星发出的总的能量 21R 4E W π⋅= 则恒星表面单位面积上所发出能量E 0为22122120rR E r 4R 4E r 4WE =ππ=π= (1)由斯忒藩定律 40T E σ= (2) 联立(1)、(2)式得 m 103.75200103.41067.5102.1T R E r 92178821⨯=⨯⨯⨯=σ=--3、 绝对黑体的总发射本领为原来的16倍。
求其发射的峰值波长λm 为原来的几倍? 解:设原总发射本领为E 0,温度T 0,峰值波长0λ,则由斯忒藩-波耳兹曼定律可得 4040T 16T E 16E σ=σ==21T T 161)T T (040==∴又 由位移定律 b T m =λ可得 21T T 00m ==λλ∴4、从铝中移出一个电子需要4.2eV 的能量,今有波长为200nm 的光投射到铝表面上,问:(1)由此发射出来的光电子的最大动能为多少? (2)遏止电势差为多大? (3)铝的截止波长有多大? 解:由爱因斯坦方程 A E h k +=ν(1)eV 01.22.4106.1100.21031063.6A hc A h E 197834k =-⨯⨯⨯⨯⨯⨯=-λ=-ν=--- (2)由光电效应的实验规律得0k eU E = (U 0为遏止电势差)V 01.2101.2e E U K 0===(3)00hch A λ=ν= m 10958.2106.12.41031063.6A hc 7198340---⨯=⨯⨯⨯⨯⨯==λ∴5、 以波长为λ=410nm 的单色光照射某一光电池,产生的电子的最大动能E k =1.0eV ,求能使该光电池产生电子的单色光的最大波长是多少? 解:爱因斯坦光电效应方程,A E h K +=ν λ=νh 得)1(A E hcK +=λ按题意最大波长时满足 0E K = 得)2(A hc =λ则(1)、(2)得hcE 11K 0=λ-λ 即 6348197K 01064.11063.6103106.1101.41hc E 11⨯=⨯⨯⨯⨯-⨯=-λ=λ--- 故最大波长 nm 7.6090=λ6、一实验用光电管的阴极是铜的(铜的逸出功为4.47eV )。
物化课后习题,第10章,化学动力学
第八章 化学动力学* ——课后习题解答难度级别:基础★,基础2★,综合3★,综合4★,超纲5★关于作业:公式有必要牢记,但是平时作业时最好是自己动手推导出比较简单的公式,而不是直接翻书,找到公式,套公式,这样的解题方式不值得提倡。
1.(基础★)气体反应SO 2Cl 2 = SO 2 + Cl 2为一级反应。
在593K 时的k = ×10-5 s -1。
求半衰期和反应2h 后分解的百分比。
解:1/25ln 20.693315002.2010t s k -===⨯(计算有点误差31507 s ), 5100ln2.21023600 1.58410c kt c x--==⨯⨯⨯=⨯- 00001 1.171611.1716100%14.65%1.17161c x x c x c c -===⨯=--,》2.(基础★)镭原子蜕变成一个Rn 和一个α粒子。
它的半衰期是1622年,反应是一级。
问1g 无水溴化镭RaBr 2在10年内能放出多少RnRn 的量用0℃,标准压力下的体积(cm 3)来表示。
解:411/2ln 2/0.692/1622 4.27310k t a --===⨯,4300ln4.2731010 4.27310c kt c x--==⨯⨯=⨯-, 00 1.00428c c x∴=- 1g 无水溴化镭的物质的量为10.00259386mol =,也就是溴离子物质的量 在同一个密闭的容器中50.002591.00428 1.105100.00259x mol x-=⇒=⨯-故1g 无水溴化镭在10年内能放出在0℃,标准大气压下Rn 的体积为V = ×10-5××103 = 0.248 cm 3【讨论】(1)元素周期表应该作为一个常用的工具备在身边,Ra 的原子量为226,溴的原子量为80;(2)单位是灵活的,可以根据具体的情况而定,目的则是为了方便计算;(3)无水溴化镭RaBr 2不是气体这样在浓度表达上有问题吗…4.(基础★★)某二级反应在a = b 时,经过500s 原始物作用了20%,问原始物作用60%时须经过多少马鞍山,尹振兴,2007,时间 解:000000.20.2(0.2)5000.8500c k c c c c ==-⨯作用60%需用的时间为000000.60.2(0.6)0.8500c kt t c c c c ==-⨯, ∴t = 000.85000.630000.40.2c c ⨯⨯=s【讨论】(1)有a = b 这样的化学反应吗除了原子衰变/蜕变(2)这个题目有什么实际意义(3)建议在解题的过程中自己动手推导二级反应的c-t 关系式,并且最好在开始就写出二级反应的c-t 公式来。
物理化学(上)(华东理工大学)智慧树知到课后章节答案2023年下华东理工大学
物理化学(上)(华东理工大学)智慧树知到课后章节答案2023年下华东理工大学华东理工大学绪论单元测试1.18世纪中叶,俄国的罗蒙诺索夫首次提出了物理化学这一名词。
答案:对2.1887年,德国的奥斯特瓦尔德在莱比锡大学首开物理化学讲座,并与荷兰的范特霍夫创办了《物理化学杂志》,这是物理化学学科形成的标志。
答案:对3.范特霍夫和奥斯特瓦尔德分别于1901年和1908年获得诺贝尔化学奖。
答案:错4.物理化学运用物理学、数学等基础科学的理论和实验方法,研究化学变化包括相变化和pVT变化中的平衡规律和速率规律,以及这些规律与物质微观结构的关系。
答案:对5.物理化学具体要研究哪两板块?答案:平衡规律;速率规律第一章测试1.答案:-1.52.答案:A3.答案:C4.物质的标准摩尔蒸发焓随温度变化而变化,当达到临界温度时,其值()0。
答案:=5.答案:B6.答案:C7.物质A和B的对比温度和对比压力均相等,按对应状态原理,则它们的()也相等。
答案:对比体积8.范德华气体分子的微观模型为()。
答案:只具有吸引力的硬球9.压力趋近于零时,物质在任何温度下的压缩因子都趋近于()。
答案:110.答案:C第二章测试1.答案:A2.答案:C3.实际气体通过节流装置,其温度()降低。
答案:不一定4.气体经节流膨胀后,结论一定正确的是()。
答案:焓不变5.若N2(g)和O2(g)都视为理想气体,等温等压下,1 molN2(g)和1 molO2(g)混合后,不发生变化的一组热力学性质是()。
答案:U,H,V6.将1mol氮气和1mol氧气恒温恒压混合,则混合过程的熵变()。
答案:大于零7.对于均相封闭系统中的一定量的理想气体,有(1)对外做功,同时放热、(2)体积不变,而温度上升,并且是绝热过程,无非体积功。
(3)恒压下绝热膨胀(4)恒温下绝热膨胀。
则可能发生的过程是()。
答案:(1)(4)8.理想气体CO2(g)经绝热可逆膨胀从初态变化到终态,则()。
大学物理下册第10章课后题答案
习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。
10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M 移到不带电的导体N 附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N 的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N ,或导体N 的负电荷入地。
故正确答案为(A )。
10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d 。
设无穷远 处为零电势,则在导体球球心O 点有[ ] (A) 0E =,04πε=q V d(B) 204πε=qE d ,04πε=qV d(C) 0E =,0V = (D) 204πε=q E d , 04πε=qV R答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E =。
导体球球心O 点的电势为点电荷q 及感应电荷所产生的电势叠加。
华东理工大学《大学物理(上)A、B》第二学期课程期中考试试卷
华东理工大学2010—2011学年第二学期《大学物理上A 、B 》课程期中考试试卷 2011. 4开课学院 理学院 专业 10级理工科各专业 考试形式 闭卷 所需时间 120 分钟考生姓名_________学号________ __ 班级 任课老师一、选择题(每题3分 共30分)1、一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ ]2、质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为 (A) m v . (B)m v .(C) m v . (D) 2m v .[ ] 3、一质量为M 的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将(A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. [ ]234、 A 、B 二弹簧的劲度系数分别为k A 和k B ,其质量均忽略不计.今将二弹簧连接起来并竖直悬挂,如图所示.当系统静止时,二弹簧的弹性势能E P A 与E PB 之比为(A) BA PB PA k kE E =(B)22BAPB PA k k E E = (C)ABPB PA k k E E =(D) 22AB PB PA k k E E = [ ]5、一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m 和M 组成的系统动量守恒. (B) 由m 和M 组成的系统机械能守恒.(C) 由m 、M 和地球组成的系统机械能守恒.(D) M 对m 的正压力恒不作功.[ ]6、一人造地球卫星到地球中心O 的最大距离和最小距离分别是R A 和R B .设卫星对应的角动量分别是L A 、L B ,动能分别是E KA 、E KB ,则应有(A) L B > L A ,E KA > E KB .(B) L B > L A ,E KA = E KB . (C) L B = L A ,E KA = E KB . (D) L B < L A ,E KA = E KB .(E) L B = L A ,E KA < E KB . [ ]7、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零. 在上述说法中, (A) 只有(1)是正确的. (B) (1) 、(2)正确,(3) 、(4) 错误. (C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]8、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω(A) 必然增大. (B) 必然减少.(C) 不会改变.(D) 如何变化,不能确定. [ ]9、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 31ω0. (B) ()3/1 ω0.(C) 3 ω0. (D) 3 ω0. [ ]10、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ ]二、填充题(共50分)11、小球A ,自地球的北极点以速度0v在质量为M 、半径为R 的地球表面水平切向向右飞出,如图所示,地心参考系中轴OO '与0v平行,小球A 的运动轨道与轴OO '相交于距O为3R 的C 点.不考虑空气阻力,小球A 在C 点的速度v与0v 之间的夹角θ = ,C 点的曲率半径 .12、一物体在某瞬时,以初速度0v从某点开始运动,在∆ t 时间内,经一长度为S 的曲线路径后,又回到出发点,此时速度为0-v,则在这段时间内: (1) 物体的平均速率是 ; (2) 物体的平均加速度是 .13、质量m =40 kg 的箱子放在卡车的车厢底板上,已知箱子与底板之间的静摩擦系数为μs =0.40,滑动摩擦系数为μk =0.25,试分别写出在下列情况下,作用在箱子上的摩擦力的大小和方向.(1)卡车以a = 2 m/s 2的加速度行驶,f =____________,方向__________. (2)卡车以a = -5 m/s 2的加速度急刹车,f=____________,方向_________14、一块水平木板上放一砝码,砝码的质量m =0.2 kg ,手扶木板保持水平,托着砝码使之在竖直平面内做半径R =0.5 m 的匀速率圆周运动,速率v =1 m/s .当砝码与木板一起运动到图示位置时,砝码受到木板的摩擦力为_____________,砝码受到木板的支持力为________________.15、有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船和人的总质量为250 kg , 第二艘船的总质量为500 kg,水的阻力不计.现在站在第一艘船上的人用F = 50 N 的水平力来拉绳子,则5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______.16、光滑水平面上有一质量为m 的物体,在恒力F作用下由静止开始运动,则在时间t 内,力F 做的功为____________.设一观察者B 相对地面以恒定的速度0v 运动,0v的方向与F 方向相反,则他测出力F在同一时间t 内做的功为______________.17、一质量为m 的质点在指向圆心的平方反比力F =-k /r 2的作用下,作半径为r 的圆周运动.此质点的速度v =__________.若取距圆心无穷远处为势能零点,它的机械能 E =________.18、质量m 的小球,以水平速度v 0与光滑桌面上质量为M 的静止斜劈作完全弹性碰撞后竖直弹起,则碰后斜劈的运动速度值v =_________________;小球上升的高度h =____________________。
大学物理活页作业(马文蔚主编)答案
1.C
2.D
3.D
4.C
5.18J;6m/s
6.5/3
7.解:摩擦力 f m g
由功能原理
f
( x1
x2 ) 0
1 2
kx12
1 质点运动学单元练习一答案—8
解得
kx12
.
2m g(x1 x2 )
8.解:根据牛顿运动定律
v2 mg cos FN m R
由能量守恒定律
dr
2i
2tj
( SI )
a
dv
2 j
( SI )
dt
dt
v2 2i 4 j (m / s)
a2 2 j
(m / s2 )
8.解:
1 质点运动学单元练习一答案—1
1.质点运动学单元练习(一)答案
1.B 2.D
3.D
4.B
5.3.0m;5.0m(提示:首先分析质点的运动规律,在 t<2.0s 时质点沿 x 轴正方 向运动;在 t=2.0s 时质点的速率为零;,在 t>2.0s 时质点沿 x 轴反方向运动;由位秱 和路程的定义可以求得答案。)
Ep
1 2
mv12
1 2
m2v
2 2
1 2
(m1
m2 )v 2
②
联立①、②得
Ep
1 2
m1m2
(v 1
v2 )2
/(m1
m2 )
10.解:(1)由题给条件 m、M 系统水平方向动量守恒,m、M、地系统机械能守 恒.
物理化学智慧树知到答案章节测试2023年华东理工大学
绪论单元测试1.物理化学是研究速率规律和()的平衡。
A:前3个选项都正确B:相变化C:pVT变化sD:化学变化答案:A第一章测试1.下列叙述中不属于状态函数特征的是()。
A:系统状态确定后,状态函数的值也确定B:系统变化时,状态函数的改变值仅由系统的始、终态决定而与过程无关C:状态函数均有加和性答案:C2.在使用物质的量时,必须指明物质的基本单元,以下不正确的是()。
A:1 mol ( )B:1 mol ( )C:1 mol铜离子答案:C3.400K、101325Pa下,1mol气体的体积为22.85 dm3,则气体的压缩因子=()。
A:0.6962B:1C:1.2532答案:A4.下图为某物质的压缩因子图,图中标有三条等温线,则三条线上注明的温度T1、T2、T3,其大小关系是()。
A:B:C:答案:A5.甲、乙、丙三种物质的临界温度分别为343.05K、373.65K和405.65K,其中最易液化的气体为()。
A:乙物质B:甲物质C:丙物质答案:C6.范德华气体分子的微观模型为()。
A:只具有吸引力的软球B:只具有吸引力的硬球C:不具有吸引力的硬球答案:B7.在一定温度和压力下求解范德华方程,得到三个摩尔体积的值:0.0523、0.2534和2.9523 ,其中饱和液体的摩尔体积为()。
A:B:C:答案:B8.物质A和B的对比温度相等、对比压力也相等,按对应状态原理,以下结论不一定正确的是()。
A:它们的压缩因子相同B:它们的对比体积相同C:它们的体积相同答案:C9.一隔板将一刚性绝热容器分为左右两侧,左室气体的压力大于右室气体的压力。
现将隔板抽去,左、右气体的压力达到平衡。
若以全部气体作为系统,则()。
A:W< 0、Q >0、 =0B:W=0、Q =0、 =0C:W>0、Q < 0、 =0答案:B10.物质的标准摩尔蒸发焓为,标准摩尔熔化焓为,标准摩尔升华焓为,三者间的关系为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
M
× B cos 北
y
Pm
B
z
支点
x
重力矩
M mgR
N I R 2 B cos m g R
mg I cos N RB
M
mg
作业提示: 11
y
i面电流密度
B
0
2
B1
i
0 Ir B in 1)圆柱轴线上的磁感应强度B0 2 R 2
B out
0I 2 r
大圆柱电流在轴线O上产生的磁场为零 小圆柱电流在轴线O上产生的磁感应强度为 即
0 I 2 a
O
B0
0 IR2
2 2
2a R1 R2
2
Байду номын сангаас
2)空心部分轴线上磁感应强度B0' 小圆柱电流在自身轴线上产生磁场为零 大圆柱电流在O'出产生的磁感应强度为
• 作业3
I
I1 I I
2
B2 0
I
2
[作业4]无限长半圆柱面R金属薄片有电流I。求BP d y 解: 积分元电流 d I = π I I 0 I d . . . dI 0 dI . dB= . = . 22R 2R . . . d x 由对称性 B y = 0 . R . /2 P dB B = Bx =2 d B cos 0 0 I /2 0 I = = 2 cos d R P 2R 0
O
I
a
R2
R1
B0
2 R1 R 2
2
0 Ia
2
在任意点位置M点产生的B?
B 2 ( O ' M I B
小 M
作业12(选做)
)
2 2 2
0
I
I ( O ' M ( R 21 R
) )
I ( O ' M ) 2 ( R 21 R 2 2 )
B0
3B1
0
2
i B 0 3B1
B0
B
B0
0
2
i B1
B
B 0 nI 2
.........
均匀带刚性杆以匀绕O旋转, 求(1)B0(2)pm
O
a r
A
2 a b 2 [(a b) 3 a 3 ] pm a r dr 6 2
0 dI (2) 0 dB0 dr 4r 2r 2 dr 0 a b a b 0 b B0 a dr ln B 2r 2 4 a (2) dpm sdI r 2 dr
dI ndq dr 解:(1) 2
R
O
)
I
a
2 2
R1
B
大 M
0
j( O M ) 2
18、总匝数为N的均匀密绕平面螺旋线圈,半径由r 绕至R,通有电流I,放在磁感应强度 为B的均匀磁场中,磁场方向与线圈平面平行,如图 所示。试求: (1)平面线圈的磁矩; (2)线圈在该位置所受到的磁力矩; (3)线圈在磁力距作用下转到平衡位置过程中,磁 力矩所做的功。
NI d ( R r )
A
M d
P m B s in d
2
M
× B cos 北
y
Pm
B
z
x
作业提示: 16 N匝圆线圈,从上往下看: 电流顺时针方向!
地磁场方向:
地磁场方向沿水平方向投影:
B cos
线圈磁矩:
Pm N I R
2
水平方向
B
Pm =N I Sn
Pm NIS NI R 2 M Pm B
B
O
R
r
作业提示: 18 在距中心距离 ,宽度为
环线圈的匝数
的细圆 d
N dN d ( R r )
y
O
B
R
x
r
d Pm I 2 d N
z
Pm
R r
d Pm
M Pm B
B
A I (2 1 )
2
I1 0
2
I2 ?
dI2 B dI B
0
j ( OM O' M ) j OO'
)
方向:
B
小 M
0
j( O ' M 2
B 2 ( O M ) 0 I1 I1 B I ( O M 2 ) ( R 21 R 2 2 )
O
M
R2
大 M
0I( O M )
2( R
2 1
作业提示:5
dB
4 ( a b x )
dB
0 dI
O
I
b
I dI dx a
a
x
I
O
p
x
P
B p 2B
x
p
y
dB
x
z
16. 水平桌面上放置一个绕有N匝的园线圈,其半径 为R,质量为m ,通有电流I,由上往下看,电流为顺 时针方向。若已知该处地磁场的磁感应强度为B, 其方向为向北且偏向下,与水平方向成一倾角θ (如图所示)。问当电流I超过多大时,线圈可从 桌面上翘起?翘起的是那一侧?