生化生物化学重点知识总结
生化考研知识点归纳总结
生化考研知识点归纳总结一、细胞生物化学1. 细胞的结构与功能细胞是生命的基本单位,包括原核细胞和真核细胞。
原核细胞包括细菌和蓝藻等,真核细胞包括植物、动物和真菌细胞。
细胞有细胞膜、细胞质、细胞核、线粒体、内质网、高尔基体、溶酶体等多个部分组成。
2. 细胞膜细胞膜是细胞的保护膜,内外有不同的脂类和蛋白质组成。
蛋白质有通道蛋白、受体蛋白、酶蛋白和结构蛋白等。
细胞膜的重要功能包括细胞识别、物质的运输、细胞信号传导等。
3. 蛋白质合成、折叠和降解蛋白质的合成在细胞质中进行,包括转录和翻译两个过程。
新合成的蛋白质需要经过正确的折叠,否则会形成蛋白质聚集,造成细胞内质的损害。
细胞中有多种蛋白质降解途径,主要包括泛素-蛋白酶体途径和溶酶体-体液途径。
4. 细胞核细胞核包括染色质、核仁和核膜等部分。
染色体是DNA和蛋白质的复合物,其中DNA包括基因和非编码序列。
5. 线粒体和叶绿体线粒体是细胞内的能量生产中心,通过氧化磷酸化产生ATP。
叶绿体是植物细胞的特有细胞器,通过光合作用产生ATP和还原能量。
6. 细胞信号传导细胞中的信号传导包括内分泌传导、神经传导和细胞间相互作用等多种方式,主要通过蛋白质、核酸和小分子等信号分子的相互作用实现。
7. 细胞凋亡和坏死细胞凋亡是细胞自身程序性死亡,表现为细胞凋亡因子的释放和内质网的应激等。
细胞坏死是外因导致的异常细胞死亡,与炎症反应和细胞内环境的改变相关。
二、生物大分子结构与功能1. 蛋白质的结构和功能蛋白质包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶的催化作用、结构蛋白的机械支持、激素的信号传导等。
2. 核酸的结构和功能核酸包括DNA和RNA,DNA包括脱氧核糖核酸和蛋白质组成,并负责遗传信息的传递。
RNA包括核糖核酸和蛋白质组成,并负责基因的转录和翻译。
3. 糖类的结构和功能糖类包括单糖、双糖和多糖,主要作为细胞的能量来源和结构支持。
4. 脂质的结构和功能脂质包括甘油三酯、磷脂、类固醇和脂蛋白等,主要作为细胞膜的组成成分和储存能量。
生化重点知识资料
生化重点知识资料生物化学是研究生物体内化学反应和生物分子结构与功能的学科,是生命科学中的重要分支。
本文将介绍生化学中的几个重点知识。
1. 生物大分子:生物大分子是构成生物体的基本单位,包括蛋白质、核酸、多糖和脂类。
蛋白质是生物体内最重要的大分子,由氨基酸组成,具有多种功能,如酶催化、结构支持和信号传导等。
核酸是存储和传递遗传信息的分子,包括DNA和RNA。
多糖是由单糖分子通过糖苷键连接而成,如淀粉和纤维素。
脂类是由甘油和脂肪酸组成,具有能量储存和细胞膜组成的功能。
2. 酶的作用:酶是生物体内催化化学反应的蛋白质,能够降低反应的活化能,加速反应速率。
酶通过与底物结合形成酶底物复合物,在酶活性中心发生催化作用,使底物转化为产物。
酶的活性受到温度、pH值和底物浓度等因素的影响。
3. 代谢途径:代谢是生物体内所有化学反应的总称。
代谢途径包括有氧呼吸、无氧呼吸和光合作用等。
有氧呼吸是指利用氧气将有机物完全氧化为二氧化碳和水,并释放能量。
无氧呼吸是在缺氧条件下进行的代谢途径,能够通过发酵产生能量。
光合作用是植物利用光能将二氧化碳和水转化为有机物,并释放氧气。
4. 酸碱平衡:生物体内的酸碱平衡是指维持体内pH值稳定的能力。
细胞内外的酸碱平衡由多种缓冲系统、呼吸和肾脏调节。
细胞内主要的缓冲系统是碳酸氢盐/二氧化碳系统和磷酸盐系统。
呼吸通过调节呼出二氧化碳的量,影响血液中的碳酸氢盐浓度。
肾脏通过排泄酸性或碱性尿液,调节体内酸碱平衡。
5. 遗传信息的传递:遗传信息的传递是指基因在生物体内的复制和转录、翻译过程。
DNA是存储遗传信息的分子,通过复制过程使得每个细胞都具有相同的基因信息。
转录是将DNA上的基因信息转化为RNA分子的过程。
翻译是将RNA上的信息翻译成蛋白质的过程。
这个过程中,遵循着三联密码子与氨基酸的配对规则。
本文简要介绍了生化学中的几个重点知识,包括生物大分子、酶的作用、代谢途径、酸碱平衡和遗传信息的传递。
生化知识点总结大全
生化知识点总结大全生物化学是研究生物分子、细胞和组织等生物学基本单位在化学层面上的结构、功能和相互关系的一门学科。
生物化学知识的掌握对于理解生物体内各种生理过程以及疾病的发生、发展和治疗都具有重要意义。
下面将对生化知识点进行总结,包括生物大分子、酶和代谢、细胞信号传导、遗传信息的传递和表达等内容。
一、生物大分子1. 蛋白质蛋白质是由氨基酸组成的大分子,是生物体内最重要的大分子之一。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构,分别代表了氨基酸序列、局部结构、全局结构和蛋白质的组装形式。
蛋白质在生物体内担任着结构、酶、携氧等多种重要功能。
2. 核酸核酸是构成生物体遗传信息的重要大分子。
核酸包括DNA和RNA两类,其中DNA是生物体内遗传信息的主要携带者,而RNA则参与了蛋白质的合成过程。
核酸的结构包括磷酸、核糖和碱基,它们通过磷酸二酯键相连而形成长链状结构。
3. 脂类脂类是一类绝缘性物质,其分子结构包含甘油酯和磷脂,具有水、油双亲性,是细胞膜的主要构成成分。
脂类还包括胆固醇和脂蛋白,它们在人体内参与了能量储存、细胞膜形成、传递体内信息等多种生理活动。
二、酶和代谢1. 酶的分类和特性酶是一类生物催化剂,可以加速生物体内的化学反应。
酶根据其作用的基质可以分为氧化还原酶、水解酶、转移酶等多种类型;根据作用反应的特点还可以分为氧化酶、脱氢酶、水合酶等。
酶的活性受到PH值、温度、离子浓度等因素的影响。
2. 代谢途径代谢是生物体维持生命活动所必需的化学反应过程,包括物质的合成、降解和转化等步骤。
常见的代谢途径包括糖酵解、三羧酸循环、氧化磷酸化等。
这些代谢途径通过调控酶的活性来维持生物体内各种代谢物质的平衡。
三、细胞信号传导1. 受体的结构和功能受体是细胞膜上的一类蛋白质,可以感知外界信号并将其转化为细胞内信号传导的起始物质。
受体的结构包括外部配体结合区、跨膜区和细胞内信号传递区,它可以通过配体结合激活下游信号分子,从而引发细胞内的生理反应。
生化生物化学名词解释问答重点知识总结
第一章蛋白质的结构和功能★蛋白质元素组成:碳、氢、氧、氮、硫(C、H、O、N、S )以及磷、铁、铜、锌、碘、硒。
基本组成单位:氨基酸。
★氨基酸的三字母英文缩写:甘氨酸Gly;丙氨酸Ala;缬氨酸Val;亮氨酸Leu;异亮氨酸Ile;苯丙氨酸Phe;脯氨酸Pro;色氨酸Trp;丝氨酸Ser;酪氨酸Tyr;半胱氨酸Cys;蛋氨酸Met;天冬酰氨Asn;谷氨酰胺Gln;苏氨酸Thr;天冬氨酸Asp;谷氨酸Glu;赖氨酸Lys;精氨酸Arg;组氨酸His。
★氨基酸的通式:,氨基酸的连接方式:肽腱。
★氨基酸的分类:非极性、疏水性氨基酸: 甘氨酸Gly;丙氨酸Ala;缬氨酸Val;亮氨酸Leu;异亮氨酸Ile;苯丙氨酸Phe;脯氨酸Pro极性、中性氨基酸: 色氨酸Trp;丝氨酸Ser;酪氨酸Tyr;半胱氨酸Cys;蛋氨酸Met;天冬酰氨Asn;谷氨酰胺Gln;苏氨酸Thr极性、酸性氨基酸:天冬氨酸Asp;谷氨酸Glu极性、碱性氨基酸:赖氨酸Lys;精氨酸Arg;组氨酸His分子量最小的氨基酸:甘氨酸Gly分子量最小的具有旋光性的氨基酸:丙氨酸Ala支链氨基酸:缬氨酸Val;亮氨酸Leu;异亮氨酸Ile芳香族氨基酸:苯丙氨酸Phr;色氨酸Trp;酪氨酸Tyr杂环氨基酸:脯氨酸Pro;色氨酸Trp;组氨酸His羟基氨基酸:丝氨酸Ser;酪氨酸Tyr;苏氨酸Thr含酰胺基氨基酸:天冬酰胺Asn;谷氨酰胺Gln含硫氨基酸:半胱氨酸Cys;甲硫氨酸Met亚氨基酸:脯氨酸Pro★谷胱甘肽(GSH)由哪三个氨基酸残基构成?有何生理功能?GSH是由谷氨酸,半胱氨酸,甘氨酸组成的三肽。
GSH的巯基具有还原性。
★等电点(Isoelectric point( pI)):在某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,呈电中性,此时该溶液的pH值即为该氨基酸的等电点。
★紫外吸收性质:由于蛋白质分子中含有共轭双键的芳香族氨基酸Trp, Tyr ,因此在280nm 波长附近有特征性吸收峰。
生化所有重点知识点总结-个人精心整理
1.生物化学,是研究生物体内化学分子和化学反应的科学,从分子水平探讨生命现象的本质。
2.分子生物学,是研究核酸、蛋白质等所有生物大分子的结构、功能及基因结构、表达与调控的科学。
7.primary structure of protein—一级结构,是蛋白质分子中,从N-端到C-端的氨基酸排列顺序。
8.chromatography—层析,是蛋白质分离纯化的重要手段之一,待分离蛋白溶液(流动相)经过一种固态物质时,根据溶液中待分离的蛋白质颗粒大小、电荷多少及亲和力等,将待分离的蛋白质组分在两相中反复分配,并以不同的速度流经固定相而达到分离蛋白质的目的。
1.peptide unit—肽单元,是指一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水生成的酰胺键称为肽键。
参与肽键形成的6个原子(Cα1、C、O、N、H、Cα2)位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成所谓的肽单元。
2.motif—模体,是具有特殊功能的超二级结构,由两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。
一个模体总有其特征性的氨基酸序列,并发挥特殊的功能。
4.electrophoresis—电泳,指带电粒子在电场中向带相反电荷一极泳动的现象。
5.salt precipitation—盐析,指将中性盐加入蛋白质溶液中,使蛋白质水化膜脱去,电荷被中和,导致蛋白质在水溶液中的稳定因素去除而沉淀。
11.protein denaturation—蛋白质变性,指在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质的变性。
一般认为蛋白质的变性主要发生二硫键和非共价键的破坏,不涉及一级结构中氨基酸序列的改变。
13.domain—结构域,是三级结构层次上的局部折叠区,指分子量大的蛋白质常可折叠成多个结构较为紧密的区域,并各行其功能,称为结构域举例说明蛋白质一级结构、空间结构与功能之间的关系。
生化复习知识点总结
第一章、蛋白质的结构与功能1、主要元素:C、H、O、N、S(P7)2、定氮法:样品中含蛋白质克数=样品的含氮克数×6.253、肽键:肽键是由一个氨基酸α-羟基与另一个氨基酸的α-氨基脱水缩全面行成的化学键,是蛋白质分子中的主要共价键,性质比较稳定。
(P11)4、肽:肽是氨基酸通过肽键相连的化合物,蛋白质不完全水解的产物也是肽。
10个以下氨基酸组成成寡肽,10个以上氨基酸组成称多肽。
(P11)5、多肽和蛋白质分子中的氨基酸均称为氨基酸残基。
具有特殊的生理功能的肽称为活性肽。
(P11)6、蛋白质一级结构:指多肽链中氨基酸(残基)从N端到C端的排列顺序,即氨基酸序列。
主要化学键为肽键。
(P12)7、蛋白质二级结构:指多肽链中相邻氨基酸残基的局部肽链空间结构,是其主链原子的局部空间排布。
主要化学键为氢键。
(P13)8、蛋白质三级结构:指整条多肽链中所有氨基酸残基,包括主链和侧链在内所形成的空间结构。
主要化学键为疏水键。
(P15)9、结构域:分子量大的蛋白质分子由于多肽链上相邻的超二级结构紧密联系,形成多个相对独特并承担不同生物学功能的超三级结构。
(P16)10、蛋白质四级结构:指各具独立三级结构多肽链以各种特定形式接触排布后,结集在此蛋白质最高层次空间结构。
在此空间结构中,各具独立三级结构的多肽链称亚基。
主要化学键为疏水键,氢键,离子键。
(P16)第三章、酶1、同工酶:指催化的化学反应相同,但酶蛋白的分子结构、理化性质及免疫化学特性不同的一组酶。
亚基:骨骼肌形和心肌形。
组成的五种同工酶:LDH1(H4)、LDH2(H3M)、LDH3(H2M4)、LDH4(HM3)、LDH5(M5)。
(P40)2、酶促反应的特点:催化性、特异性、不稳定性、调节性。
(P41)第五章、糖代谢1、糖酵解反应的特点:在无氧条件下发生的不完全的氧化分解反应,整个过程均在胞质中完成,无需氧的参与,终产物是乳酸;反应中适放能量较少,一分子葡萄糖可净生成二分子ATP。
医疗生化知识点总结
医疗生化知识点总结一、生物分子基础1. 蛋白质蛋白质是生物体的重要组成成分,是由氨基酸通过肽键连接而成的大分子化合物。
蛋白质的结构包括一级结构(氨基酸序列)、二级结构(α-螺旋和β-折叠)、三级结构(立体构象)和四级结构(多肽亚单位的组合)。
蛋白质的功能包括酶、激素、抗体、结构蛋白等。
2. 糖类糖类是生物体内重要的能量来源,包括单糖、双糖、多糖等。
糖类在生物体内参与能量代谢、细胞信号传导等生理过程。
3. 脂类脂类是生物体内的重要结构成分,包括甘油三酯、磷脂、胆固醇等。
脂类在细胞膜结构、能量储备、信号传导等方面发挥重要作用。
4. 核酸核酸包括DNA和RNA,是生物体内遗传信息的载体。
DNA包括双链DNA和单链DNA,RNA包括mRNA、tRNA、rRNA等。
核酸在遗传信息传递、蛋白质合成等生理过程中起重要作用。
二、细胞生物化学1. 细胞膜结构细胞膜由磷脂双分子层和蛋白质组成,具有选择性通透性。
细胞膜在维持细胞内外环境平衡、细胞信号传导等方面发挥重要作用。
2. 能量代谢能量代谢包括糖酵解、三羧酸循环和氧化磷酸化等过程,是细胞内产生能量的重要途径。
这些过程产生的ATP是细胞内的能量储备。
3. 细胞信号传导细胞信号传导包括细胞外信号(激素、生长因子等)通过受体与细胞内信号传导蛋白(G蛋白、酶联受体等)相互作用,最终调节细胞内的生理过程。
4. 细胞凋亡细胞凋亡是细胞自身程序性死亡,参与机体发育、免疫调节等生理过程。
细胞凋亡与肿瘤、神经退行性疾病等疾病的发生发展密切相关。
三、临床生化检测1. 血清生化指标血清生化指标包括血糖、血脂、肝功能指标、肾功能指标、电解质等,可以反映机体的代谢、排泄、内分泌等状况。
2. 酶学指标酶学指标包括丙氨酸氨基转移酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)、γ-谷氨酰转移酶(GGT)等,可以反映肝脏、心肌等组织损伤的程度。
3. 肿瘤标志物肿瘤标志物是一些特异性蛋白质,可以通过血清或尿液检测来辅助肿瘤的诊断、疗效评价和预后判断。
生化常识知识点总结
生化常识知识点总结1. 细胞结构与功能细胞是生命的基本单位,它们在维持生物体的正常功能和生存过程中发挥着重要作用。
细胞包含许多重要的结构组成,如细胞膜、细胞质、细胞核等。
细胞膜是细胞的外围结构,它通过选择性透性调节物质的进出。
细胞质是细胞内的液体部分,含有细胞器和细胞骨架。
细胞核含有DNA和RNA等遗传物质,控制细胞的生长、分裂和代谢等生理功能。
2. 生物分子生物分子是构成细胞和生物体的基本单位,包括蛋白质、核酸、碳水化合物和脂类等。
蛋白质是生物体内最重要的大分子,它们在细胞器和细胞膜上发挥着关键作用。
核酸是DNA 和RNA的组成部分,储存和传递遗传信息。
碳水化合物是细胞内的主要能量来源,也是细胞膜的重要组成成分。
脂类是细胞膜的主要成分,还参与了许多代谢和信号传导过程。
3. 酶和代谢酶是生物体内的催化剂,它们在调节细胞内化学反应速率、能量转化和物质代谢中发挥着关键作用。
酶的活性受到多种因素的影响,包括温度、pH值、底物浓度和抑制剂等。
代谢是细胞内所有化学反应的总称,包括有氧代谢和无氧代谢两种方式,通过代谢可以产生能量和合成细胞需要的物质。
4. 遗传学遗传学是研究遗传现象和遗传变异的科学,包括遗传物质的结构和功能、遗传基因的表达和调控等方面。
遗传物质主要由DNA和RNA组成,它们携带了生物体遗传信息,控制生物体的发育、生长和性状。
遗传基因的表达和调控包括DNA复制、转录和翻译等过程,它们决定了生物体的遗传特征和性状。
5. 免疫学免疫系统是生物体内的一种防御系统,它能够识别和清除外来病原体,保护生物体免受感染和疾病。
免疫系统包括先天免疫和获得免疫两种方式,通过免疫细胞和抗体等进行免疫应答。
免疫系统的异常会导致免疫缺陷和自身免疫疾病等疾病的发生。
6. 能量和物质代谢生物体需要能量来维持生命活动和生长发育,能量主要来源于食物和光合作用。
物质代谢是生物体内分子的合成和降解过程,包括有氧代谢、无氧代谢和光合作用等各种代谢途径。
生化类化学知识点总结
生化类化学知识点总结一、生化类化学概述生化类化学是研究生物体内各种物质的化学组成和相互作用的科学,主要包括生物大分子(蛋白质、核酸、多糖和脂类)的结构及其相互作用、生物催化(酶)、代谢物质的转化等内容。
生化类化学在医学、农学、动植物生长、发育及各种生理生化过程的研究中有着重要的应用价值。
二、蛋白质1. 蛋白质的结构蛋白质是生命物质中含量最多、功能最多样的一类化合物。
它是由α-氨基酸或无规则氨基酸组成的天然高聚物,在生物中担任构成细胞器、激素、酶、抗体、抗凝剂等重要物质的先天主要筑成元素。
蛋白质的空结构容许它能便捷地与其它生物大分子及无机分子发生作用。
2. 氨基酸α-氨基酸是构成蛋白质的最基本单元,它具有一定的组成结构(组合、立体构象、物理性质、化学性质),对蛋白质的功能具有决定作用。
氨基酸的基本结构包括α-C、α-氨基和α-羧基。
3. 蛋白质的空间结构蛋白质的空间结构是指蛋白质中α-氨基酸残基之间的空间排列位置及其相互作用关系。
蛋白质的空间结构对蛋白质的功能至关重要。
4. 蛋白质的生物学功能蛋白质是生命体内最为丰富、基本且复杂的大分子化合物,也是细胞构成和生理功能活动中至关重要的物质。
蛋白质的主要功能包括结构功能、酶功能、激素功能、运输功能、抗体功能等。
三、核酸1. DNA的结构DNA是脱氧核糖核酸的简称,是一类由脱氧核酸核苷酸构成的高分子化合物,是生物体内存储遗传信息的重要物质。
DNA的基本结构包括磷酸基、脱氧核糖糖类和氮碱基。
2. RNA的结构RNA是核糖核酸的简称,是一类由核糖核苷酸构成的高分子化合物。
RNA在细胞内有多种功能,包括RNA的结构、RNA的遗传信息传递、RNA的功能。
3. DNA的生物学功能DNA是生物体内的遗传物质,其主要功能包括储存、传递和表达遗传信息,参与细胞生长和分裂等。
四、多糖1. 多糖的结构多糖是一类由多种糖单元连接而成的高分子化合物,包括淀粉、糖原、纤维素、果胶等。
生化课本知识点归纳总结
生化课本知识点归纳总结生化学(Biochemistry)是研究生物体内生物分子及其反应的一门综合性学科,是生物学、化学、物理学和医学的交叉学科。
它研究生物体内的分子组成、结构和功能,揭示细胞内物质代谢的基本规律,是现代生物科学和医学研究的基础。
生化学是有机化学和生物学的交叉领域,它研究一切有关与生命有关的细胞和生物的分子结构、分子功能基因、蛋白质等。
一、生化学的基本步骤生化学的研究主要包括以下五个重要步骤:分离纯化、测定结构功能、研究代谢途径、研究生物学作用及利用生化学异能方法。
二、生化学的主要内容1. 生物大分子的结构与功能2. 化学能的生物转换3. 生物体内物质的合成4. 细胞的物质代谢调节5. 细胞外信息传递6. 生化研究方法与技术三、生化学的研究对象1. 细胞膜构成及功能2. 细胞核的结构和功能3. 细胞质中的器官4. 细胞的生长和增殖5. 细胞的有丝分裂和减数分裂6. 细胞对外界物质的反应7. 生化遗传学8. 生化生理学9. 免疫细胞生物化学10. 神经细胞生物化学11. 皮肤细胞生物化学12. 肌肉细胞生物化学四、细胞膜构成及功能1. 细胞膜的主要成分有磷脂、蛋白质、胆固醇、糖蛋白、糖脂等。
2. 细胞膜的功能主要包括细胞选通、免疫反应、信号传导和细胞黏附等。
五、细胞核的结构和功能1. 细胞核主要由染色质、染色体、核小体和核仁组成。
2. 核酸是细胞核的主要成分,包括DNA和RNA。
3. 细胞核的功能主要包括遗传信息的储存和传递。
六、细胞质中的器官1. 内质网:合成蛋白质、脂质和糖的物质转运。
2. 线粒体:细胞内能量代谢的中心。
3. 高尔基体:物质运输和分泌、蛋白质修饰等功能。
4. 溶酶体:噬菌体和分解有毒物质的功能。
七、细胞的生长和增殖1. 细胞的生长主要包括蛋白质和核酸的合成、有丝分裂等过程。
2. 细胞增殖主要包括有丝分裂和减数分裂。
八、细胞对外界物质的反应1. 表面蛋白:细胞黏附和信号传导等功能。
生物化学核心知识点考点总结
生物化学核心知识点考点总结●第一章糖●所有单糖都有还原性●蔗糖无还原性●多糖无还原性●还原性:是否有游离的半缩醛或半缩酮羟基●第二章脂类●脂类组成脂肪酸和醇●脂肪甘油脂肪酸●脂肪组成一分子甘油和三分子脂肪酸●脂的命名例20:0 20为脂肪酸碳原子数目 0为双键数目●第三章维生素●脂溶性维生素 A D E K●水溶性维生素 B C●维生素B1 活体形式焦磷酸硫胺素(TPP)●维生素B2 活体形式黄素单核苷酸(FAD)●维生素B6 活体形式磷酸砒多醛磷酸砒多按●磷酸砒多醛为糖原磷酸化的组成部分●转氨作用●维生素PP NAD+ NADP+●叶酸●活体形式四氢叶酸(FH4)●FH4是一碳单位转移酶的辅酶●泛酸 CoA和ACP●维生素C 生化作用及缺乏●羟化反应●促进胶原蛋白合成●参与胆固醇转化●参与芳香族氨基酸转化●氧化还原反应●增强机体免疫力●第四章蛋白质●一氨基酸●必须氨基酸甲携来一本亮色书●代号●非极性脂肪族氨基酸 Gly Ala Val Leu Ile Pro Met●极性中性氨基酸 Ser Cys Asn Glu Thr●芳香性 Phe Trp Tyr●酸性 Asp Glu●碱性Arg His Lys●性质●等电点●氨基酸带有的正负电荷数目恰好相同,净电荷为0,此时溶液的PH●PH>PI 氨基酸带正电,PH<PI 氨基酸带负电 PH为9 正向负负向正互相吸引异电●紫外吸收性质色氨酸(Trp)280nm吸收最长波长●二蛋白质结构●一级结构氨基酸序列肽键●二级结构肽链的主链骨架本身的折叠和盘旋由氢键决定●主要为α螺旋●特征 1 较大的氨基酸残基的R侧链不利于形成α螺旋●2脯氨酸或羟脯氨酸残基存在不能形成α螺旋●3多肽链中连续存在酸性或碱性氨基酸,不利于α螺旋生成●基序相邻的二级结构彼此互相作用,形成有规则的在空间上能辨认的二级结构组合体●三级结构所有原子在三空间的排布位置●结构域几个基序单元的组合●四级结构由两个或两个以上的亚基之间互相作用,彼此以共价键相连而形成更为复杂的构象●胰岛素没有四级结构 why?●胰岛素无亚基●三蛋白质结构功能●一级结构●分子病由遗传变异引起的、在分子水平上仅存在微观差异而导致的疾病镰刀状红细胞贫血●构象病蛋白质折叠错位或折叠导致构象异常变化引起的疾病例疯牛病●二级结构α螺旋β折叠α转角无规卷曲●四蛋白质性质●理化性质改变●一般蛋白质变性后,分子结构松散,易为蛋白酶水解,因此食用变形蛋白更有利于消化●胶体性质●蛋白质表面具有水化层●蛋白质表面具有同性电荷●蛋白质沉淀反应●中性盐沉淀●无机盐:硫酸钠氯化钠硫酸铵●沉淀出蛋白质不变性●五蛋白质分离纯化●离子层析法●亲和层析法●吃熟食的好处●高温使蛋白质变性易被蛋白酶水解利于消化●使细菌蛋白质变性,失去病理失去感染力利于健康●第五章核酸●第一节概述●核酸由多个单核苷酸聚合而成,单核苷酸可以分解成核苷和磷酸核苷再进一步分解成碱基和戊糖●核酸的分子结构●DNA分子结构●一级结构●碱基排列顺序●二级结构●反向平行的多核酸链●三级结构●双螺旋的扭曲再次螺旋●核酸的主要生物学作用●核酸是传递生物遗传信息的载体●核酸是遗传变异的物质基础●RNA种类及结构●结构特征●(1) RNA 的基本组成单位是 AMP 、 GMP 、 CMP 及 UMP 。
生物化学知识点梳理
生物化学知识点梳理生化知识点梳理蛋白质水解(1)酸水解:破坏色胺酸,但不会引起消旋,得到的是L-氨基酸。
(2)碱水解:容易引起消旋,得到无旋光性的氨基酸混合物。
(3)酶水解:不产生消旋,不破坏氨基酸,但水解不彻底,得到的是蛋白质片断。
(P16)酸性氨基酸:Asp(天冬氨酸)、Glu(谷氨酸)碱性氨基酸:Lys(赖氨酸)、Arg(精氨酸)、His(组氨酸)极性非解离氨基酸:Gly(甘氨酸)、Ser(丝氨酸)、Thr (苏氨酸)、Cys(半胱氨酸),Tyr(酪氨酸)、Asn(天冬酰胺)、Gln(谷氨酰胺)非极性氨基酸:Ala(丙氨酸)、Val(缬氨酸)、Leu (亮氨酸)、Ile(异亮氨酸)、Pro(脯氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Met(甲硫氨酸)氨基酸的等电点调整环境的pH,可以使氨基酸所带的正电荷和负电荷相等,这时氨基酸所带的净电荷为零。
在电场中既不向阳极也不向阴极移动,这时的环境pH称为氨基酸的等电点(pI)。
当环境的pH比氨基酸的等电点大,氨基酸处于碱性环境中,带负电荷,在电场中向正极移动;当环境的pH比氨基酸的等电点小,氨基酸处于酸性环境中,带正电荷,在电场中向负极移动。
除了甘氨酸外,所有的蛋白质氨基酸的α-碳都是手性碳,都有旋光异构体,但组成蛋白质的都是L-构型。
带有苯环氨基酸(色氨酸)在紫外区280nm波长由最大吸收蛋白质的等离子点:当蛋白质在某一pH环境中,酸性基团所带的正电荷预见性基团所带的负电荷相等。
蛋白质的净电荷为零,在电场中既不向阳极也不向阴极移动。
这是环境的pH称为蛋白质的等电点。
盐溶:低浓度的中性盐可以促进蛋白质的溶解。
盐析:加入高浓度的中性盐可以有效的破坏蛋白质颗粒的水化层,同时又中和了蛋白质分子电荷,从而使蛋白质沉淀下来。
分段盐析:不同蛋白质对盐浓度要求不同,因而通过不同的盐浓度可以将不同种蛋白质沉淀出来。
变性的本质:破坏非共价键(次级键)和二硫键,不改变蛋白质的一级结构。
生化重点知识归纳总结
生化重点知识归纳总结生化学(生物化学)是研究生物体内化学成分、化学反应和化学转化的一门科学。
在这篇文章中,将对生化学中的重点知识进行归纳总结,以帮助读者更好地理解和掌握这一领域的知识。
1. 分子生物学1.1 DNA与RNADNA是生物体内存储遗传信息的分子,决定了生物的遗传特征。
RNA则参与了蛋白质的合成过程。
DNA由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鸟嘌呤)组成,而RNA中胸腺嘧啶是由腺嘌呤与尿嘧啶二聚而成。
1.2 蛋白质合成蛋白质合成是通过转录和翻译过程实现的。
转录将DNA的信息转录成mRNA,然后mRNA与核糖体进行翻译,合成蛋白质。
2. 代谢途径2.1 糖酵解糖酵解是将葡萄糖分解为乳酸或乙醇等产物,同时释放能量。
它分为糖原酵解和无氧酵解两种类型。
2.2 糖异生糖异生是指从非糖类物质合成葡萄糖的过程。
这在饥饿或低碳水化合物摄入的情况下起关键作用。
2.3 脂肪酸合成与分解脂肪酸合成是指在胞质内,将乙酰辅酶A逐步合成长链脂肪酸的过程。
脂肪酸分解则是将脂肪酸分解为乙酰辅酶A,释放能量。
2.4 氨基酸代谢氨基酸代谢包括氨基酸降解和合成两个方面。
氨基酸在生物体内经过一系列反应,最终被降解为尿素,并通过尿液排出体外。
3. 酶与酶动力学3.1 酶的性质酶是在生物体内催化化学反应的蛋白质。
它们能够降低反应的活化能,加快反应速率。
3.2 酶的分类酶根据催化反应的方式,可分为氧化还原酶、转移酶、水解酶等不同类型。
3.3 酶动力学酶动力学研究酶催化反应速率与底物浓度、温度和pH等因素之间的关系。
其中,酶的最适温度和最适pH是使酶活性最大的温度和pH 值。
4. 代谢调节生物体内的代谢途径受到许多调节机制的控制。
4.1 负反馈调节负反馈调节是通过逆向调节酶的活性来调节代谢途径。
当代谢物浓度增加时,酶活性会被抑制,从而减少代谢途径产物的合成。
4.2 激酶与磷酸酶激酶和磷酸酶是参与调节代谢途径的重要酶。
激酶能够增加酶的活性,而磷酸酶则能够降低酶的活性。
检验师生化知识点总结
检验师生化知识点总结一. 生物化学的基本概念1. 生物化学的定义:生物化学是研究生命现象中的物质合成、降解、能量转化与调节等的化学规律的学科。
2. 生物化学的特点:生命现象具有高度组织和调节性,其物质在组织与器官中有高度的组织特异性,具有高度的生物学活性,异常状态对生物体来说极为有害。
3. 生物体内的化学成分:生物体内的化学成分有机物和无机物两大类。
有机物如蛋白、糖、脂肪等,无机物如水、无机盐、杂质等。
4. 生物化学的研究内容:生物化学研究的范围非常广泛,包括细胞的成分、结构与功能,生物大分子以及其转化与调节、生物体内各种物质代谢途径、生长与发育等。
二. 生物体内物质的组成1. 水的生物学意义:水是生命的物质载体,是体内各种物质反应的场所和媒介。
水的化学性质是极其特殊的,它的极性和氢键的存在使得水具有极强的溶解能力,能够使细胞内的各种物质得以分子扩散。
生命的起源与活性与水分子结构直接有关。
2. 有机物的生物学意义:如糖、脂肪、蛋白质和核酸等都是生物体内的重要有机物,它们构成了细胞和生物体的重要组成部分,并且参与细胞代谢各种生理过程。
三. 生化反应与酶学1. 生物体内代谢反应的类型:生物体内代谢反应包括合成反应和降解反应两种,生物体内的各种代谢过程都是由一系列生物催化剂—酶来调节和加速的。
2. 酶的特性:酶是生物体内催化作用的生物大分子催化剂,能够促进特定的生化反应的进行,具有高度的催化效率,并能够选择性地催化特定的反应。
3. 酶的作用机制:酶催化反应的速度是受到多种因素的影响,如底物与酶的结合、底物的浓度、温度和pH等因素。
四. 生物体内能量与ATP1. 生物体内能量的来源:生物体内的能量来自于食物的氧化分解,通过呼吸链从食物中提取出来。
2. ATP的合成和分解过程: ATP是生物体内的能量储备物质,对细胞新陈代谢过程有着极为重要的影响。
五. 糖的代谢1. 糖的生成:生物体内的大部分糖都来自于光合作用从二氧化碳和水生成的葡萄糖。
生物化学知识点
生物化学知识点生化知识点概述1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级、二级、三级和四级结构、蛋白质折叠、功能域。
- 核酸:DNA和RNA的结构、碱基配对、双螺旋、RNA的多样性(mRNA, tRNA, rRNA等)。
- 糖类:单糖、多糖、糖蛋白、糖脂。
- 脂质:甘油三酯、磷脂、甾体化合物。
2. 酶学- 酶的定义、特性、命名。
- 酶促反应动力学:米氏方程、酶抑制、酶激活。
- 酶的结构与机制:活性位点、催化机制、酶的调控。
3. 代谢途径- 糖酵解:步骤、调节、能量产出。
- 柠檬酸循环(TCA循环):反应、关键酶、调节。
- 电子传递链与氧化磷酸化:电子载体、质子梯度、ATP合成。
- 脂肪酸代谢:β-氧化、脂肪酸合成、脂肪酸氧化。
- 氨基酸代谢:脱氨基作用、转氨作用、氨基酸的降解和合成。
- 核苷酸代谢:碱基合成、核苷酸合成与降解。
4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。
- 第二信使:cAMP、IP3、DAG、Ca2+。
- 信号传导途径:MAPK通路、PI3K/Akt通路、Wnt/β-catenin通路。
5. 基因表达与调控- DNA复制:复制机制、DNA聚合酶、复制起始点。
- 转录:RNA聚合酶、启动子、增强子、沉默子。
- 翻译:核糖体结构、tRNA作用、蛋白质合成过程。
- 基因调控:表观遗传学、非编码RNA、转录因子。
6. 分子生物学技术- 克隆技术:限制性内切酶、连接酶、载体、转化。
- PCR技术:原理、引物设计、扩增程序。
- 基因编辑:CRISPR-Cas9、TALENs、ZFNs。
- 蛋白质组学:质谱分析、蛋白质芯片、蛋白质互作。
7. 细胞结构与功能- 细胞膜:脂质双层、膜蛋白、膜流动性。
- 细胞器:线粒体、内质网、高尔基体、溶酶体。
- 细胞骨架:微丝、中间丝、微管。
- 细胞周期:G1、S、G2、M期、细胞凋亡。
8. 生物化学疾病- 代谢疾病:苯丙酮尿症、糖原贮积病。
生化所有知识点总结
生化所有知识点总结一、生物大分子1. 蛋白质蛋白质是生物体内最重要的有机分子之一,它们是构成生命的重要组成部分,广泛参与生物体的生理生化过程。
蛋白质的标准结构由氨基酸线性排列组成,其氨基酸残基之间通过肽键相连。
蛋白质的功能包括酶、激素、抗体等。
2. 核酸核酸是生物体内最重要的化学物质之一,包括DNA和RNA。
DNA携带生物体的遗传信息,RNA在蛋白质合成中起着重要的作用。
3. 多糖多糖是由许多单糖分子通过糖苷键连接而成,包括淀粉、糖原、纤维素等。
4. 生物膜生物膜是由脂质和蛋白质组成的薄膜,它存在于细胞表面,构成细胞膜和细胞器膜,起着保护细胞、控制物质进出的作用。
二、生物大分子的结构和功能1. 蛋白质的结构蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。
一级结构是蛋白质的氨基酸序列,二级结构是由氢键形成的α-螺旋和β-折叠,三级结构是由蛋白质的各个区域所形成的空间结构,四级结构是由多个蛋白质相互组合形成的功能性结构。
2. 蛋白质的功能蛋白质的功能包括酶、激素、抗体、结构蛋白等。
酶是生物体内的催化剂,参与生物体内的代谢过程;激素是生物体内的调节剂,参与生物体内的内分泌系统;抗体是生物体内的免疫物质,参与生物体内的免疫反应;结构蛋白主要构成生物体内各种组织和器官。
3. 核酸的结构DNA是由脱氧核糖核酸分子组成,是生物体内传递遗传信息的重要分子;RNA是由核糖核酸分子组成,是生物体内蛋白质合成的重要分子。
4. 核酸的功能DNA的功能是存储和传递遗传信息,参与生物体内的遗传过程;RNA的功能是带有遗传信息的DNA按照一定规律转录成RNA,再依据RNA的信息合成蛋白质。
5. 多糖的结构和功能多糖是由许多单糖分子通过糖苷键连接而成的大分子,包括淀粉、糖原、纤维素等。
它们是生物体内的能量来源和结构组分。
6. 生物膜的结构和功能生物膜是由脂质和蛋白质组成的薄膜,其构成了细胞膜和细胞器膜。
生物膜的功能包括保护细胞,控制物质进出,参与细胞信号传导等。
生化课本知识点总结归纳
生化课本知识点总结归纳1. 蛋白质蛋白质是生命活动中功能最为丰富的一类大分子化合物,是细胞的主要结构和功能单位。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶、抗体、激素、载体等。
在生化课本中,学生需要了解蛋白质的组成、结构和功能,以及蛋白质的合成、降解和修饰等过程。
2. 核酸核酸是生物体内的重要大分子化合物,包括DNA和RNA。
在生化课本中,学生需要了解核酸的结构、功能和代谢途径。
此外,还需要了解DNA的复制、转录和翻译等过程,以及RNA的功能和合成过程。
3. 碳水化合物碳水化合物是生物体内的主要能量来源,也是细胞壁的主要组成成分之一。
在生化课本中,学生需要了解碳水化合物的结构、分类、代谢途径和生物学意义等知识点。
4. 脂质脂质是生物体内的重要大分子化合物,包括脂肪、磷脂和固醇等。
在生化课本中,学生需要了解脂质的结构、分类、功能和代谢途径,以及脂质在生物体内的生物学意义。
5. 酶酶是生物体内的重要催化剂,可以加快化学反应的速率,降低活化能。
在生化课本中,学生需要了解酶的结构、功能、酶促反应机制、酶与底物的结合方式、酶的特性和分类等知识点。
6. 代谢途径代谢途径是生物体内大量生化反应的有机组织,包括糖代谢途径、脂质代谢途径、蛋白质代谢途径和核酸代谢途径等。
在生化课本中,学生需要了解代谢途径的整体组织结构和相互关系,以及代谢途径中各种酶的作用和调节机制等知识点。
综上所述,生化课本的知识点涉及的内容非常丰富,需要学生具备扎实的化学和生物学基础,才能更好地理解和掌握其中的知识。
通过对生化知识点的总结归纳,可以帮助学生更好地理解生物化学的基本概念和原理,从而更好地应用于相关领域的学习和研究中。
生化课本知识点总结大全
生化课本知识点总结大全一、生物大分子的结构和功能1. 蛋白质:蛋白质是生物体内最重要的大分子之一,对细胞结构和功能的维持起着关键作用。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构等,不同的结构决定了蛋白质的特定功能。
2. 脂质:脂质是生物体内的重要结构材料,也是细胞膜的主要组成部分。
脂质分为甘油三酯、磷脂和类固醇等,它们在生物体内起到能量储存、细胞保护和信号传递等重要作用。
3. 碳水化合物:碳水化合物是生物体内的重要营养物质,包括单糖、双糖和多糖等。
它们在细胞内能够提供能量,并且作为细胞壁的主要组成物质。
4. 核酸:核酸包括DNA和RNA,它们是遗传信息的储存和传递分子。
DNA是细胞的遗传物质,RNA在蛋白质合成过程中起着重要作用。
二、细胞内代谢过程1. 细胞呼吸:细胞通过细胞呼吸将有机物氧化成二氧化碳和水,产生大量的能量(ATP)。
细胞呼吸过程包括糖解、三羧酸循环和氧化磷酸化等。
2. 光合作用:植物细胞通过光合作用将二氧化碳和水合成有机物,同时释放氧气。
光合作用分为光反应和暗反应两个阶段,叶绿体是光合作用的主要场所。
3. 代谢调控:细胞代谢过程受到多种调节因素的影响,包括激素、神经系统、温度和能量等。
代谢调控保持细胞内代谢的平衡状态,确保细胞正常工作。
三、酶的作用1. 酶的作用原理:酶是生物体内的催化剂,能够加速化学反应的速率。
酶对底物具有高度专一性,能够选择性地促进底物的转化。
2. 酶的结构:酶分为蛋白质酶和核酸酶两种,它们在结构上具有特定的活性中心和底物结合位点。
酶的活性受到温度、pH值、金属离子和抑制剂等影响。
3. 酶促反应:酶促反应是一种高效、特异性和可逆的化学转化过程,酶可用于医药、工业和生化研究等领域。
四、遗传信息的传递和表达1. DNA复制:DNA复制是遗传信息传递的基础,它是双链DNA分离后每一链合成一新链的生物过程。
DNA复制由一系列酶和辅因子协同作用完成。
2. 转录:转录是DNA合成mRNA的过程,在细胞核内进行。
生物化学专业的知识总结
生物化学专业的知识总结生物化学是研究生物体内化学成分和生命过程的学科,涉及到生物分子的结构、功能和相互作用等方面。
本文将对生物化学专业的知识进行总结,包括基本概念、重要分子和反应、研究方法等内容。
一、基本概念1. 生物分子:生物体内的化学物质,包括蛋白质、核酸、碳水化合物和脂质等。
2. 蛋白质:生物体内最重要的大分子,由氨基酸组成,具有结构和功能多样性。
3. 核酸:DNA和RNA是生物体内的两种核酸,负责遗传信息的传递和蛋白质合成。
4. 碳水化合物:生物体内的主要能量来源,包括单糖、双糖和多糖等。
5. 脂质:构成生物膜的主要成分,同时也是能量储存和信号传递的重要分子。
二、重要分子和反应1. 氨基酸:构成蛋白质的基本单位,通过肽键连接成多肽链。
2. 酶:催化生物体内化学反应的蛋白质,具有高度的选择性和效率。
3. 代谢途径:生物体内物质的合成和降解过程,包括糖酵解、脂肪酸合成等。
4. 光合作用:植物利用光能将二氧化碳和水转化为有机物质和氧气。
5. 呼吸作用:生物体内将有机物质氧化释放能量的过程,包括有氧呼吸和无氧呼吸。
三、研究方法1. 分离和纯化:通过技术手段将生物体内的分子分离和提纯,如电泳和层析。
2. 光谱学:利用不同波长的光与分子相互作用,如紫外-可见吸收光谱和红外光谱。
3. 核磁共振:通过核磁共振现象研究分子的结构和相互作用。
4. 质谱:通过对分子的质量和电荷比进行测定,确定分子的结构和组成。
5. 生物化学实验:通过设计和进行实验验证生物化学理论和假设。
综上所述,生物化学专业的知识总结包括基本概念、重要分子和反应、研究方法等内容。
生物化学作为一门交叉学科,对于深入理解生命的本质和生物体内的化学过程具有重要意义。
通过掌握这些知识,我们可以更好地理解生物体内的化学变化和相互作用,为生物医学研究和药物开发提供基础。
希望本文的总结能够对生物化学专业的学习和研究有所帮助。
生化生物化学重点知识总结
第一章蛋白质的结构与功能掌握:1.蛋白质的分子组成:氨基酸的分类、名称及英文缩写,肽及肽键的概念。
2.蛋白质的分子结构:蛋白质一、二、三、四级结构的概念、结构要点及维系各级结构的化学键。
3.理化性质:蛋白质(氨基酸)的两性电离及等电点的概念;蛋白质的变性;蛋白质(氨基酸)紫外吸收特性等。
熟悉:1.蛋白质多肽链组成。
2.蛋白质结构与功能的关系。
蛋白质元素组成:C、H、O、N、S蛋白质的基本组成单位:氨基酸各种蛋白质的含氮量很接近,平均为16 %★凯氏定量法:100g样品中原蛋白质的含量(g%)=每克样品含氮量数*6.25*100氨基酸的分类:1.非极性脂肪族氨基酸: 甘氨酸Gly;丙氨酸Ala;缬氨酸Val;亮氨酸Leu;异亮氨酸Ile;苯丙氨酸Phe;脯氨酸Pro2.极性中性氨基酸: 丝氨酸Ser;半胱氨酸Cys;甲硫氨酸Met;天冬酰氨Asn;谷氨酰胺Gln;苏氨酸Thr3.芳香族氨基酸:苯丙氨酸Phr;色氨酸Trp;酪氨酸Tyr4.酸性氨基酸:天冬氨酸Asp;谷氨酸Glu5.碱性氨基酸:赖氨酸Lys;精氨酸Arg;组氨酸His支链氨基酸:缬氨酸Val;亮氨酸Leu;异亮氨酸Ile杂环氨基酸:脯氨酸Pro;色氨酸Trp;组氨酸His含硫氨基酸:半胱氨酸Cys;蛋氨酸Met含酰胺基氨基酸:天冬酰胺Asn;谷氨酰胺Gln含羟基氨基酸:丝氨酸Ser;酪氨酸Tyr;苏氨酸Thr含羧基氨基酸:天冬氨酸Asp;谷氨酸Glu亚氨基酸:脯氨酸Pro★营养必需氨基酸:甲硫氨酸、色氨酸、赖氨酸、缬氨酸、异亮氨酸、亮氨酸、苯丙氨酸、苏氨酸(假设来写一两本书)★等电点( pI):在某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,呈电中性,此时该溶液的pH值即为该氨基酸的等电点。
(pH<pI 氨基酸带正电酸性溶液)两性解离:蛋白质肽链末端的各种基团,在溶液一定pH条件下可以结合或释放H+,这就是蛋白质两性解离的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人体机能学生化部分重点整理一、选择*SAM是活性甲基供体;PAPS是活性硫酸根供体;UDPG是活性葡萄糖供体蛋白质1.100克样品中蛋白质的含量 ( g % )= 每克样品含氮克数× 6.25×100 (凯式定氮法)2.20种编码氨基酸:蛋白质由20种L-α-氨基酸组成3.氨基酸的分类:非极性脂肪族氨基酸;酸性氨基酸;芳香族氨基酸;极性中性氨基酸;碱性氨基酸(p10-11)4.营养必需氨基酸:体内需要但不能自身合成,必须由食物供给的氨基酸甲硫氨酸;色氨酸;赖氨酸;缬氨酸;异亮氨酸;亮氨酸;苯丙氨酸;苏氨酸(假设来写一两本书)5.紫外吸收最大吸收峰在280 nm 附近6.肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键7.蛋白质变性的应用:高温、高压灭菌、低温保存酶、疫苗等,防止蛋白质变性8.谷胱甘肽:GSH 缺少GSH可致“蚕豆病”功能:①体内重要的还原剂,保护蛋白质和酶分子中的巯基免遭氧化,使蛋白质处于活性状态。
②谷胱甘肽的巯基作用,可以与致癌剂或药物等结合,从而阻断这些化合物与DNA、RNA或蛋白质结合,保护机体免遭毒性损害。
酶1.酶促反应的特点:(1)极高的催化效率;(2)高度的特异性;(3)酶活性的可调节性2.酶原激活的生理意义:1)避免细胞产生的酶对细胞进行自身消化;2)保证酶在特定的部位和环境中发挥作用;3)酶原可以视为酶的储存形式3.酶的抑制作用:⑴不可逆性抑制作用:以共价键与酶活性中心上的必需基团相结合,使酶失活①抑制剂和底物的结构相似,能和酶的底物分子竞争与酶的活性中心相结合,从而阻碍酶与底物结合形成中间产物②抑制程度取决于抑制剂与底物浓度比,如加大底物浓度可减弱或解除抑制作用氨基酸代谢⒈氨基酸的脱氨基作用:①转氨基作用;②氧化脱氨基作用;③联合脱氨基作用:是体内氨基酸脱氨基的主要方式;④非氧化脱氨基作用⒉血氨的去路:在肝内合成尿素,这是最主要的去路⒊尿素循环:⑴部位:肝细胞线粒体、胞液⑵关键酶:精氨酸代琥珀酸裂解酶,氨基甲酰磷酸合成酶⑶与三羧酸循环的联系物质:延胡索酸⒋⑴高血氨症:肝功能严重损伤,尿素合成障碍,血氨浓度升高⑵肝昏迷:脑内α—酮戊二酸减少导致脑供养不足⒌牛磺酸是结合胆汁酸的组成成分⒍苯丙氨酸转变为酪氨酸:苯丙氨酸羟化酶先天性缺乏----苯丙酮酸尿症蛋白质内质网定位合成核蛋白体RNA 信使RNA转运RNA核内不均一RNA核内小RNA胞浆小RNA 细胞核和胞液线粒体功能rRNA mRNA mt rRNA tRNA mt mRNA mt tRNA HnRNA SnRNA SnoRNA scRNA/7SL-RNA核蛋白体组分蛋白质合成模板转运氨基酸成熟mRNA 的前体参与hnRNA 的剪接、转运rRNA 的加工、修饰的信号识别体的组分核仁小RNA核酸⒈核苷酸是核酸的基本组成单位。
⒉真核mRNA 的结构:5’-末端的帽子结构;3’-末端的polyA 结构⒊tRNA 的功能:参与转运氨基酸,解译mRNA 的密码。
3’段是CCA 就有方向性⒋紫外吸收:260nm 有特别吸收峰核 苷 酸 代 谢1、嘌呤碱合成的元素来源:头顶二氧碳;2、8一碳团;甘氨中间坐; 3、9谷酰胺;天冬一边站; 合成嘌呤环。
2、嘌呤核苷酸的从头合成首先合成的是次黄嘌呤核苷酸3、脱氧核糖核苷酸是在其二磷酸核苷水平上进行还原4、嘧啶核苷酸的从头合成:组织器官:主要在肝脏;部位:胞液5、嘧啶碱合成的原子的来源:氨基甲酰磷酸和天冬氨酸(既参与嘌呤碱的合成又参与嘧啶碱的合成)嘌呤和嘧啶分解代谢的区别糖代谢⒈糖酵解的关键反应:⑴葡萄糖磷酸化为6-磷酸葡萄糖(己糖激酶)⑵ 6-磷酸果糖转变为1,6-双磷酸果糖(6-磷酸果糖激酶-1)⑶磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化生成ATP(丙酮酸激酶)2.产能的方式和数量:方式:底物水平磷酸化净生成ATP数量:从G(葡萄糖)开始:2×2-2= 2ATP ;从Gn(糖原)开始:2×2-1= 3ATP3.糖酵解生理意义:①在于迅速提供能量。
②缺氧条件下获取能量的重要途径。
③无线粒体的红细胞以及依赖酵解供能的白细胞、骨髓等组织获能的重要途径。
④酵解还是彻底有氧氧化的前奏,准备阶段4.有氧氧化的生理意义:供能5.磷酸戊糖途径的生理意义:①为核苷酸的生成提供核糖②提供NADPH作为供氢体参与多种代谢反应6.糖原的合成:组织定位:主要在肝脏、肌肉;细胞定位:胞浆7.糖原分解:亚细胞定位:胞浆⑴肌糖元的分解:由于肌肉组织中不存在葡萄糖-6-磷酸酶,所以生成的6-磷酸葡萄糖不能转变成葡萄糖释放入血,提供血糖,而只能进入酵解途径进一步代谢。
8.糖异生的生理意义:①维持血糖浓度恒定;②补充肝糖原;③调节酸碱平衡9.胰岛素是体内唯一降低血糖水平的激素脂类代谢1.脂肪动员是甘油三酯分解的起始步骤,甘油三酯脂肪酶是脂肪动员的限速酶2.脂酸的β-氧化的步骤:脱氢、加水、再脱氢、硫解。
3.酮体生成的生理意义:“肝内生成,肝外利用”4.胆固醇:合成部位:胞液及光面内质网合成原料:乙酰CoA(合成胆固醇的唯一碳源);ATP;NADPH + H+5.胆固醇转变为胆汁酸,这是胆固醇在体内代谢的最主要去路。
6.血浆脂蛋白超速离心法:乳糜微粒(CM)、极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)DNA复制1.DNA 复制的化学本质是生成3’, 5’-磷酸二酯键。
2.顺着解链方向生成的子链,复制是连续进行的,这股链称为领头链。
另一股链因为复制的方向与解链方向相反,不能顺着解链方向连续延长,这股不连续复制的链称为随从链。
复制中的不连续片段称为岡崎片段。
转录1、复制和转录的区别2、转录和复制的相同点⑴都以DNA 为模板;⑵都需要依赖DNA 的聚合酶⑶都从5’至3’方向延伸新链⑷聚合过程都是核苷酸之间生成磷酸二酯键;⑸都遵从碱基配对规律3、生物的转录过程有起始、延长、终止三步蛋白质 逆转录中心法则:基因表达调控1、基因调控是在转录起始水平上2、起始密码子:AUG;终止密码子:UAA UAG UGA蛋白质的生物合成1、遗传密码的特点:方向性;连续性;简并性;摆动性;通用性2、核蛋白体结构模式:P位:肽酰位;A位:氨基酰位;E位:排出位3、起始肽链合成的氨基酰-tRNA:真核生物: Met-tRNAiMet原核生物: fMet-tRNAifMet二、名词解释和简答题蛋白质1.蛋白质的变性:在某些理化因素(加热、有机溶剂、强酸、强碱、重金属离子等)作用下,蛋白质空间构象破坏,其理化性质也改变,生物学活性丧失,溶解度降低、溶液的粘滞度增高、不容易结晶、易被酶消化,称为蛋白质变性。
破坏非共价键和二硫键,不改变蛋白质的一级结构.。
2.在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点3.蛋白质的结构:(1)蛋白质的一级结构:蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺序。
主要化学键是肽键,有的包含二硫键。
是蛋白质最基本的结构。
(2)蛋白质的二级结构:蛋白质的二级结构是指多肽链中主链骨架原子的局部空间排布,不涉及氨基酸侧链的构象。
主要化学键:氢键。
种类有α-螺旋,β-折叠,β-转角和无规卷曲。
*α-螺旋:①以α-碳原子为转折点,以肽键平面为单位,盘曲成右手螺旋状的结构。
②螺旋上升一圈含3.6个氨基酸残基,螺距0.54nm③氨基酸的侧链伸向螺旋的外侧。
④螺旋的稳定是靠氢键。
氢键方向与长轴平行。
⑶蛋白质的三级结构:指多肽链在二级结构的基础上,由于氨基酸残基侧链R基的相互作用进一步盘曲或折迭而形成的特定构象。
也就是整条多肽链中所有原子或基团在三维空间的排布位置。
稳定主要靠次级键,包括氢键、盐键、疏水键以及范德华力等。
某些蛋白质中二硫键也起着重要的作用。
⑷蛋白质的四级结构 :二条或二条以上具有独立三级结构的多肽链组成的蛋白质。
其中,每条具有独立三级结构的多肽链称为亚基。
主要稳定因素:氢键、离子键酶2、酶的活性中心:在酶蛋白一级结构上相距远,在空间结构上近,形成一定空间结构,与底物结合发挥催化作用的部位。
酶的必需基团:结合基团:与底物结合的基团;催化基团:催化底物转变为产物的基团3、酶原:有些酶在细胞内合成或初分泌时是无活性的酶的前体,此前体物质称为酶原。
4、酶原激活:在一定条件下,酶原水解去掉一个或几个特定的肽段,使酶蛋白分子构象改变,呈现酶的活性的过程。
实质是酶活性中心的暴露或形成。
氨基酸代谢⒈转氨基作用:在转氨酶的催化下,某一氨基酸的α-氨基转移到另一种α-酮酸的酮基上,生成相应的氨基酸;原来的氨基酸则转变成α-酮酸。
⒉一碳单位:某些氨基酸在分解代谢过程中可以产生含有一个碳原子的基团。
体内的一碳单位:甲基(–CH3)、甲烯基(–CH2–)、甲炔基(–CH=)、甲酰基(–CHO)、亚胺甲基(–CH=NH)。
CO2不是一碳单位,一碳单位不能游离存在,常与四氢叶酸结合。
核酸⒈DNA变性:在某些因素的作用下,DNA双链互补碱基对之间的氢键断裂,双螺旋结构松散,形成无规则线团状分子的过程。
2. DNA复性:变性的DNA在适当的条件下,两条彼此分开的DNA单链重新缔合成为双螺旋结构的过程。
3.DNA的双螺旋结构:①两条反向平行的脱氧核苷酸链绕同一中心轴,形成右手螺旋的结构。
②磷酸-戊糖骨架位于外侧,两条链上的碱基以A=T、G=C相连,构成碱基平面,位于螺旋内侧。
③螺距为3.4nm,旋转一周为10个碱基对。
螺旋直径为2.0nm,存在一个大沟和一个小沟。
④氢键:维持双螺旋横向稳定;碱基堆砌力:维持纵向稳定核苷酸代谢⒈嘌呤核苷酸的从头合成:是指利用磷酸核糖、氨基酸、一碳单位及二氧化碳等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸的途径。
合成部位:肝、小肠和胸腺⒉补救合成:是指体内有些组织(脑、骨髓等)缺乏从头合成的酶,只能利用现成的嘌呤碱或嘌呤核苷为原料合成嘌呤核苷酸的过程。
组织器官:脑、骨髓;部位:胞液糖代谢⒈糖酵解:在缺氧情况下,葡萄糖生成乳酸的过程。
反应部位:胞浆,糖酵解分为两个阶段:第一阶段:由葡萄糖分解成丙酮酸,称之为糖酵解途径;第二阶段:由丙酮酸转变成乳酸⒉糖的有氧氧化在机体氧供充足时,葡萄糖彻底氧化成H2O和CO2,并释放出能量的过程。
是机体主要供能方式。
反应部位:胞液及线粒体3.磷酸戊糖途径是指由葡萄糖生成磷酸戊糖及NADPH+H+,前者再进一步转变成3-磷酸甘油醛和6-磷酸果糖的反应过程。
细胞定位:胞液。
反应过程可分为二个阶段:第一阶段:氧化反应;第二阶段则是非氧化反应4.糖异生是指从非糖化合物转变为葡萄糖或糖原的过程。