基于MATLABSimulink的电力系统仿真实验
计算机仿真实验-基于Simulink的简单电力系统仿真
实验七 基于Simulink 的简单电力系统仿真实验一. 实验目的1) 熟悉Simulink 的工作环境及SimPowerSystems 功能模块库; 2) 掌握Simulink 的的powergui 模块的应用;3) 掌握发电机的工作原理及稳态电力系统的计算方法; 4)掌握开关电源的工作原理及其工作特点; 5)掌握PID 控制对系统输出特性的影响。
二.实验内容与要求单机无穷大电力系统如图7-1所示。
平衡节点电压044030 V V =∠︒ 。
负荷功率10L P kW =。
线路参数:电阻1l R =Ω;电感0.01l L H =。
发电机额定参数:额定功率100n P kW =;额定电压440 3 n V V =;额定励磁电流70 fn i A =;额定频率50n f Hz =。
发电机定子侧参数:0.26s R =Ω,1 1.14 L mH =,13.7 md L mH =,11 mq L mH =。
发电机转子侧参数:0.13f R =Ω,1 2.1 fd L mH =。
发电机阻尼绕组参数:0.0224kd R =Ω,1 1.4 kd L mH =,10.02kq R =Ω,11 1 kq L mH =。
发电机转动惯量和极对数分别为224.9 J kgm =和2p =。
发电机输出功率050 e P kW =时,系统运行达到稳态状态。
在发电机输出电磁功率分别为170 e P kW =和2100 e P kW =时,分析发电机、平衡节点电源和负载的电流、电磁功率变化曲线,以及发电机转速和功率角的变化曲线。
G 发电机节点V负荷lR l LLP图 7.1 单机无穷大系统结构图输电线路三.实验步骤1. 建立系统仿真模型同步电机模块有2个输入端子、1个输出端子和3个电气连接端子。
模块的第1个输入端子(Pm)为电机的机械功率。
当机械功率为正时,表示同步电机运行方式为发电机模式;当机械功率为负时,表示同步电机运行方式为电动机模式。
MATLAB Simulink系统建模与仿真 实验报告
MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。
基于MATLABSimulink电力系统短路故障分析与仿真
基于MATLAB/Simulink电力系统短路故障分析与仿真摘要:MATLAB有强大的运算绘图能力,给用户提供了各种领域的工具箱,而且编程语法简单易学。
论文对电力系统的短路故障做了简要介绍并对短路故障的过程进行了理论分析和MATLAB软件在电力系统中的应用,介绍了Matlab/Simulink的基本特点及利用MATLAB进行电力系统仿真分析的基本方法和步骤。
在仿真平台上,以单机—无穷大系统为建模对象,通过选择模块,参数设置,以及连线,对电力系统的多种故障进行仿真分析。
关键词:MATLAB、短路故障、仿真、电力系统Abstract:MATLAB has powerful operation ability to draw, toolkit provides users with a variety of fields, and easy to learn programming grammar. Paper to give a brief introduction of fault of the power system and the process of fault are analyzed in theory and the application of MATLAB software in power system, this paper introduces the basic characteristics of MATLAB/Simulink and MATLAB power system simulation analysis of the basic methods and steps. On the simulation platform, with single - infinity system for modeling object, by selecting module, parameter Settings, as well as the attachment, a variety of fault simulation analysis of power system.Keyword:MATLAB;Fault analysis;Simulation;Power System;引言 (3)第一章:课程设计任务书 (3)1.1设计目的: (3)1.2原始资料: (4)1.3设计内容及要求: (4)第二章:电力系统短路故障仿真分析 (5)2.1元件参数标幺值计算: (5)2.2等值电路: (10)第三章:电力系统仿真模型的构建 (10)3.1MATLAB简介: (11)3.2电力元件设计: (11)3.2.1 三相电源: (11)3.2.2 变压器元件: (13)3.2.3输电线路: (14)3.3电力系统模型的搭建: (15)第四章:模型仿真运行 (21)4.1建立仿真模型: (21)4.2仿真结果与分析: (22)第五章: 总结 (25)参考文献 (25)附录:Simulink仿真模型 (26)引言随着电力工业的发展,电力系统规划、运行和控制的复杂性亦日益增加,电力系统的生产和研究中仿真软件的应用也越来越广泛。
MATLAB-SIMULINK在电力系统工程仿真中的应用
MATLAB-SIMULINK在电力系统工程仿真中的应用MATLAB/SIMULINK在电力系统工程仿真中的应用随着电力系统的规模日益庞大和复杂性的增加,为确保电力系统的安全可靠运行,电力系统工程仿真成为了工程设计和运维过程中的重要环节。
MATLAB/SIMULINK作为一种强大的仿真工具,可以有效地模拟电力系统的各种电路、设备与系统,为电力系统工程提供精确的仿真分析与设计。
电力系统工程仿真是一种通过计算机模拟的方法,用以预测和分析电力系统的运行状况和特性。
在传统的电力系统工程中,工程师们常常使用基于经验公式和简化模型的手工计算方法进行设计和评估。
然而,由于电力系统的复杂性和不确定性,采用手工计算方法不仅效率低下,而且容易出现误差。
相比之下,MATLAB/SIMULINK具有更高的仿真精度和灵活性,能够更准确地模拟电力系统的各个方面。
首先,MATLAB/SIMULINK可以用来模拟电力系统的电路和设备。
在电力系统中,包括变压器、发电机、电动机等各种电器设备都是电路连接的要素。
MATLAB/SIMULINK提供了丰富的电路模型和元件库,可以很方便地构建各种电路模型。
例如,我们可以根据电路拓扑结构和参数数据构建一个发电机的模型,通过输入不同的工作条件和控制信号,可以模拟发电机在各种负载情况下的工作状态。
其次,MATLAB/SIMULINK还可以用来模拟电力系统的控制策略。
在电力系统中,各种控制策略被用来保持电力系统的稳定运行。
例如,电力系统中常用的电压控制和频率控制都是通过调节发电机和变压器的控制信号来实现的。
在MATLAB/SIMULINK中,我们可以根据电力系统的实际控制策略,构建相应的控制模型,通过输入系统的状态量和反馈信号,并根据设计的控制逻辑进行仿真分析。
这使得工程师们可以在设计阶段对控制策略进行优化,以提高电力系统的稳定性和鲁棒性。
此外,MATLAB/SIMULINK还可以用于电力系统的故障分析和可靠性评估。
matlabsimulink电力系统建模与仿真源代码
matlabsimulink电力系统建模与仿真源代码Matlab Simulink是一款功能强大的系统级建模和仿真工具,用于电力系统建模与仿真。
它极大地简化了系统级建模和仿真的流程,使得系统级建模和仿真不再是一项困难和耗时的工作。
这篇文章将介绍如何使用Matlab Simulink来进行电力系统建模与仿真,并给出相应的源代码。
1. 建立电力系统首先,我们需要建立电力系统。
可以通过添加各种组件来建立电力系统,比如发电机、变压器、传输线等。
在Matlab Simulink中,这些组件可以通过搜索库获得。
2. 设置模型参数在建立电力系统之后,我们需要设置模型的参数。
这些参数包括电压、电流、频率、相位等等。
根据不同的模型和实验条件,模型参数可能有所不同。
3. 添加输入和输出接下来,我们需要添加输入和输出。
这些输入和输出可能是电流、电压、功率等等。
在添加输入和输出之后,我们需要定义它们的格式,并将它们与相应的模型参数相连。
4. 编写MATLAB函数在建立电力系统之后,我们需要编写MATLAB函数。
这些函数可能包括方程、差分方程或其他类型的方程。
这些函数可以用于计算电力系统的各种参数,比如电阻、电感、电容等等。
5. 编写电力系统仿真源代码最后,我们需要编写电力系统仿真源代码。
这些代码将根据设置的模型参数和输入输出来模拟电力系统的各种行为。
在编写电力系统仿真源代码之前,我们需要先了解系统的行为和响应。
以下是一个简单的Matlab Simulink电力系统建模与仿真源代码实例:```% Example: Simulate a simple electrical systemclc;time = 0:0.01:10; % Time vectorV1 = 2*sin(2*pi*60*time); % AC voltage waveformR = 10; % ResistanceL = 1; % InductanceC = 0.01; % CapacitanceI = zeros(size(time)); % CurrentQ = zeros(size(time)); % Capacitor voltage% Simulate systemfor i=2:length(time)dt = time(i) - time(i-1);V2 = V1(i) - I(i-1)*R;I(i) = I(i-1) - dt*(R*I(i-1)/L + Q(i-1)/L - V2/L);Q(i) = Q(i-1) + dt*(I(i-1) - Q(i-1)/(R*C));end% Plot Resultsfigure;subplot(2,1,1);plot(time,V1,'r',time,I,'b');xlabel('Time (s)'); ylabel('V (V), I (A)');title('Voltage and Current vs. Time');legend('Voltage','Current');subplot(2,1,2);plot(time,Q,'g');xlabel('Time(s)'); ylabel('Q(C,V) (Coulombs, Volts)');title('Charge and Voltage vs. Time');legend('Charge');```以上是一个简单的电力系统建模和仿真源代码实例,包括电压、电流、电感、电容等基本元素。
哈工大 计算机仿真技术实验报告 实验六 基于Simulink的简单电力系统仿真
实验六 基于Simulink 的简单电力系统仿真(一:实验目的(1)掌握Simulink 的工作环境及SimPowerSystems 功能模块库的应用; (2)掌握Simulink 的电力电子电路建模和仿真方法; (3)掌握Simulink 下数学模型的仿真方法;(4)掌握升压、降压斩波电路(Buck Chopper )的工作原理及其工作特点; (5)掌握PID 控制对系统输出特性的影响。
二、实验原理通过降压斩波电路,电压发生降低,再通过桥式整流器将输入信号变为直流信号,再经过BWM 模块的作用,使输出波形变为三角波信号。
三:实验内容Buck 降压型电路原理图如图6-1所示。
图中,功率管VT 为MOSFET 开关调整组件,其导通与关断由控制脉冲决定;二极管VD 为续流二极管,开关管截止时可保持输出电流连续。
ref V 为输出电压给定参考量;L R 为负载电阻。
系统基本参数为:电源电压)314sin(100)(t t e =;变压器BT 为理想变压器,其变比为1:2=n ;PWM 频率为Hz f PWM 2000=;误差放大器放大倍数为1000=V K ;电阻Ω01.0C R ;整流滤波电容F C μ1000=,PWM 滤波电容F C o μ10=、电感H L 05.0=;负载电阻Ω=10L R 。
系统基本参数见表6.1。
分析Buck 变换器的工作特性。
表6.1 系统基本参数C R(Ω)C (F μ)o C(F μ)L(H)L R(Ω)V KnPWMf(Hz )0.01 100010 0.05 10 10002:12000K误差放大器比较器refV 锯齿波+-inu Di ini si 1:2LR oC LC R C)(t e 图6.1 Buck 变换器电路图o u VTBTVD+-ou Li +-L u四:实验仿真结果及分析五、实验总结利用simulink进行电子电路系统的仿真,形象直观。
一般步骤为:1、做出电路图,明确问题中所给出的各物理量及其相应的初值问题。
基于MATLABSimulink的电力系统仿真实验
基于MATLAB/Simulink的电力系统故障分析10kv系统三相短路分析三相短路(以中性点不接地系统模型为类)模块搭建:三相短路各元件参数设置如下:三相短路仿真波形如下:如图1——a、b、c三相短路电流仿真波形图分析:正常运行时,a、b、c三相大小相等,相位相差120度。
发生三相短路时,a、b、c三相电压全如图2——线路1的零序电流分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I0。
如图3——线路1的零序电压分析:在没有故障时,没有零序电压,突然出现故障时,零序电流为故障电压的3倍,为3U0。
如图4——线路1的故障相电压如图5——线路3的零序电流如图6——线路3的短路电流如图7——三相对称电源电压如图8——线路2的零序电流分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I0。
如图9——三相对称电源电流如图10——三相对称电源零序电压如图11——一相短路电流10kv系统两相短路分析仿真模块搭建同三相短路,只有三相故障模块参数改变如下:注:a、b两相短路分析:两相短路原理同三相短路,两相短路复合序网图是无零序并联网,短路两相电压相等,电流互为相反数,非故障相电流为零。
零点漂移轨迹的验证一理论分析对于以下简单的中性点不接地系统,当其发生单相接地故障时,各量之间满足以下关系:其中,分别表示A、 B、 C三相对O’点的导纳则用复数形式可表示为其相量关系如下图:则可得所以,可以推出中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.二matalab仿真模型搭建类似单相短路电源参数设置消弧线圈参数设置其它参数设置类似单相接地短路短路,但是接下来不知该怎么把它的参数通过图形描述出来,以此证明中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.如下图:。
电力电子课程设计报告matlab仿真实验
一.课程设计目的(1)通过matlab的simulink工具箱,掌握DC-DC、DC-AC、AC-DC电路的仿真。
通过设置元器件不同的参数,观察输出波形并进行比较,进一步理解电路的工作原理;(2)掌握焊接的技能,对照原理图,了解工作原理;(3)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力;二.课程设计容第一部分:simulink电力电子仿真/版本matlab7.0(1)DC-DC电路仿真(升降压(Buck-Boost)变换器)仿真电路参数:直流电压20V、开关管为MOSFET(阻为0.001欧)、开关频率20KHz、电感L为133uH、电容为1.67mF、负载为电阻负载(20欧)、二极管导通压降0.7V(阻为0.001欧)、占空比40%。
仿真时间0.3s,仿真算法为ode23tb。
图1-1占空比为40%的,降压后为12.12V。
触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。
图1-2占空比为60%的,升压后为28.25V。
触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。
图1-3•图1-4升降压变换电路(又称Buck-boost电路)的输出电压平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反,其电路原理图如图1-4(a)所示。
它主要用于要求输出与输入电压反相,其值可大于或小于输入电压的直流稳压电源工作原理:①T导通,ton期间,二极管D反偏而关断,电感L储能,滤波电容C向负载提供能量。
②T关断,toff期间,当感应电动势大小超过输出电压U0时,二极管D导通,电感L经D向C和RL反向放电,使输出电压的极性与输入电压在ton期间电感电流的增加量等于toff期间的减少量,得:由的关系,求出输出电压的平均值为:上式中,D为占空比,负号表示输出与输入电压反相;当D=0.5时,U0=Ud;当0.5<D<1时,U0>Ud,为升压变换;当0≤D<0.5时,U0<Ud,为降压变换。
基于matlab simulink的直流微电网的建模和仿真
直流微电网的建模和仿真目录1 引言 (3)1.1 目的 (3)1.2 文档格式 (3)1.3 术语 (3)1.4 参考文献 (3)2 系统概述 (4)3直流微网的能量管理方法 (4)4系统建模 (5)4.1PV电池 (5)4.2 PV电池DCDC变换器建模 (8)4.3蓄电池双向DCDC1变换器建模 (9)4.4逆变器建模 (11)4.5负载建模 (12)4.6蓄电池建模 (13)5仿真验证 (13)6结论 (18)1 引言1.1 目的该文档针对独立智能供电及生活保障系统的需求,给出了提供智能供电的直流微电网系统框架,并根据这一框架搭建理论模型和仿真模型。
验证这一直流微电网系统的功能可行性。
1.2 文档格式本文档按以下要求和约定进行书写:(1)页面的左边距为2.5cm,右边距为2.0cm,装订线靠左,行距为最小值20磅。
(2)标题最多分三级,分别为黑体小三、黑体四号、黑体小四,标题均加粗。
(3)正文字体为宋体小四号,无特殊情况下,字体颜色均采用黑色。
(4)出现序号的段落不采用自动编号功能而采用人工编号,各级别的序号依次为(1)、1)、a)等,特殊情况另作规定。
1.3 术语1.4 参考文献2 系统概述图1 直流微网的系统框图图1为直流微网的系统框图,仿真系统包括以下几个部分:1)PV组件的特性模型2)蓄电池的模型3)PV组件后的DCDC拓扑模型和控制模型4)蓄电池后双向DCDC1的拓扑模型和控制模型5)逆变器包括:单相逆变器和三相逆变器的拓扑模型和控制模型6)交流负载模型7)直流负载模型8)超级电容模型(暂缺)9)超级电容后双向DCDC2的拓扑模型和控制模型(暂缺)10)柴油机模型(暂缺)11)智能控制器2与光伏智能控制器的协调控制模型(暂缺)3直流微网的能量管理方法能量管理思想:管理微网中各分布电源的能量流动,使得微网工作最优状态。
以下为结合我们项目的一个能量管理原则,有了这个管理原则,就可以明确各个分布电源的控制方法。
电力系统的MATLAB SIMULINK仿真与应用( (3)
SIMULINK是MATLAB的一个分支产品,主要用来实现对工程 问题的模型化及动态仿真。SIMULINK体现了模块化设计和系统 级仿真的思想,采用模块组合的方法使用户能够快速、准确地 创建动态系统的计算机模型,使得建模仿真如同搭积木一样简 单。SIMULINK现已成为仿真领域首选的计算机环境。
第3章 SIMULINK应用基础
具体到电力系统仿真而言,原来的MATLAB编程仿真是在文 本命令窗口中进行的,编制的程序是一行行的命令和MATLAB函 数,不直观也难以与实际电力模型建立形象的联系。在 SIMULINK环境中,电力系统元器件的模型都用框图来表达,框 图之间的连线表示了信号流动的方向。对用户而言,只要熟悉 了SIMULINK仿真平台的使用方法以及模型库的内容,就可以使 用鼠标和键盘绘制和组织系统模型,并实现系统的仿真,完全 不必从头设计模型函数或死记那些复杂的函数。
为了叙述方便,本书将模块库中以图标形式表示的典型环 节称为模块,将用典型环节模块组成的系统仿真模型简称为模 型。
第3章 SIMULINK应用基础
3.1.2 SIMULINK仿真平台 从MATLAB窗口进入SIMULINK仿真平台的方法有以下两种: (1) 点击MATLAB菜单栏中的[File>New>Model],如图3-3
第3章 SIMULINK应用基础 图3-5 模块的基本操作示例
第3章 SIMULINK应用基础
表3-2 SIMULINK中信号线的基本操作方法
操作内容 在模块间 连线 移动线段
移动节点
画分支信 号线
删除信号 线 信号线标 签
操作目的
操作方法
在两个模块之间建 在上级模块的输出端按住鼠标左键,拖动至下级模块的输
MATLAB Simulink系统建模与仿真 实验报告.
MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。
基于simulink的Matlab仿真作业(电气工程专业)1
MATLAB在电力系统仿真实验中的应用张三(陕西西安西安科技大学710054)摘要:在介绍Matlab内容的基础上, 以电力系统仿真实验为例, 阐述了在Matlab软件Simulink环境下的电力系统工具箱(PSB), 是如何进行电力系统仿真实验与分析的。
实践证明, 利用Matlab做仿真实验, 可以通过实验现象较快地理解课程理论, 初步掌握用仿真来分析复杂电力系统的能力。
关键词:Matlab ; 电力系统; 仿真实验一:引言现代电力系统是一个超高压、大容量和跨区域的巨大的联合系统。
电力系统事故具有突发性强、维持时间短、复杂程度高、破坏力大的特点, 因而使得事后对故障原因分析、查找变得尤其困难。
在这种情况下, 许多大型电力科研与教学实验一则是实际条件难以满足, 二则系统安全运行也不容许进行一些实验(如系统短路实验等)。
电力系统暂态仿真是了解电力系统在遭受扰动后系统中各种电气参数变化趋势的一种方法。
电力系统故障暂态仿真是模拟短路发生时候故障点和故障线路的电压和电流的变化情况, 开关暂态仿真是模拟一次闭合或操作后流过系统的暂态电流或一次开断操作后, 当工频电流被遮断时, 出现在遮断设备的端子上暂态恢复电压, 从而了解不同电网配置下电流和电压振荡的振幅、频率和形式。
Matlab (Matrix laboratory ) 语言最初是在1980年由美国的CleVeMoler博士研制的, 其目的是为线性代数等课程提供一种方便可行的实验手段。
MathWorks公司在80年代发行使之成为著名数值型计算软件。
Matlab具有编程效率高、程序设计灵活、图形处理功能强大等优点。
为准确建立系统模型和进行仿真分析, Matlab提供了系统模型图形输入工具Simulink工具箱。
通过鼠标在模型窗口画出研究的系统的模型, 直接对系统进行仿真。
Simulink提供了用方框图进行建模的模型窗口, 与传统的用微分方程和积分方程建模相比, 更直接,更方便灵活。
基于Matlab的小型电力系统的建模与仿真实验1【精品毕设、无需降重】精选全文完整版
可编辑修改精选全文完整版基于Matlab的小型电力系统的建模与仿真实验1【精品毕设、无需降重】基于Matlab的小型电力系统的建模与仿真一、实验目的电力系统的动态仿真研究将不能在实验室中进行的电力系统运行模拟得以实现。
在判定一个电力系统设计的可行性时,都可以首先在计算机机上进行动态仿真研究,它的突出优点是可行、简便、经济的。
本实验目的是通过MATLAB 的simulink环境对一个典型的工厂供电系统进行仿真,以熟悉供电系统在发生各种短路故障时的分析方法并与课堂知识进行对比学习。
二、预习与思考1、建立仿真模型,对不同短路形式进行仿真,截取仿真结果图,补充报告中每个仿真图形的名称。
2 数值仿真实验结果与课堂推导结果有什么区别与联系?3 典型的短路形式包括几种?4 根据仿真结果,说明短路时零序电流存在的必要条件?三、MATLAB PSB简介Matlab PSB(Sim Power Systems)以simulink为运行环境,涵盖了电路、电力电子、电气传动和电力系统等电气学科中常用的基本元件和系统仿真模型,它主要由6个子模块库组成。
(1)电源模块库:包括直流电压源、交流电压源、交流电流源、可控电压源、可控电流源、三相电源、三相可编程电压源;(2)基本元件模块库:串联(并联)RLC/负载/支路、变压器(单相、三相等)、断路器和三相故障部分;(3)电力电子模块库:二极管、晶闸管、GTO、IGBT、MOSFET、理想开关以及各种电力电子控制模块;(4)电机模块库:励磁装置、异步电动机、同步电动机、直流电动机以及配套的电机测量部件;(5)测量仪器库:电流测量和电压测量等;通过以上模块可以完成.各种基本的电力电子电路、电力系统电路和电气传动电路,还可以通过其他模块的配合完成更高层次的建模,如风力发电系统、机器人控制系统等等。
四、仿真模型的设计和实现在三相电力系统中,大多数故障都是由于短路故障引起的,在发生短路故障的情况下,电力系统从一种状态剧烈变化到另一种状态,并伴随着复杂的暂态现象。
电力系统的MATLABSIMULINK仿真与应用
机器的浮点运算误差限 (若某变量的绝对值小于 eps,则为 0) 不定式(0/0 或 inf/inf 的结果) 存放最后一次的错误信息 存放最新的警告信息
第2章 MATLAB编程基础
2.2.2 赋值语句 MATLAB采用命令行形式旳体现式语言,每一种命令
行就是一条语句,其格式与书写旳数学体现式十分相近, 非常轻易掌握。顾客在命令窗口输入语句并按下回车键后, 该语句就由MATLAB系统解释运行,并给出运行成果。 MATLAB旳赋值语句有下面两种构造。
第2章 MATLAB编程基础
2.2.1 变量 变量是保留数据信息旳一种最基本旳数据类型。变量
旳命名应遵照如下规则: (1) 变量名必须以字母开头; (2) 变量名可以由字母、数字和下划线混合构成; (3) 变量名辨别字母大小写; (4) MATLAB保留了某些具有特定意义旳默认变量(见
表2-3),顾客编程时可以直接使用,并尽量防止此外自定义。 例如,Long和My_long1均是有效旳变量名,Long和
返回变量列表和输入变量列表均可以由若干变量名构 成。若返回变量个数不小于1,则它们之间应当用逗号或空 格分隔;若输入变量个数不小于1,则它们之间只能用逗号 分隔。
第2章 MATLAB编程基础 【例2.3】通过调用size( )函数求取矩阵维数。 解:在MATLAB命令窗口中依次输入图2-7所示语句并 回车确认。
第2章 MATLAB编程基础
第2章 MATLAB编程基础
2.1 MATLAB旳工作环境 2.2 MATLAB语言旳基本元素 2.3 矩阵旳MATLAB运算 2.4 MATLAB旳程序流程控制 2.5 M文献旳编写 2.6 MATLAB旳图形绘制 2.7 MATLAB编程仿真与应用 习题
电力系统的matlab-simulink仿真及应用-0142-0186优选全文
I Te Ω PCu 28.7 A 3V1 cos31.5
(4-21)
(2) 按图4-4-11。
第4章 电力系统主要元件等效模型 图4-65 例4.5的仿真电路图
第4章 电力系统主要元件等效模型
表4-11 例4.5仿真电路模块的名称及提取路径
第4章 电力系统主要元件等效模型
电气连接端子(A、B、C)为电机的定子电压输入,可直 接连接三相电压;电气连接端子(a、b、c)为转子电压输出, 一般短接在一起或者连接到其它附加电路中。
通过“电机测量信号分离器”(Machines Measurement Demux)模块可以将输出端子中的各路信号分离出来,典型 接线如图4-61所示。
输出 1-3 4-5 6-7 8-9
10-12 13-14 15-16 17-18
19 20 21
符号 ira,irb,irc id,iq rq,rd Vrq,Vrd isa,isb,isc isd,isq sq,sd Vsq,Vsd m Te m
端口 ir_abc ir_qd phir_qd vr_qd is_abc is_qd phis_qd vs_qd wm Te Thetam
s n1 nn 15001455 0.03
n1
1500
式中,同步转速n1 = 60fn /p = 1500 r/min。
定子额定相电流为
I1
Rs
j X1s
jX m jX m
V1 (Rr Rr(1 s) / s (Rr Rr (1 s) / s
jX1r ) jX1r )
0.458
第4章 电力系统主要元件等效模型 解:(1) 理论分析。采用异步电动机的T形等效电路进 行计算,等效电路如图4-64。图中,Rs + X1s为定子绕组的漏 阻抗;Xm为励磁电抗;+为折算后转子绕组的漏阻抗;s为 转差率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB/Simulink的电力系统故障分析
10kv系统三相短路分析
三相短路(以中性点不接地系统模型为类)模块搭建:
三相短路各元件参数设置如下:
三相短路仿真波形如下:
如图1——a、b、c三相短路电流仿真波形图
分析:正常运行时,a、b、c三相大小相等,相位相差120度。
发生三相短路时,a、b、c三相电压全
如图2——线路1的零序电流
分析:在没有故障时,没有零序电流,突然出现故障时,零
序电流为故障电流的3倍,为3I。
如图3——线路1的零序电压
分析:在没有故障时,没有零序电压,突然出现故障时,零。
序电流为故障电压的3倍,为3U
如图4——线路1的故障相电压
如图5——线路3的零序电流
如图6——线路3的短路电流
如图7——三相对称电源电压
如图8——线路2的零序电流
分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I0。
如图9——三相对称电源电流
如图10——三相对称电源零序电压
如图11——一相短路电流
10kv系统两相短路分析
仿真模块搭建同三相短路,只有三相故障模块参数改变如下:
注:a、b两相短路
分析:两相短路原理同三相短路,两相短路复合序网图是无零序并联网,短路两相电压相等,电流互为相反数,非故障相电流为零。
零点漂移轨迹的验证
一理论分析
对于以下简单的中性点不接地系统,当其发生单相接地故障时,各量之间满足以下关系:
其中,分别表示A、B、C三相对O’
点的导纳
则
用复数形式可表示为
其相量关系如下图:
则
可得
所以,可以推出中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.
二matalab仿真
模型搭建类似单相短路
电源参数设置
消弧线圈参数设置
其它参数设置类似单相接地短路短路,但是接下来不知该怎么把它的参数通过图形描述出来,以此证明中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.如下图:。