函数的表示法(2)-映射ppt
合集下载
人教A版必修第一册3.1.2函数的表示法PPT课件
课本P72,习题3.1 3 , 7 P101 7
例如,当x=2时, M(2)=max{f(2),g(2)}=max{3,9}=9,请分别用图 像法和解析法表示M(x)
P73页13.函数f (x) [x]的函数值表示不超过x的最大整数, 例如,[3.5] 4,[2.1] 2.当x (2.5,3]时, 写出函数f (x)的解析式,并画出函数的图像。
2.求抽象函数的定义域的方法:
已知f(x)的定义域,求f(g(x))的定义域:
已知f(g(x))的定义域,求f(x)的定义域:
(1)定义域是指x的取值范围; (2)f(x)与f(g(x))这两个括号的范围是一致的
探索点二 求函数的值域 (金版 P49)
【例 2】 (1)函数 y= 的值域为 (-∞,2)∪(2,+∞) .
4
x, x 0
3
y x, x 0
2
1
-3 -2 -1 O 1 2 3 x
在定义域内不同部分上,有不同的 解析表达式的函数通常叫做分段函数
分段函数:对于一个函数,在定义域的不同部 分,有不同的表达式,图象由不同的几段构成.
(1)分段函数是一个函数, 不要把它误认为是几个函数;
(2)分段函数的定义域是各段定义域的 并集,值域是各段值域的并集.
测 试
成绩 序 第1次
号 姓名
第2次
第3次 第4次
第5次 第6次
王伟
98
87
91
92
88
95
张城
90
76
88
75
86
80
赵磊
68
65
73
72
75
82
班级平均分 88.2 78.3 85.4 80.3 75.7 82.6
《函数与映射》PPT课件
(C )
A.4,6,1,7
B.7,6,1,4
C.6,4,1,7
D.1,6,4,7
2021/1/21
精选课件ppt
10
§2.1.1 函数与映射(一)
例1.设映射f:x→-x2+2x是实数集M到实数集N的
映射,若对于实数p∈N,在M中不存在原象,则
p的取值范围是
()
A. (1,+∞) B.[1,+∞)
数关系的有
()
A.0个 B.1个 C.2个 D.3个
2021/1/21
精选课件ppt
8
§2.1.1 函数与映射(一)
【解析】根据函数的定义:“集合M中的任一元素, 在对应法则f作用下,在集合N中都有唯一元素与之 对应.”由此逐一进行判断.
对于图a:M中属于(1,2]的元素,在N中没有
对于图b:符合M到N 对于图c:M中有一部分的元素的象不属于集合N, 因此它不表示M到N 对于图d:其象不唯一,因此也不表示M到N的函 数关系.
本题解法一转化为方程解的问题,解法二转化 为求函数值域问题.
2021/1/21
精选课件ppt
13
§2.1.1 函数与映射(一)
例 2. 设 集 合 A= { a,b } ,B= { 0,1 } , 试 列 出 映 射 f:A→B的所有可能的对应法则f.
设f:A→B是集合A到集合B的一个映射.如果在这个映射下, 对于集合A中的不同元素,在集合B中有不同的象,而且B 中每一个元素都有原象,那么这个映射就叫做A到B上的一 一映射.
2021/1/21
精选课件ppt
3
§2.1.1 函数与映射(一)
3.函数的三要素 函数是由定义域、值域以及从定义域到值域的对应法则三 部分组成的特殊映射. 4.函数的表示法:
人教A版必修一数学课件:1.2.2函数的表示法(第2课时分段函数及映射)
研修班
3
x+2,x≤-1 2 已知函数 f(x)=x ,-1<x<2 ,求 f(f(f(-3))) 2x,x≥2 【思路点拨】 由题目可获取以下主要信息: ①函数 f(x)是分段函数; ②本例是求值问题. 解答本题需确定 f(f(-3))的范围,为此又需 确定 f(-3)的范围,然后根据所在定义域代入相 应解析式逐步求解.
2018/12/1 研修班 8
对含有绝对值的函数,要作出其图象,首先应根据绝对值
的意义去掉绝对值符号,将函数转化为分段函数,然后分段作 出函数图象.由于分段函数在定义域的不同区间内解析式不一
样,因此画图时要特别注意区间端点处对应点的实虚之分.
2.写出下列函数的解析式并作出函数图象: (1)设函数y=f(x),当x<0时,f(x)=0;当x≥0时,f(x)=2; (2)设函数y=f(x),当x≤-1时,f(x)=x+1;当-1<x<1时,f(x)
2018/12/1
研修班
2
1.分段函数是一个函数还是几个函数?其定义域、值域各
是什么? 【提示】 分段函数是一个函数而非几个函数,其定义域是
各段定义域的并集,值域是各段值域的并集.
2.函数是映射吗? 【提示】 对比函数定义与映射定义可知,函数是特殊的映
射,是从非空数集到非空数集的映射.
2018/12/1
2018/12/1
研修班
4
【解析】 ∵-3≤-1,∴f(-3)=-3+2=-1 ∴f(f(-3))=f(-1)=1,
∵-1<1<2,
∴f(f(f(-3)))=f(1)=1.
(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相
应的解析式求得. (2)像本题中含有多层“f”的问题,要按照“由里到外”的顺序,层层
函数的表示法课件ppt
王伟
张城
赵磊
班平均分
1 2 3 4 5 6 x
y
0
一、函数的三种表示法
0
赵磊同学的数学学习成绩低于班级平均水平,但他的成 绩曲线呈上升趋势,表明他的数学成绩稳步提高.
二、分段函数
设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
三、映射的概念
你认为映射定义中的关键词是什么? 如何理解这些关键词? (2) 映射定义与函数定义的区别是什么?
5
4
3
2
1
y
y=
0<x ≤ 5
5 < x ≤ 10
10 < x ≤ 15
15 < x≤20
2,
3,
4,
5,
0 5 10 15 20 x
5
4
3
2
1
y
解:设票价为y,里程为x,则根据题意, 自变量x的取值范围是(0,20]
由“招手即停”公共汽车的票价的规定规则, 可得到以下函数解析式:
三、映射的概念
思考:对于例7中的(3),(4)作如下改编. (3) 对应关系f:每一个三角形都对应它的内切圆; (4) 对应关系f:每一个班级都对应班里的学生;
每一个圆都对应它的内接三角形;
集合B={x|x是圆},
集合A={x|x是三角形},
每一个学生都对应他的班级;
解析法: 图象法: 列表法:
就是用数学表达式表示两个变量之间的对应关系.
就是用图象表示两个两个变量之间的对应关系.
就是列出表格来表示两个变量之间的对应关系.
函数的表示方法ppt
例如,在物理学中,通过绘制物体的运动轨迹图,可以直观地了解物体的运动规律;在工程中,通过绘 制电路图,可以直观地了解电路的工作原理和连接方式。
03 表格法
定义
01
表格法是一种通过表格的形式来表示函数的方法。
02
它通过列出自变量和因变量的对应关系来描述函数。
03
表格中的每一行表示自变量的一种取值,每一列表 示因变量对应的取值。
THANKS FOR WATCHING
感谢您的观看
举例
例如,函数 (f(x) = x^2 + 2x + 1) 可以 表示为如下表格
| --- | --- |
| x | f(x) |
举例
| -2 | 1 |
| -1 | 0 |
|0|1|
举例
|1|4|
|2|9|
VS
应用场景
01
表格法适用于表示简单函数或离散函数的值。
02
在实际应用中,表格法常用于描述一些具有离散性质
举例
例如,对于函数 (f(x) = x^2),其图象是一个开口向上的抛物线, 位于x轴上方。
当x的值从负无穷增大到正无穷时,y的值也随之增大,表示 函数随着x的增大而增大。
应用场景
图象法在数学、物理、工程等多个领域都有广泛的应用。
在解决实际问题时,图象法可以帮助我们直观地理解函数的性质和变化规律,从而更好地解决相关问题。
应用场景
• 解析法适用于需要精确描述函数关系的情况,如科 学计算、工程设计和数学研究等领域。由于解析法 具有精确性和可操作性,因此在实际应用中得到了 广泛的应用。
02 图象法
定义
函数图象法是一种通过绘制函数的图 形来表示函数的方法。
03 表格法
定义
01
表格法是一种通过表格的形式来表示函数的方法。
02
它通过列出自变量和因变量的对应关系来描述函数。
03
表格中的每一行表示自变量的一种取值,每一列表 示因变量对应的取值。
THANKS FOR WATCHING
感谢您的观看
举例
例如,函数 (f(x) = x^2 + 2x + 1) 可以 表示为如下表格
| --- | --- |
| x | f(x) |
举例
| -2 | 1 |
| -1 | 0 |
|0|1|
举例
|1|4|
|2|9|
VS
应用场景
01
表格法适用于表示简单函数或离散函数的值。
02
在实际应用中,表格法常用于描述一些具有离散性质
举例
例如,对于函数 (f(x) = x^2),其图象是一个开口向上的抛物线, 位于x轴上方。
当x的值从负无穷增大到正无穷时,y的值也随之增大,表示 函数随着x的增大而增大。
应用场景
图象法在数学、物理、工程等多个领域都有广泛的应用。
在解决实际问题时,图象法可以帮助我们直观地理解函数的性质和变化规律,从而更好地解决相关问题。
应用场景
• 解析法适用于需要精确描述函数关系的情况,如科 学计算、工程设计和数学研究等领域。由于解析法 具有精确性和可操作性,因此在实际应用中得到了 广泛的应用。
02 图象法
定义
函数图象法是一种通过绘制函数的图 形来表示函数的方法。
函数的概念与表示法课件(共19张PPT)
( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.
高数课件-映射与函数
义的一切实数组成的合集,这种定义域称为函数的自然定义域。在这种约定之下,一
般的用算是表达的函数可用“y=∱(x)”表达,而不必再出Df。
例如,函数y=
1- x 2 的定义域是封闭间 -1,1 ,函数y=
1 的定义域是开区间 1- x2
(-1,1)。
表示函数的主要方法有三种:表格法、图形法、解析法(公 式法)。其中,用图形法表下)的像,并记作∱(χ),即
y=∱(χ), 而元素χ称为元素y(在映射∱下)的一个原像;集合X称为映射∱的定义域,记作Df, 即Df=X;X中所有元素的像所组成的集合称为映射∱的值域,记作Rf或者∱(χ),即
Rf=∱(X)= f(x) I χ∈X
在上述映射的定义中,需要注意的是:
映 射
与
主讲人: 日期 :
函 数
第一节 映射与函数
映射是现代数学中的一个基本概念,而函数是微积分的研究对象,也是映射的一 种。本节主要介绍映射、函数及有关概念,函数的性质与运算等。
一.映射
1.映射概念 定义 设X、Y是两个非空集合,如果存在一个法则∱,使得对X中的每个元素χ,按法则∱, 在Y中有唯一确定的元素y与之对应,那么称∱为从X到Y的映射,记作
由复合映射的定义可知,映射ℊ和∱构成复合映射的条件是:ℊ的值域Rg必须包含 在∱的定义域内,即Rg⊂Df,否则,不能构成复合映射。由此可以知道,映射ℊ和∱的复 合是有顺序的,∱∘ℊ有意义并不表示ℊ∘∱也有意义。即使∱∘ℊ与ℊ∘∱都有意义,复合映 射∱∘ℊ与ℊ∘∱也未必相同。
例4
设有映射ℊ:R→ -1,1 ,对每个x∈R,ℊ(x)=sinx;映射∱: -1,1 → 0,1 , 对每个 u∈ -1,1 ,∱(u)= 1- u2,则映射ℊ和∱构成的复合映射∱∘ℊ:R→ 0,1
函数的概念及其表示法ppt课件
∴2aa+=b1=,-1,
即ab= =12-,32.
∴f(x)=12x2-32x+2.
(3)在 f(x)=2f1x· x-1 中, 将 x 换成1x,则1x换成 x,
得 f1x=2f(x)· 1x-1,
由fx=2f1x· x-1, f1x=2fx· 1x-1,
解得 f(x)=23 x+13.
答案
2 (1)lgx-1(x>1)
解析 (1)f56=3×56-b=52-b, 若52-b<1,即 b>32时, 则 ff56=f52-b=352-b-b=4, 解之得 b=78,不合题意舍去. 若52-b≥1,即 b≤32,则 =4,解得 b=12.
(2)当 x<1 时,ex-1≤2,解得 x≤1+ln 2, 所以 x<1.
当 x≥1 时, ≤2,解得 x≤8,所以 1≤x≤8.
解析 (1)令 t=2x+1(t>1),则 x=t-2 1, ∴f(t)=lgt-2 1,即 f(x)=lgx-2 1(x>1). (2)设 f(x)=ax2+bx+c(a≠0), 由 f(0)=2,得 c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1, 则 2ax+a+b=x-1,
2.下列给出的四个对应中: ①A=B=N*,对任意的 x∈A,f:x→|x-2|; ②A=R,B={y|y>0},对任意的 x∈A,f:x→x12; ③A=B=R,对任意的 x∈A,f:x→3x+2; ④A={(x,y)|x,y∈R},B=R,对任意的(x,y)∈A,f:(x,y)→x +y. 其中对应为函数的有________(填序号).
第1讲 函数的概念及其表示法
考试要求 1.函数的概念,求简单函数的定义域和值域,B 级要求;2.选择恰当的方法(如图象法、列表法、解析法)表 示函数,B级要求;3.简单的分段函数及应用,A级要求.
函数的表示法ppt
,进而求出函数的极限、导数等数学特征。
03
应用实际生活
函数图像不仅在数学中有用,也可以应用于实际生活中,例如物理学
、工程学、经济学等领域都可以用函数图像来表示一些现象的变化规
律。
04
表格表示法
表格的构造和意义
01
横坐标:自变量的取值
02
纵坐标:因变量的取值
表格中的每个点的颜色或形状表示函数值的正负或大小
03
用Excel或其他表格软件制作函数表格
打开表格软件并选择适当的工 作表
从上到下、从左到右输入自变 量的取值
根据函数关系计算因变量的取 值并填入表格中
可以使用公式、图表等工具提 高表格的制作效率和精度
从函数图像转换到表格数据
确定自变量和因变量的取值范围,并选择合 适的步长
可以使用网格线、标记等工具提高表格的清 晰度和易读性
函数表示方法概述
表格法
用一张表格来列出函数的输入和输 出值,这种方法适用于一些比较简 单的函数。
图象法
用图象来表示函数的输入和输出值 之间的关系,这种方法直观易懂。
解析式法
用数学式子来表示函数的输入和输 出值之间的关系,这种方法适用于 任何类型的函数。
程序法
用编程语言来实现函数的输入和输 出值的映射关系,这种方法适用于 实现复杂的功能。
值域
指因变量y的取值范围,根据函数的性质和实际问题的 要求,确定函数的值域。
函数的单调性和奇偶性
单调性
指函数在某个区间内递增或递减的性质,根据函数的导数或图像特征来判断 。
奇偶性
指函数关于原点对称或关于y轴对称的性质,根据函数的图像或表达式特点来 判断。
解决实际问题中变量的约束关系
1.2.2函数的表示法(二)映射
映射:A和B不一定是数集.
例如:
f:平方
1
2
1
3
4
2
5
6
3
7
8
9
是函数
也是映射
学生甲 学生乙 学生丙 学生丁
f
高一3班
高一4班
只是映射
以下是不是映射?
①开平方
3
9
-3
4
2 -2
1
1
-1
以下是不是映射?
①开平方
3
9
-3
方
-1
2
1
-2
4
3 -3
9
以下是不是映射?
①开平方
记作:f:x y, x A, y B 或者f:A B,其中x称为原象,y称为象
象与原象的定义:
给定一个集合A到B的映射,且a∈A, b∈B,若a与b对应,则把元素b叫做a在 B中的象,而a叫做b的原象.
③求正弦 1
2
30
2
45
2
60
3
90
2
1
④乘以2 1
1
2 3
2
4
3
5
6
函数与映射之间的异同: 1)函数是一个特殊的映射; 2)函数:数集A数集都是数集,
a
e
a
e
a
e
bf
bf
bf
c
g
c d
g
c
g d
“原象集”不 能有剩余元素
“象集”可 以有剩余元 素
例1. 判断下列对应是否映射?有没有对 应法则?
a
e
a
e
a
e
bf
bf
bf
c
例如:
f:平方
1
2
1
3
4
2
5
6
3
7
8
9
是函数
也是映射
学生甲 学生乙 学生丙 学生丁
f
高一3班
高一4班
只是映射
以下是不是映射?
①开平方
3
9
-3
4
2 -2
1
1
-1
以下是不是映射?
①开平方
3
9
-3
方
-1
2
1
-2
4
3 -3
9
以下是不是映射?
①开平方
记作:f:x y, x A, y B 或者f:A B,其中x称为原象,y称为象
象与原象的定义:
给定一个集合A到B的映射,且a∈A, b∈B,若a与b对应,则把元素b叫做a在 B中的象,而a叫做b的原象.
③求正弦 1
2
30
2
45
2
60
3
90
2
1
④乘以2 1
1
2 3
2
4
3
5
6
函数与映射之间的异同: 1)函数是一个特殊的映射; 2)函数:数集A数集都是数集,
a
e
a
e
a
e
bf
bf
bf
c
g
c d
g
c
g d
“原象集”不 能有剩余元素
“象集”可 以有剩余元 素
例1. 判断下列对应是否映射?有没有对 应法则?
a
e
a
e
a
e
bf
bf
bf
c
(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)
的一种“程序”或“方法”.因此要把“2x + 1”及“ x + 1”看成一个整体来求解.
1 1 (2)设f( +1)= 2-1,则f(x)=________. x x (3)若对任意x∈R,都有f(x)-2f(-x)=9x+2,则f(x)= ________.
[答案]
(1)D (2)x2-2x(x≠1)
6.(2012· 全国高考数学文科试题江西卷)设函数f(x)= x2+1 x≤1 2 ,则f(f(3))=( x>1 x 1 A.5 2 C. 3 B.3 13 D. 9 )
[答案] D
7.已知函数f(x)=
2 x -4,0≤x≤2, 2x,x>2,
,则f(2)=
2.作图时忘记去掉不在函数定义域内的点 [例5] 数的值域. [错解]
x,-1≤x≤1, 由题意,得y= -x,x<-1或x>1.
x|1-x2| 画出函数y= 2 的图象,并根据图象指出函 1-x
[例 5]
(1)已知 f(x)=x2,求 f(2x+1);
(2)已知 f( x+1)=x+2 x,求 f(x). 1 (3)设函数 f(x)满足 f(x)+2f(x )=x (x≠0),求 f(x). [分析] 我们前面指出,对应法则“f”实际上是对“x”计算
5.(山东冠县武的高2012~2013月考试题)已知函数f(x)
x+1x≥0 = fx+2x<0
则f(-3)的值为( B.-1 D.2
)
A.5 C.-7
[答案] D
如图,在边长为4的正方形ABCD的边上有一点P,沿折 线BCDA由点B(起点)向点A(终点)运动,设点P运动的路程为 x,△APB的面积为y. (1)求y关于x的函数关系式y=f(x); (2)画出y=f(x)的图象; (3)若△APB的面积不小于2,求x的取值范围.
函数的表示法ppt
描点
根据函数解析式,在坐标系上描出对应的点。
画出坐标系
在平面直角坐标系中,以横轴表示自变量,纵轴表示因变 量。
连接点
按照自变量从小到大的顺序,用平滑的曲线将各点连接起 来。
图像法的优缺点
• 优点 • 可视化直观:函数图像能够直观地展现函数的变化趋势和特征。 • 信息丰富:图像上可以获得函数的重要信息,如极值点、单调性等。 • 便于比较:多个函数图像在同一坐标系下可以直观地进行比较。 • 缺点 • 精度受限:图像法只能近似地表达函数,无法提供精确值。 • 作图繁琐:绘制函数图像需要一定时间和精力。 • 适用范围有限:对于复杂函数或超越函数,图像法可能无法准确表达。
数据可视化中应用图像法可以将大量数据信息 直观呈现,提表格法:通过列出表格的方式来表示函数关系,如 线性回归模型参数的表格形式表示。
应用案例:医学研究中的生存分析,通过表格列出 患者的年龄、性别、生存时间等信息。
统计分析中应用表格法可以简洁明了地呈现数据 信息,方便进行数据分析和挖掘。
程序法在算法模拟中的应用
程序法:通过编写程序的方式来实现一个函数关系,如使用某种编程语言实现一个排序算法。 应用案例:计算机模拟导弹轨迹、预测人口增长等。 算法模拟中应用程序法可以更加灵活地实现各种算法,进行更为复杂和精细的模拟和分析。
THANKS
谢谢您的观看
根据函数的对应关系,可以将函数 分为线性函数、二次函数、幂函数 、对数函数、三角函数等。
函数表示方法的分类
解析式表示法
图象表示法
表格表示法
程序表示法
通过数学符号来表示函数,如 y = f(x)。
通过绘制函数的图象来表示函数 。
通过列出函数的自变量和因变量 的对应值来表示函数。
根据函数解析式,在坐标系上描出对应的点。
画出坐标系
在平面直角坐标系中,以横轴表示自变量,纵轴表示因变 量。
连接点
按照自变量从小到大的顺序,用平滑的曲线将各点连接起 来。
图像法的优缺点
• 优点 • 可视化直观:函数图像能够直观地展现函数的变化趋势和特征。 • 信息丰富:图像上可以获得函数的重要信息,如极值点、单调性等。 • 便于比较:多个函数图像在同一坐标系下可以直观地进行比较。 • 缺点 • 精度受限:图像法只能近似地表达函数,无法提供精确值。 • 作图繁琐:绘制函数图像需要一定时间和精力。 • 适用范围有限:对于复杂函数或超越函数,图像法可能无法准确表达。
数据可视化中应用图像法可以将大量数据信息 直观呈现,提表格法:通过列出表格的方式来表示函数关系,如 线性回归模型参数的表格形式表示。
应用案例:医学研究中的生存分析,通过表格列出 患者的年龄、性别、生存时间等信息。
统计分析中应用表格法可以简洁明了地呈现数据 信息,方便进行数据分析和挖掘。
程序法在算法模拟中的应用
程序法:通过编写程序的方式来实现一个函数关系,如使用某种编程语言实现一个排序算法。 应用案例:计算机模拟导弹轨迹、预测人口增长等。 算法模拟中应用程序法可以更加灵活地实现各种算法,进行更为复杂和精细的模拟和分析。
THANKS
谢谢您的观看
根据函数的对应关系,可以将函数 分为线性函数、二次函数、幂函数 、对数函数、三角函数等。
函数表示方法的分类
解析式表示法
图象表示法
表格表示法
程序表示法
通过数学符号来表示函数,如 y = f(x)。
通过绘制函数的图象来表示函数 。
通过列出函数的自变量和因变量 的对应值来表示函数。
高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法第2课时分段函数与映射课件
0, < 0,
A.0
B.π
C.π2 D.9
解析:f(f(-3))=f(0)=π.
答案:B
||
2.函数 f(x)=x+ 的图象是(
||
解析:f(x)=x+
答案:C
)
)
+ 1, > 0,
=
是分段函数.
-1, < 0
当堂检测
探究一
探究二
探究三
探究四
思想方法
当堂检测
3.已知A=R,B={x|x≥1},映射f:A→B,且A中元素x与B中元素y=x2+1
解:(1)函数 y=
探究一
探究二
探究三
探究四
思想方法
当堂检测
反思感悟 1.因为分段函数在定义域的不同区间内解析式不一样,
所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也
可以是一些孤立的点或几段线段,画图时要特别注意区间端点处对
应点的实虚之分.
2.对含有绝对值的函数,要作出其图象,第一根据绝对值的意义去
通过图象得出实数根的个数.但要注意这种方法一般只求根的个数,
不需知道实数根的具体数值.
探究一
探究二
探究三
探究四
思想方法
当堂检测
变式训练 讨论关于x的方程|x2-4x+3|=a(a∈R)的实数解的个数.
解:作函数y=|x2-4x+3|及y=a的图象如图所示,
方程|x2-4x+3|=a的实数解就是两个函数图象的交点(纵坐标相等)
自己的身高;
③A={非负实数},B=R,f:x→y= 3 .
A.0个 B.1个 C.2个D.3个
A.0
B.π
C.π2 D.9
解析:f(f(-3))=f(0)=π.
答案:B
||
2.函数 f(x)=x+ 的图象是(
||
解析:f(x)=x+
答案:C
)
)
+ 1, > 0,
=
是分段函数.
-1, < 0
当堂检测
探究一
探究二
探究三
探究四
思想方法
当堂检测
3.已知A=R,B={x|x≥1},映射f:A→B,且A中元素x与B中元素y=x2+1
解:(1)函数 y=
探究一
探究二
探究三
探究四
思想方法
当堂检测
反思感悟 1.因为分段函数在定义域的不同区间内解析式不一样,
所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也
可以是一些孤立的点或几段线段,画图时要特别注意区间端点处对
应点的实虚之分.
2.对含有绝对值的函数,要作出其图象,第一根据绝对值的意义去
通过图象得出实数根的个数.但要注意这种方法一般只求根的个数,
不需知道实数根的具体数值.
探究一
探究二
探究三
探究四
思想方法
当堂检测
变式训练 讨论关于x的方程|x2-4x+3|=a(a∈R)的实数解的个数.
解:作函数y=|x2-4x+3|及y=a的图象如图所示,
方程|x2-4x+3|=a的实数解就是两个函数图象的交点(纵坐标相等)
自己的身高;
③A={非负实数},B=R,f:x→y= 3 .
A.0个 B.1个 C.2个D.3个
高中数学 1.2.2函数表示法(二)课件 新人教A版必修1
A 求 正 弦 B
1
30
2
2
45
2
60
3
90
2 1
h
2
A 求 平 方 B39-3来自24-2
1
1
-1
h
3
A 开 平 方 B
3
9
-3
4
2 -2
1
1 -1
h
4
A 乘 以 2 B
1
1
2
3
2
4
5
3
6
h
5
A乘 以 4B
0
1
4
2
3
12
4
5
20
h
6
映射f:A→B,可理解为以下4点:
函映数射
设A,B是两个非空的数集集合,如果按某一个 确定的对应关系f,使对于集合A中的任意一 个元素x,在集合B中都有唯一确定的元素y与 之对应,那么就称对应f:A→B为从集合A到集 合B的一个函映数射。
由此可知,映射是函数的推广,函 数是一种特殊的映射。
h
1
判断下列对应是不是映射?如果是,那这个映射 是函数吗?
若函数f(x)的定义域为[a,b],则f(g(x))的定义 域应由不等式a≤g(x)≤b解出即得。
练习 若函数f(x)的定义域为[1,4],则函数f(x+2)
的定义域为_[_-1_,_2_]_.
h
10
例 已知f(2x-1)的定义域是[0,3],求f(x)定义域。
已知f(g(x))的定义域,求f(x)定义域的方法: 已知f(g(x))的定义域为D,则f(x)的定义域为
h
17
1、A中每个元素在B中必有唯一的象 2、对A中不同的元素,在B中可以有相同的象 3、允许B中元素没有原象 4、A中元素与B中元素的对应关系,可以 是:一对一,多对一,但不能一对多
1
30
2
2
45
2
60
3
90
2 1
h
2
A 求 平 方 B39-3来自24-2
1
1
-1
h
3
A 开 平 方 B
3
9
-3
4
2 -2
1
1 -1
h
4
A 乘 以 2 B
1
1
2
3
2
4
5
3
6
h
5
A乘 以 4B
0
1
4
2
3
12
4
5
20
h
6
映射f:A→B,可理解为以下4点:
函映数射
设A,B是两个非空的数集集合,如果按某一个 确定的对应关系f,使对于集合A中的任意一 个元素x,在集合B中都有唯一确定的元素y与 之对应,那么就称对应f:A→B为从集合A到集 合B的一个函映数射。
由此可知,映射是函数的推广,函 数是一种特殊的映射。
h
1
判断下列对应是不是映射?如果是,那这个映射 是函数吗?
若函数f(x)的定义域为[a,b],则f(g(x))的定义 域应由不等式a≤g(x)≤b解出即得。
练习 若函数f(x)的定义域为[1,4],则函数f(x+2)
的定义域为_[_-1_,_2_]_.
h
10
例 已知f(2x-1)的定义域是[0,3],求f(x)定义域。
已知f(g(x))的定义域,求f(x)定义域的方法: 已知f(g(x))的定义域为D,则f(x)的定义域为
h
17
1、A中每个元素在B中必有唯一的象 2、对A中不同的元素,在B中可以有相同的象 3、允许B中元素没有原象 4、A中元素与B中元素的对应关系,可以 是:一对一,多对一,但不能一对多
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B中的对应元素y称为x的像.
7
说明:(1)这两个集合A、B,它们可以 是数集,也可以是点集或其它集合,这两 个集合有先后顺序,A到B的映射与B到A 的映射是截然不同的。其中f表示具体的对 应法则,可以用文字叙述; (2)集合A中的任何一个元素都有像,并 且象是唯一的; “都有像,象唯一” (3)不要求集合B中每一个元素都有原 像,即B中可能有些元素不是集合A中 的元素的像;
(1)对于任何一个实数a,数轴上都有唯一
的点P和它对应. (2)对于坐标平面内任何一个点A,都有唯
一的有序实数对(x,y)和它对应;
(3)对于任意一个三角形,都有唯一确定的 面积和它对应;
4
5
请 思 考 并 分 析 右 边 给 出 的 对 应 关 系
A 9 4
开平方
B 3 -3 2 -2 1 -1
12
(1)函数与映射有什么区别与联系?
函数是一种特殊的映射,是从非空数集到非空数集的 映射。 函数概念又可以叙述为:设A,B是两个非空数集,f 是A到B的一个映射,那么映射f:A→B就叫做A到B 的函数。 在函数中,原像的集合称为定义域,像的集合称为值 域。 在研究函数的过程中,人们通常通过编号等方式(如 风、海浪、地震等的级别)把一般映射数字化,使之 成为函数,因为一旦表示为函数,那么有关函数的性 质以及函数值的运算就可以使用了。
A 300 450 600 900
求正弦
B
1 2
2 2 3 2
1Leabharlann 1(1)一对多A 1 -1 2 -2 3 -3
(2)一对一
A 乘以2 1 2 3 B 1 2 3 4 5 6 1 4 9
求平方
B
(3)多对一
(4)一对一
:
6
一、映射:一般地,设A、B是两个集 合,如果按照某种对应法则f,对于集 合A中的任何一个元素,在集合B中都 有唯一的一个元素和它对应,那么这 样的对应(包括集合A、B以及A到B的 对应法则)叫做集合A到集合B的映射, 记作: f : AB A中的元素x称为原像,
求 f 1 ,f 2 .
2
日常生活中存在着丰富的对应关系. (1)对于高一3班的每一位同学,都有一个 学号与之对应. (2)我国各省会,都有一个区号与之对应. (3)我国各大中小城市,都有一个邮政编码 与之对应. (4)顺德区的各种机动车辆,都有一个车牌 号与之对应.
3
初中数学中也学过一些对应.
解:1 是 2是
3 不是。B中有两个元素与A中一个元素对应
4 不是。A中元素0在B中无元素与之对应
9
例二 求像与原像:
(1)从R到R+的映射f:x→|x|+1,则R中的元素-1
2 在R+中的像是____,R+中的元素4中R中的原像是 ±3 _______. (2)在给定的映射f:(x,y)→(x+y,x-y)下, (3,-1) 则点(1,2)在f下的像是_________,
13
小结
映射是特殊的对应:多对一或一对一; 函数是特殊的映射;
14
从集合A到B是“多对一”,“一对一”的对应, 8 且集合A中没有剩余的元素的对应.
例一、 下列对应是不是A到B的映射? 1 A={1,2,3,4},B={3,4,5,6,7,8,9} , f:乘2加1 2 A=N+,B={0,1} ,f: x 除以2得的余数 3 A=R+,B=R,f:求平方根 ss 4 A={x|0≤ x<1},B={y|y≥1} f:取倒数
3 1 ( , ) 2 2 点(1,2)在f下的原像是___________.
10
例3:设集合A={a,b},集合B={c,d,e}. (1)试建立一个由A到B的映射。 (2)由A到B一个的映射共有多少个?
规律:若集合A有m个元素,集合B有n个元素, m 个 那么由A到B的映射共有
n
11
例4:已知集合A={1,2,3,k}, B={4,7,a4,a2+3a}, 且a∈N,k∈N,x∈A,y∈B, 映射f:A B,使得B中元素 y=3x+1和A中的x对应, 求a和k.
画下列函数的图象
① y 1 ②
x
练习:
x 0, , 1 2 3 ,
0
x 1 y
x x
画函数图象一定要先考虑函数 的定义域
1
①分段函数是一个函数;
②分段函数的定义域是每分段区间的并 集。
3 x 2 , x 0 x 0 的图象,并 画出函数 f x 1 x0
7
说明:(1)这两个集合A、B,它们可以 是数集,也可以是点集或其它集合,这两 个集合有先后顺序,A到B的映射与B到A 的映射是截然不同的。其中f表示具体的对 应法则,可以用文字叙述; (2)集合A中的任何一个元素都有像,并 且象是唯一的; “都有像,象唯一” (3)不要求集合B中每一个元素都有原 像,即B中可能有些元素不是集合A中 的元素的像;
(1)对于任何一个实数a,数轴上都有唯一
的点P和它对应. (2)对于坐标平面内任何一个点A,都有唯
一的有序实数对(x,y)和它对应;
(3)对于任意一个三角形,都有唯一确定的 面积和它对应;
4
5
请 思 考 并 分 析 右 边 给 出 的 对 应 关 系
A 9 4
开平方
B 3 -3 2 -2 1 -1
12
(1)函数与映射有什么区别与联系?
函数是一种特殊的映射,是从非空数集到非空数集的 映射。 函数概念又可以叙述为:设A,B是两个非空数集,f 是A到B的一个映射,那么映射f:A→B就叫做A到B 的函数。 在函数中,原像的集合称为定义域,像的集合称为值 域。 在研究函数的过程中,人们通常通过编号等方式(如 风、海浪、地震等的级别)把一般映射数字化,使之 成为函数,因为一旦表示为函数,那么有关函数的性 质以及函数值的运算就可以使用了。
A 300 450 600 900
求正弦
B
1 2
2 2 3 2
1Leabharlann 1(1)一对多A 1 -1 2 -2 3 -3
(2)一对一
A 乘以2 1 2 3 B 1 2 3 4 5 6 1 4 9
求平方
B
(3)多对一
(4)一对一
:
6
一、映射:一般地,设A、B是两个集 合,如果按照某种对应法则f,对于集 合A中的任何一个元素,在集合B中都 有唯一的一个元素和它对应,那么这 样的对应(包括集合A、B以及A到B的 对应法则)叫做集合A到集合B的映射, 记作: f : AB A中的元素x称为原像,
求 f 1 ,f 2 .
2
日常生活中存在着丰富的对应关系. (1)对于高一3班的每一位同学,都有一个 学号与之对应. (2)我国各省会,都有一个区号与之对应. (3)我国各大中小城市,都有一个邮政编码 与之对应. (4)顺德区的各种机动车辆,都有一个车牌 号与之对应.
3
初中数学中也学过一些对应.
解:1 是 2是
3 不是。B中有两个元素与A中一个元素对应
4 不是。A中元素0在B中无元素与之对应
9
例二 求像与原像:
(1)从R到R+的映射f:x→|x|+1,则R中的元素-1
2 在R+中的像是____,R+中的元素4中R中的原像是 ±3 _______. (2)在给定的映射f:(x,y)→(x+y,x-y)下, (3,-1) 则点(1,2)在f下的像是_________,
13
小结
映射是特殊的对应:多对一或一对一; 函数是特殊的映射;
14
从集合A到B是“多对一”,“一对一”的对应, 8 且集合A中没有剩余的元素的对应.
例一、 下列对应是不是A到B的映射? 1 A={1,2,3,4},B={3,4,5,6,7,8,9} , f:乘2加1 2 A=N+,B={0,1} ,f: x 除以2得的余数 3 A=R+,B=R,f:求平方根 ss 4 A={x|0≤ x<1},B={y|y≥1} f:取倒数
3 1 ( , ) 2 2 点(1,2)在f下的原像是___________.
10
例3:设集合A={a,b},集合B={c,d,e}. (1)试建立一个由A到B的映射。 (2)由A到B一个的映射共有多少个?
规律:若集合A有m个元素,集合B有n个元素, m 个 那么由A到B的映射共有
n
11
例4:已知集合A={1,2,3,k}, B={4,7,a4,a2+3a}, 且a∈N,k∈N,x∈A,y∈B, 映射f:A B,使得B中元素 y=3x+1和A中的x对应, 求a和k.
画下列函数的图象
① y 1 ②
x
练习:
x 0, , 1 2 3 ,
0
x 1 y
x x
画函数图象一定要先考虑函数 的定义域
1
①分段函数是一个函数;
②分段函数的定义域是每分段区间的并 集。
3 x 2 , x 0 x 0 的图象,并 画出函数 f x 1 x0