电磁场七章习题解答

合集下载

大学物理习题答案解析第七章

大学物理习题答案解析第七章

第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D )分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A ) (B ) (C ) (D )分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )r R B B 2=r R B B =r R B B =2r R B B 4=21==R r n n r R B r 2π2B r 2παB r cos π22αB r cos π2S B ⋅=m Φ(A ) ,(B ) ,(C ) ,(D ) ,分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )(B ) (C ) (D )分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。

电磁场与电磁波第七章习题及参考答案

电磁场与电磁波第七章习题及参考答案
解设一段长为 、特性阻抗为 的无损耗传输线,左端接信号源,右端接负载 ,如图所示。信号源产生沿 方向传输的电压波和电流波为
(1)
(2)
图无损耗传输线
入射电压电流波传输到负载后,一部分被负载吸收,一部分被反射。反射电压电流波可写为
(3)
(4)
传输线上的总电压电流波可写为
(5)
(6)
在终端 ,
(7)
(8)
解:
图7.2-2
(7.2-5)
(7.2-6)
串联支路上的电压为
(1)
并联支路上的电流为
(2)
由(1)和(2)式得
(3)
(4)
两边同除 得
(5)
(6)
(5)、(6)式就是(7.2-5)和(7.2-6)式对应的传输线方程的时域形式。
7-3、由(7.2-10)、(7.2-3)、(7.2-4)和(7.2-9)式推导(7.2-11)和 (7.2-12)式。
习题
7-1、如果 已知,由无源区的麦克斯韦方程,求圆柱坐标系中 与 的关系。
解:设 ;
则 ;
在圆柱坐标系中展开无源区的麦克斯韦方程


由以上几式得
式中
7-2证明(7.2-6)式为(7.2-4)式的解。
证明:
由(7.2-6)式
可得:
因此 即(7.2-4)式
7-2、从图7.2-2的等效电路,求(7.2-5)和(7.2-6)式对应的传输线方程的时域形式。
解: 将
代入 并等式两边平方得
令等式两边实部和虚部分别相等,得
解以上两方程,得
(7.2-11)
(7.2-12)
7-4、证明(7.2-13)式为(7.2-7)式的解。

电磁学第七章习题答案

电磁学第七章习题答案

r r M = χmH
r r B = µ0 (1+ χm)H
令 r =1+ χm µ
潍坊学院
r r r B = µ0µr H = µH
7.1.4 磁介质存在时静磁场的基本规律
v v ∫ H ⋅ dl = I
L
S
v v ∫∫ B ⋅ dS = 0
v H= v B v −M
µ0
v v B = µH
潍坊学院
r L
进动
e r ∆pm
r B0
可以证明: r 可以证明:不论电子原来的磁矩与磁场方向之间的夹角 r 是何值, 是何值,在外磁场 B 中,电子角动量 L 进动的转向总是和 磁 0 r 的方向构成右手螺旋关系。 力矩 M的方向构成右手螺旋关系。这种等效圆电流的磁矩的 r 的方向相反。 方向永远与 B 的方向相反。 0 附加磁矩:因进动而产生的等效磁矩称为附加磁矩, 附加磁矩:因进动而产生的等效磁矩称为附加磁矩,用 r 表示。 符号 ∆pm 表示。 潍坊学院
∫(µ
r 定义 H =
潍坊学院
r B
0
r B
r r − M) ⋅ d = ∑I l
r r 则 ∫ H ⋅ dl = ∑I
µ0
r − M 为磁场强度
有磁介质时的 安培环路定理
磁介质中的安培环路定理: 磁介质中的安培环路定理 : 磁场强度沿任意闭合路径的 线积分等于穿过该路径的所有传导电流的代数和。 线积分等于穿过该路径的所有传导电流的代数和。
v 2、磁化强度 M 与磁化电流 I ′ 的关系
l
磁介质体内
n
之外不套链
v dl
一进一出 穿过曲面的总磁化电流为
面矢(分子电流所围) 面矢(分子电流所围)

电磁场与电磁波课后习题及答案七章习题解答

电磁场与电磁波课后习题及答案七章习题解答

《电磁场与电磁波》习题解答 第七章 正弦电磁波7.1 求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。

解 E m 为常矢量。

在直角坐标中cos cos cos n x y z x y z x y zαβγ=++=++e e e e r e e e故(cos cos cos )()cos cos cos n x y z x y z x y z x y z αβγαβγ⋅=++⋅++=++e r e e e e e e则j()[(cos cos cos )]22222[(cos cos cos )]2e ()()n r t j x y z t m m x x y y z zj x y z t m e j e j βωβαβγωβαβγωββ⋅-++-++-==∇=∇+∇+∇==e E E E E e E e E e E E E而22j[(cos cos cos )]222{e }x y z t m t t βαβγωω++-∂∂==-∂∂E E E故222222()(0j j t μεβμεωμεω∂∇-=+=+=∂EE E E E E 可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程2220t με∂∇-=∂EE故E 表示沿e n 方向传播的平面波。

7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

解 表征沿+z 方向传播的椭圆极化波的电场可表示为12()j z x x y y E jE e β-=+=+E e e E E式中取121[()()]21[()()]2j zx x y y x y j zx x y y x y E E j E E e E E j E E e ββ--=+++=---E e e E e e显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。

电磁场课后答案7

电磁场课后答案7

co
Rs =
πf 0 μ = 0.026Ω σ
m
7.15 对于 β >1 时,当插入青草叶子,随插入深度加深,曲线先下降,后上升。 对于 β <1 时,当插入青草叶子,随插入深度加深,曲线一直上升。
7.16 (2)
2
Γ(ω 0 ) =


后 答
所以对应半功率带宽的 ρ1, 2 =
1 + Γ(ω1 ) 1 − Γ(ω1 )
ww w
ρ0 −1 ρ0 + 1
=
2 1 ⎡ ⎛ ρ0 −1⎞ ⎤ ⎟ ⎥ ⎢1 + ⎜ 1+ 2⎢ ⎜ ρ0 + 1⎟ ⎝ ⎠ ⎥ ⎣ ⎦ 2 1 ⎡ ⎛ ρ0 −1⎞ ⎤ ⎟ ⎢1 + ⎜ 1− ⎟ ⎥ 2⎢ ⎜ ρ + 1 ⎠ ⎥ ⎣ ⎝ 0 ⎦
.k hd
Γ(ω1 )
1 [P (ω ) + Pr (ω 0 )] 1 Pr (ω1 ) 2 in 0 2 = = = 1 + Γ(ω 0 ) Pin (ω1 ) Pin (ω ) 2
1 1 + 2 = 99.65 × 10 8 Hz 2 a l
(2)
f0 =
(3) 储能 w =
εabl
8
2 E101 = 5.134 × 10 −12 ( j )
PL = 4.1 × 10 −5 w
7.9 不相同,因为 H = 密度就越高。
E
在 TE011 模式下,圆柱腔体的磁场如左图所示,底面电流如右图所示。
第七章题解
பைடு நூலகம்7.4 代公式 λ0 =
2 ⎛m⎞ ⎛n⎞ ⎛ p⎞ ⎜ ⎟ +⎜ ⎟ +⎜ ⎟ ⎝ a ⎠ ⎝b⎠ ⎝ l ⎠

电磁场与电磁波课后习题及答案七章习题解答 (2)

电磁场与电磁波课后习题及答案七章习题解答 (2)

《电磁场与电磁波》习题解答 第七章 正弦电磁波求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。

解 E m 为常矢量。

在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。

试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

:解 表征沿+z 方向传播的椭圆极化波的电场可表示为式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。

在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。

解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。

与之相伴的磁场为 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。

当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。

解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 '则磁场和电场分别为一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。

解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =。

考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为在自由空间中,某一电磁波的波长为0.2m 。

当该电磁波进入某理想介质后,波长变为0.09m 。

设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。

《电磁场与电磁波》(第四版)习题集:第7章 导行电磁波

《电磁场与电磁波》(第四版)习题集:第7章  导行电磁波

第7章 导行电磁波前面我们讨论了电磁波在无界空间的传播以及电磁波对平面分界面的反射与透射现象。

在这一章中我们将讨论电磁波在有界空间的传播,即导波系统中的电磁波。

所谓导波系统是指引导电磁波沿一定方向传播的装置,被引导的电磁波称为导行波。

常见的导波系统有规则金属波导(如矩形波导、圆波导)、传输线(如平行双线、同轴线)和表面波波导(如微带线),图7.0.1给出了一些常见的导波系统。

导波系统中电磁波的传输问题属于电磁场边值问题,即在给定边界条件下解电磁波动方程,这时我们可以得到导波系统中的电磁场分布和电磁波的传播特性。

在这一章中,将用该方法讨论矩形波导、圆波导和同轴线中的电磁波传播问题以及谐振腔中的场分布及相关参数。

然而,当边界比较复杂时,用这种方法得到解析解就很困难,这时如果是双导体(或多导体)导波系统且传播的电磁波频率不太高,就可以引入分布参数,用“电路”中的电压和电流等效前面波导中的电场和磁场,这种方法称为“等效传输线”法。

这一章我们还将用该方法讨论平行双线和同轴线中波的传播特性。

7.1导行电磁波概论任意截面的均匀导波系统如图7.1.1所示。

为讨论简单又不失一般性,可作如下假设: (1)波导的横截面沿z 方向是均匀的,即导波内的电场和磁场分布只与坐标x ,y 有关,与坐标z 无关。

(2)构成波导壁的导体是理想导体,即σ=∞。

(3)波导内填充的媒质为理想介质,即0σ=,且各向同性。

(4)所讨论的区域内没有源分布,即0ρ=0=J 。

a 矩形波导b 圆柱形波导c 同轴线传输线d 双线传输线e 微带线图7.0.1 常见的几种导波系统(5)波导内的电磁场是时谐场,角频率为ω。

设波导中电磁波沿+z 方向传播,对于角频率为ω的时谐场,由假设条件(1)和(2)可将其电磁场量表示为()()()(),,,,,,,z z x y z x y e x y z x y e γγ--==E E H H (7.1.1)式中γ称为传播常数,表征导波系统中电磁场的传播特性。

电磁学课后答案第七章

电磁学课后答案第七章

p 2
|
M
|
d
0
= 2p 2 B2 R4 3L
第七章
7-1 外加直流电时,
U1 = Rx I1
Rx
=
U1 I1
=
40W
外加交流电时
U z = Z I z = (Rx + j Lx ) I z
Rx2 +
2 Lx2
= Uz Iz
=
20 W 0.4
= 50W
Lx =
502 - 402 = 0.6H 50
(2)
Im
=
Vm Z
=
Vm R2 + ( L - 1 )2
C
Im = Vm ( [R2 + (
1 4C 2
-
L2 )
L-
1
3
)2 ]2
C
又 0 =
1 = 745rad / s 时 LC
Im = 0 ,达极大值, < 0 时, Im 0
所以电流先上升,再下降
(3)
= arctan
(4)
L- 1 C = -61.4
- d - L dI = 0 dt dt
由此得
dI = - B dS L
积分得
I = - B (-p R2 ) = p BR2
L
L
(2) 力矩
| M |=| m ´ B | = p R2IB sin = p R2 × p R2B (1- cos ) sin L
外力所做的总功为
ò W =
7-2
由Z = R+ 1 Z I =U jC
可得
R2 + ( 1 )2 I = U C
RI = UR

大学物理第七章稳恒磁场习题答案

大学物理第七章稳恒磁场习题答案

第七章 稳恒磁场习题7-1 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为多少?解:取平面S ’与半球面S 构成闭合曲面,根据高斯定理有 0m mS mS ΦΦΦ'=+=2cos mS mS r E ΦΦπα'=-=-球面外法线方向为其正方向7-2 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?08IR μ垂直画面向外0022II RR μμπ-垂直画面向里 00+42I IR Rμμπ垂直画面向外 7-3 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。

已知圆环的粗细均匀,求环中心O 的磁感应强度。

解: 如图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

且θ-πθ==21221R R I I 电阻电阻 1I 产生1B 方向⊥纸面向外πθπμ2)2(2101-=R I B2I 产生2B 方向⊥纸面向里πθμ22202R I B =∴1)2(2121=-=θθπI I B B 有0210=+=B B B7-4 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T 。

如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?(已知圆电流轴线上北极点的磁感强度()R IRR IR B 24202/32220μμ=+=)解:9042 1.7310A RBI μ==⨯方向如图所示7-5 有一同轴电缆,其尺寸如题图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。

试计算以下各处的磁感应强度:(1)r<R 1;(2)R 1<r<R 2;(3)R 2<r<R 3;(4)r>R 3。

解:同轴电缆的电流分布具有轴对称性在电缆各区域中磁感应线是以电缆轴线为对称轴的同心圆。

大学物理习题答案解析第七章

大学物理习题答案解析第七章

第七章恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r,螺线管通过的电流相同为I ,螺线管中的磁感强度大小BR 、Br满足()(A)B R 2B r (B)B R B r (C)2B R B r (D)B R 4B r分析与解在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比n R r 1n r R 2因而正确答案为(C)。

7 - 2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为()(A)2πr 2B (B)πr2B22(C)2πr 2Bcosα(D)πr 2Bcosα分析与解作半径为r 的圆S′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S′的磁通量;Φm B S .因而正确答案为(D).7 - 3 下列说法正确的是()( A )闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为( B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P1 、P2 为两圆形回路上的对应点,则(A)BL1dl BL2dl,B P1B P2B)BL1dl BL2dl,B P1B P2C)BL1dl BL2dl,B P1B P2D)BLdl BLdl,B P1B P2由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C).*7 - 5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为质的相对磁导率为μr(μr<1),则磁介质内的磁化强度为((A)μr 1 I /2πr (B)μr 1I /2πr(C)μr I /2πr (D)I /2πμr r分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M=(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B).7 - 6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行?已知电子的速率接近光速。

电磁学课后答案第七章

电磁学课后答案第七章

Im =
Vm = Z
Vm R2 + ( L 1 2 ) C
Im
1 - L2 ) 2 C = 3 1 2 2 [ R2 + ( L ) ] C Vm (
4

0
=
1 = 745rad / s 时 LC
Im
= 0 ,达极大值,
<
0
时,
Im
0
所以电流先上升,再下降 (3)
= arctan
(4)
LR
1 C = -61.4
7-13 (1)
1 j L L j C =R + j z = R+ 1 1 - 2 LC +j L j C
电路中总阻抗
z = R2 + (
L 12
LC
) 2 = 8.94W
(2)
Ic =
(3)
U z LC 220 1 × = ´ = 2.73 A z zC 5 ( 1 ´ 530 ´ 10 -6 ) 2 100p
N=
1´104 = 4.69 4.44 ´ 50 ´1.2 ´ 8
取N =5 得初级线圈,次级线圈匝数分别为
N1 = 5 ´ 220 = 1100匝 N 2 = 5 ´ 40 = 200匝 N 3 = 5 ´ 6 = 30匝
变压器结构如图
题解 7-20 图
2 0
2 2 2R 2 0 C +1 = R2 2 2 2 2 + R 0C
C2
R2
0
2 0
C2 = 1
=
1 RC
0时
(3)
=
z=
3 R(1 - j ) 2 1 R(1 - j ) , 2

基础物理学第七章(电磁感应)课后习题答案

基础物理学第七章(电磁感应)课后习题答案

第七章电磁感应变化电磁场思考题7-1感应电动势与感应电流哪一个更能反映电磁感应现象的本质?答:感应电动势。

7-2 直流电流表中线圈的框架是闭合的铝框架,为什么?灵敏电流计的线圈处于永磁体的磁场中,通入电流线圈就发生偏转。

切断电流后线圈在回复原来位置前总要来回摆动好多次。

这时如果用导线把线圈的两个接头短路,则摆动会马上停止。

这是什么缘故?答:用导线把线圈的两个接头短路,线圈中产生感应电流,因此线圈在磁场中受到一力偶矩的作用,阻碍线圈运动,使线圈很快停下来。

7-3让一块磁铁在一根很长的铅直铜管内落下,若不计空气阻力,试描述磁铁的运动情况,并说明理由。

答:当磁铁在金属管中时,金属管内感应感生电流,由楞次定律可知,感生电流的方向,总是使它所激发的磁场去阻止引起感应电流的原磁通量的变化,即:阻碍磁铁相对金属管的运动。

磁铁在金属管内除重力外,受到向上的磁力,向下的加速度减小,速度增大,相应磁力增大。

当磁力等于重力时,磁铁作匀速向下运动,达到动态平衡。

7-4用金属丝绕制的标准电阻是无自感的,怎样绕制才能达到自感系数为零的目的?答:如果回路周围不存在铁磁质,自感L的数值将与电流无关,仅由回路的几何性质、匝数以及周围磁介质的磁导率所决定。

把一条金属丝接成双线绕制,就能得到自感系数为零的线圈。

做纯电阻用的电阻器都是这样绕制的。

7-5 举例说明磁能是贮藏在磁场中的。

7-6如果电路中通有强电流,当你突然拉开闸刀断电时,就会有火花跳过闸刀。

试解释这一现象。

答:当突然拉开通有强电流电路中的刀闸而断电时,电路中电流迅速减小,电流的变化率很大,因而在电路中会产生很大的自感电动势。

此电动势可以把刀闸两端间的空气击穿,因而在刀闸处会有大的火花跳过。

7-7 变化的电场所产生的磁场,是否一定随时间而变化?变化的磁场所产生的电场,是否也一定随时间而变化?7-8 试比较传导电流与位移电流。

答:位移电流具有磁效应-与传导电流相同。

两者不同之处:产生机理不同,传导电流是电荷定向运动形成的,位移电流是变化的电场产生的;存在条件不同,传导电流需要导体,位移电流不需要导体,可以存在于真空中、导体中、介质中;位移电流没有热效应,传导电流产生焦耳热。

第07章 电磁感应电磁场习题解答

第07章 电磁感应电磁场习题解答

114第7章 电磁感应 电磁场7-1 (B )铜环和木环中,感应电动势相等,但木环为绝缘体,环中无感应电流。

7-2 (A )7-3 (C )作直线连接a 、d 与圆弧abcd 构成闭合回路,该闭合回路向右运动时,磁通量不随时间改变,即 0=+=+=ad i εεεεε直线圆弧, 故ad i εε-=,vBR ad Bv ad i 2==-=εε7-4 (D )211121I L W =, 222221I L W =,1612141222212121=⨯==I I L L W W7-5 洛仑兹力,感生电场力,变化的磁场7-6 2r B m π=ΦV dtdrBr dt d m i 4.0)8.0(1.08.014.322=-⨯⨯⨯⨯-=-=Φ-=πε 7-7 每转一周,感生电场力做功等于动能增量,即eV l d E e i 700=⋅⎰V dtdBr dt dB S dt d l d E m i 7002===Φ=⋅⎰π r =11700-⋅=s T dt dB π7-8 02202121μεB E = cB B E ==001με7-9 ac 间电势差等于其电动势⎰⋅⨯=l B v d )(ε端电势高c v bc B bc bc ab ac V1088.121105.11.0105.260cos 522---⨯=⨯⨯⨯⨯⨯=︒==+=εεεε习题7-9图v7-10 解:l B vd )(⋅⨯=⎰ε115先求bO ε,在Ob 上任取r rd ,d 上的)(B v ⨯方向如图则⎰⎰==︒︒=l bO Bl r rB r vB 320292d 0cos d 90sin ωωε习题7-10图v B⨯o同理 18d 2310Bl r rB l aO ωωε⎰==端电势高b Bl Bl Bl aObO ba 222611892ωωωεεε=-=-= 7-11 Bbx m =ΦNBbx m =ψdt d m i ψ-=ε,其大小为:)(dtdxNBb dt d m =ψ=ε 7-12 见图示,在圆弧⋂ab 上取一线元d l ,由于切割磁力线产生动生电动势l vB l B v d d cos d )(θε=⋅⨯=θ为B v⨯与l d 之间的夹角,由图示几何关系可知:ααπαθsin ,d d ,2R r R l ===+习题7-12图v B⨯αd αωααωααωααεd sin d sin d sin d 22BR BR r vBR ===∴则⋂ab 上的动生电动势为116ωπααωααωεεππ24/024/02282d 22cos 1d sin d BR BRBR-=-===⎰⎰⎰ε7-13 设t 时刻半圆形导线的法线与B 构成α角,因匀角速旋转,故t t πνωα2==,此时,通过半圆形部分的磁通量为t r B t BS πνπω2cos 2cos 2==Φ该电路中产生的感应电动势为t r B tπννπε2sin d d 22=Φ-= 感应电流为t Rr B R I πννπε2sin 22==其最大值为电流幅值Rr B I m νπ22=7-14 设t 时刻圆形导线的法线与B 构成θ角。

电磁学第7章习题参考答案

电磁学第7章习题参考答案

第7章 磁 力1.载电流为I ,磁矩为P m 的线圈,置于磁感应强度为B 的均匀磁场中,若P m 与B 方向相同,则通过线圈的磁通量Φ为 与线圈所受的磁力矩M 的大小为 解:通过线圈的磁通量 IBP S B m=⋅=Φ 磁力矩的大小 M =BP m sin φ 而 φ=0 所以 M=02. 一块半导体样品的体积为c b a ⨯⨯,如图所示。

沿X 方向有电流I ,在Z 轴方向加有均匀磁场B。

这时实验得出的数据为10.0=a 厘米,35.0=b 厘米,0.1=c 厘米,0.1=I 毫安,3000=B 高斯,片两侧的电势差55.6='A A U 毫伏。

(注:A A A A U U U ''-=)(1)问此半导体是正电荷导电型(P 型)还是负电荷导电型(n 型)? ; (2)求载流子浓度(即单位体积内参加导电的带电粒子数) 。

解(1)01055.63>⨯=-=-''伏A A A A U U U所以载流子是负电荷导电(n 型)。

(2)由nqaIBU A A =', 得 A A qaU IBn '=3219431055.61010.0106.1103000100.1-----⨯⨯⨯⨯⨯⨯⨯⨯=()314109.2厘米个⨯=3.一电子在T B 41020-⨯=的磁场中沿半径为cm R 20=的螺旋线运动,螺距为cm h 0.5=,如图。

(1)求这电子的速度 ;(2)速度v与竖直轴之间的夹角 。

解:依题意,有 T v h ⋅=αc o s 式中,eBmT π2=,()222cos hR h+=πα162221075.74-⋅⨯=+=∴sm h R m eB v πv 与轴线夹角 7168'︒=α4.如图 所示,abc 是弯成直角的导线,ab =40cm ,bc=30cm ,通以电流I ,并放在和均匀磁场B垂直的平面内,则导线所受到磁场力为( C ) A .IB 3.0 B .IB 4.0C .IB 5.0D .IB 7.05.两个在同一平面内的同心圆线圈,大圈半径为R ,通有电流1I ,小圈半径为r ,通有电流2I ,电流方向如图所示,且R r <<,那么,在小线圈从图示位置转到两线圈平面相互垂直位置的过程中,磁力矩所作的功A 为( B )。

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第7章

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第7章

第七章 时变电磁场7-1 设真空中电荷量为q 的点电荷以速度)(c v v <<向正z 方向匀速运动,在t = 0时刻经过坐标原点,计算任一点位移电流。

(不考虑滞后效应)解 选取圆柱坐标系,由题意知点电荷在任意时刻的位 置为),0 ,0(vt ,且产生的场强与角度φ无关,如习题图7-1 所示。

设) , ,(z r P φ为空间任一点,则点电荷在P 点产生的电场强度为304R q πεRE =,其中R 为点电荷到P 点的位置矢量,即)(vt z r z r -+=e e R 。

那么,由tt d ∂∂=∂∂=ED J 0ε,得 ()()()()()()()25222225224243vt z rr vt z qv vt z r vt z qrv zr d -+--+-+-=ππe e J 。

7-2 已知真空平板电容器的极板面积为S ,间距为d ,当外加电压t V V sin 0ω=时,计算电容器中的位移电流,且证明它等于引线中的传导电流。

习题图7-1 P (r ,φ,z )x解 在电容器中电场为t dV E sin 0ω=,则 t dV t D J d cos 00ωωε=∂∂=, 所以产生的位移电流为t dSV S J I d d cos 00ωωε==;已知真空平板电容器的电容为dSC 0ε=,所带电量为t CV CV Q ωsin 0==,则传导电流为t dSV t CV t QI cos cos d d 000ωωεωω===; 可见,位移电流与传导电流相等。

7-3 已知正弦电磁场的频率为100GHz ,试求铜及淡水中位移电流密度与传导电流密度之比。

解 设电场随时间正弦变化,且t E m x sin ωe E =,则位移电流t E tm r x d cos 0ωωεεe DJ =∂∂=, 其振幅值为m r d E J ωεε0=传导电流t E m x ωσσsin e E J ==,振幅为m E J σ=,可见σωεε0r d J J =; 在海水中,81=r ε,m S /4=σ,则5.11241021036181119=⨯⨯⨯⨯=-ππJJ d;在铜中,1=r ε,m S /108.57⨯=σ,则871191058.9108.5102103611--⨯=⨯⨯⨯⨯⨯=ππJ J d。

电磁场与电磁波课后习题及答案七章习题解答

电磁场与电磁波课后习题及答案七章习题解答

《电磁场与电磁波》习题解答第七章正弦电磁波7.1求证在无界理想介质内沿任意方向飾(勺为单位矢量)传播的平面波可写成E = E m eiSz")o解E”为常矢量。

在直角坐标中e n = e x cos a + e y cos p + e: cos 丫r = e x x+e v y^e:zej r = (e x cos a + e x cos/3 + e: cos /)・(g、x+e y y + e: z) =xcos a +ycos 0 + z cos yE = E= E£丿[0©8”十二《«”-初]V2E = e V2E + eV2E v + eN2E.=E〃Q0)2R〔0(・gW0+g”5】=(j 0)2 E护卩p2°—j[0(AC8d十〉8“+二CO”)-期]! _ _力2£亍一乔/;,&E、r / _ rV2E 一应—={jpyE + psarE = (joJ“e)2E + peorE = 0 可见,已知的匕一匕满足波动方程歹学=0dr故E表示沿勺方向传播的平面波。

7.2试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

解表征沿+Z方向传播的椭圆极化波的电场可表示为E = (e x E x+e y jE y)e~Jfiz =E^E2式中取E产扣M +耳)+ e J© + &)]宀2E2-^[e x(E x-E y)-e y j(E x-E y)]e-^显然,Ei和E2分别表示沿+z方向传播的左旋圆极化波和右旋圆极化波。

7.3在自由空间中,已知电场氐小讣皿曲-血冋!!!,试求磁场强度O解以余弦为基准,重新写出已知的电场表示式E(Z,f)=乞10’ cos(曲一0z-彳)V/m这是一个沿+z方向传播的均匀平面波的电场,其初相角为一90°。

与之相伴的磁场为] 1 / n H(z.t) = —e.xEQ) = 一e. xe 103cos cot-/3z- — 〃o 、 仏、• I2103 = -e v ------- c osT20龙1 A/—A« ill7.4均匀平面波的磁场强度H 的振幅为衍 ,以相位常数30iad/m 在空气中沿一© 方向传播。

基础物理学第七章(静电场)课后习题答案

基础物理学第七章(静电场)课后习题答案
习题 7-1 一导线 ab 弯成如图的形状(其中 cd 是一半圆,半径 r =0.10m,ac 和 db 两段的长度 均为 l =0.10m),在均匀磁场(B =0.50T)绕轴线 ab 转动,转速 n =60rev/s 。设电路的 总电阻(包括电表 M 的内阻)为 1,000?,求导线中的感应电动势和感应电流,它们的最大值 各是多大?
解:两根长直导线在它们之间所产生的磁场沿 y 轴正方向,该磁场的大小为 .
忽略导线内部磁通量,一对导线长为 l 的一段的自感为 . 7-14 一螺线管的自感系数为 0.010H,通过它的电流为 4A,试求它贮藏的磁场能量。 解:
7-15 一无限长直导线,截面各处的电流密度相等,总电流为 I,试证:每单位长度导线内 所贮藏的磁能为 ?????????。 解: 载流长直导线内磁场线是以对称轴为圆心的一系列同心圆,取半径为的圆为安培环路 L,有 在长直导线内取半径为,厚度为,高为单位长的薄壁圆筒体积元,如图所示,体积元内磁能 密度为 直导线内总磁能为
(1) 又因为 (2) (1)、(2)两式右边相同, 故
7-12 一螺绕环,横截面的半径为 a ,中心线的半径为 R,R " a ,其上由表面绝缘的导线 均匀地密绕两个线圈,一个 N1 匝,另一个 N2 匝。试求: (1)两线圈的自感 L1 和 L2; (2)两线圈的互感 M; (3)M 与 L1 和 L2 的关系。 解:(1)设线圈 1 中通有电流,因为 R " a,故螺线管内的磁场近似为匀强磁场,磁感应强 度为,通过某个横截面的磁通量为
因,则通过圆平面的位移电流为 (*)
(2)分析表明,运动电荷的磁场具有对称性,磁场线是垂直于轴线圆心在轴上的一系列同心 圆。设圆边缘某点 P 的磁感应强度为 B,磁场强度为 H,以给定圆为积分回路 L,应用全电流 定理和(*)式,得

电磁场与电磁波理论基础第七章作业题解答

电磁场与电磁波理论基础第七章作业题解答

第七章 平面电磁波的反射和透射 习题解答7-1.空气中的平面电磁波电场幅值为10V/m ,垂直入射到εr =25的无耗非磁性介质的表面,试确定:(1)反射系数和透射系数;(2)在空气中的驻波比;(3)入射波、反射波和透射波的平均功率流密度。

解 (1)由于空气和无耗非磁性介质的磁导率为120μμμ=≈所以,空气和无耗非磁性介质中的波阻抗分别为()()12120120245;πηπηπ==Ω====Ω 由此得到垂直入射情况下,两理想介质分界面的反射系数和透射系数为 2121241200.6724120r ηηππηηππ--==≈-++22122240.3324120t ηπηηππ⨯==≈++(2)驻波比定义为 11max minE r SE r由此得到空气中的驻波比为 1106750611067r .S.r .(3)假定电场矢量沿x e 方向,入射波沿+Z 方向传播,则可写出垂直入射情况下,入射波、反射波和透射波的电场和磁场复振幅矢量表达式为()()()1110110001111i i i i jk zi x jk z jk zi i z x y E e E e E e z z z e e e e E H k E ηηη---⨯⎧=⎪⎨=⨯=⎩=⎪ ()()()()1110000111111r r jk zr x jk z jk zr r r r z x y z z z E e E e E e e e e e E H k E ηηη-⎧=⎪⎨=⨯⨯=⎪-⎩= ()()()2220220002111t t tt jk z t x jk z jk zt t z x y E e E e E e z z z e e e e E H k E ηηη---⨯⎧=⎪⎨=⨯=⎩=⎪ 根据平均功率流密度的定义式*1Re 2av S E H ⎡⎤=⨯⎣⎦ 有11*2*10010111Re Re 2212jk z jk zi i i i av i i x y z E e E e E S E H e e e ηη--⎡⎤⎛⎫⎡⎤⎢⎥=⨯=⨯= ⎪⎣⎦⎢⎥⎝⎭⎣⎦()111*2*0010111Re Re 2221jk z jk zr r r r av r r x y z E e E e E S E H e e e ηη⎡⎤⎛⎫⎡⎤⎢⎥=⨯=⨯-=- ⎪⎣⎦⎢⎥⎝⎭⎣⎦ 22*2*20020111Re Re 2212jk z jk z t t t tav t t x y z E e E e E S E H e e e ηη--⎡⎤⎛⎫⎡⎤⎢⎥=⨯=⨯= ⎪⎣⎦⎢⎥⎝⎭⎣⎦而1200012024106733i r iti ;;EV /m ;E rE .V /m ;EtE.V /m数值代入得到()212011000.13/2iav zz W m S e e π=⨯≈⨯()221 6.70.06/2120rav z z W m S e e π=-⨯-≈-⨯()221 3.30.07/224tav z z W m S e e π=≈⨯7-4.一均匀平面电磁波沿+Z 方向传播,其电场强度矢量为()()()100sin 200cos V/m x y t kz t kz ωω=-+-E e e(1)应用麦克斯韦方程求相伴的磁场H ;(2)若在传播方向上z =0处放置一无限大的理想导体板,求z <0区域中的合成波的电场E 1和磁场H 1;(3)求理想导体板表面的电流密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


该媒质在f=3GHz时可视为弱导电媒质,故衰减常数为
由 得
(2)对于弱导电媒质,本征阻抗为
而相位常数
故波长和相速分别为
(3)在x=0处,



7.12有一线极化的均匀平面波在海水( )中沿+y方向传播,其磁场强度在y=0处为
(1)求衰减常数、相位常数、本征阻抗、相速、波长及透入深度;(2)求出H的振幅为0.01A/m时的位置;(3)写出E(y,t)和H(y,t)的表示式。
则穿过z=0平面上 的长方形面积的总功率为
7.22均匀平面波的电场强度为
(1)运用麦克斯韦方程求出H:(2)若该波在z=0处迁到一理想导体平面,求出z<0区域内的E和H;(3)求理想导体上的电流密度。
解(1)将已知的电场写成复数形式
由 得
写成瞬时值表示式
(2)均匀平面波垂直入射到理想导体平面上会产生全反射,反射波的电场为
f=100MHz时
f=1GHz时
7.8求证:电磁波在导电媒质内传播时场量的衰减约为55dB/λ。
证明在一定频率范围内将该导电媒质视为良导体,此时
故场量的衰减因子为
即场量的振幅经过z=λ的距离后衰减到起始值的0.002。用分贝表示。
7.9在自由空间中,一列平面波的相位常数 ,当该平面波进入到理想电介质后,其相位常数变为 。设 ,求理想电介质的 和波在电介质中的传播速度。
故由式(3)得
(4)
将良导体中的传播常数 和波阻抗 代入式(4),得
这样,只要取理想介质层的厚度 ,而良导体涂层的厚度 ,就可消除分界面③上的反射波。即雷达发射的电磁波从空气中投射到分界面③时,不会产生回波,从而实现飞机隐身的目的。此结果可作如下的物理解释:由于电磁波在理想导体表面(即分界面①上产生全反射,则在离该表面 处(即分界面②出现电场的波腹点。而该处放置了厚度为d2的良导体涂层,从而使电磁波大大损耗,故反射波就趋于零了。
解(1)设反射波的电场强度为
据理想导体的边界条件,在z=0时应有
故得

可见,反射波是一个沿 方向传播的左旋圆极化波。
(2)入射波的磁场为
反射波的磁场为
故合成波的磁场为
则导体板上的感应电时表示式为
7.26如题7.26图所示,有一正弦均匀平面波由空气斜入射到z=0的理想导体平面上,其电场强度的复数表示式为
考虑到波长 ,故
因此,t=3ms时,Hz=0的位置为
(2)电场的瞬时表示式为
7.6在自由空间中,某一电磁波的波长为0.2m。当该电磁波进入某理想介质后,波长变为0.09m。设 ,试求理想介质的相对介电常数 以及在该介质中的波速。
解在自由空间,波的相速 ,故波的频率为
在理想介质中,波长 ,故波的相速为
式中
都是实数,故 也是实数。
反射波的电场为
可见,反射波的电场的两个分量的振幅仍相等,相位关系与入射波相比没有变化,故反射波仍然是圆极化波。但波的传播方向变为-z方向,故反射波也变为右旋圆极化波。而入射波是沿+z方向传播的左旋圆极化波。
透射波的电场为
式中, 是媒质2中的相位常数。可见,透射波是沿+z方向传播的左旋圆极化波。
解自由空间的相位常数
,故
在理想电介质中,相位常数 ,故
电介质中的波速则为
7.10在自由空间中,某均匀平面波的波长为12cm;当该平面波进入到某无损耗媒质时,波长变为8cm,且已知此时的 , 。求该均匀平面波的频率以及无损耗媒质的 、 。
解自由空间中,波的相速 ,故波的频率为
在无损耗媒质中,波的相速为
由式(4)可得出分界面②上的反射系数
(5)
在分界面①处,即z=-d处,应有 , 。由式(1)和(2)得
(6)
将分界面①上的总电场与总磁场之比定义为等效波阻抗(或称总场波阻抗),由式(1)得
(7)
将式(6)代入式(7)得
(8)
将式(5)代入式(8),并应用欧拉公式,得
(9)
再由式(7)得分界面①上的反射系数
7.18均匀平面波从自由空间垂直入射到某介质平面时,在自由空间形成驻波。设驻波比为2.7,且介质平面上有驻波最小点;求介质的介电常数。
解自由空间的总电场为
式中
是分界面上的反射系数。
驻波比的定义为

据此求得
因介质平面上是驻波最小点,故应取
反射系数


7.19如题7.19图所示,z>0区域的媒质介电常数为 ,在此媒质前置有厚度为d、介电常数为 的介质板。对于一个从左面垂直入射过来的TEM波,试证明当 且 时,没有反射( 为自由空间的波长)。
即 区域内的反射波电场为
与之相伴的反射波磁场为
至此,即可求出 区域内的总电场E和总磁场H。

同样

(3)理想导体平面上的电流密度为
7.23在自由空间中,一均匀平面波垂直投射到半无限大无损耗介质平面上。已知在平面前的自由空间中,合成波的驻波比为3,无损耗介质内透射波的波长是自由空间波长的 。试求介质的相对磁导率 和相对介电常数 。

(1)
无损耗媒质中的波阻抗为
(2)
联解式(1)和式(2),得
7.11一个频率为f=3GHz,ey方向极化的均匀平面波在 ,损耗正切 的非磁性媒质中沿 方向传播。求:(1)波的振幅衰减一半时,传播的距离;(2)媒质的本征阻抗,波的波长和相速;(3)设在x=0处的 ,写出H(x,t)的表示式。
解(1)
对于z>0的区域,求 。

可见,在f=1.5MHz的频率该导体可视为良导体。故
分界面上的透射系数为
入射波电场的复数表示式可写为
则z>0区域的透射波电场的复数形式为
与之相伴的磁场为

7.14一圆极化波垂直入射到一介质板上,入射波电场为
求反射波与透射波的电场,它们的极化情况又如何?
解设媒质1为空气,其本征阻抗为 ;介质板的本征阻抗为 。故分界面上的反射系数和透射系数分别为
故媒质1中的总电场和总磁场分别为
(1)
同样,可写出媒质2中的总电场和总磁场
(2)
媒质3中只有透射波
(3)
在式(1)、(2)、(3)中,通常已知入射波电场振幅 ,而 、 、 和 为待求量。利用两个分界面①和②上的四个边界条件方程即可确定它们。
在分界面②处,即z=0处,应有 。由式(2)和(3)得
(4)
电磁场
7.1求证在无界理想介质内沿任意方向en(en为单位矢量)传播的平面波可写成 。
解Em为常矢量。在直角坐标中




可见,已知的 满足波动方程
故E表示沿en方向传播的平面波。
7.2试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
解表征沿+z方向传播的椭圆极化波的电场可表示为
式中取
显然,E1和E2分别表示沿+z方向传播的左旋圆极化波和右旋圆极化波。
解(1)
可见,在角频率 时,海水为一般有损耗媒质,故
(2)由 即 得
(3)
其复数形式为
故电场的复数表示式为

7.13在自由空间(z<0)内沿+z方向传播的均匀平面波,垂直入射到z=0处的导体平面上。导体的电导率 , 。自由空间E波的频率f=1.5MHz,振幅为1V/m;在分界面(z=0)处,E由下式给出
7.17题7.17图所示隐身飞机的原理示意图。在表示机身的理想导体表面覆盖一层厚度 的理想介质膜,又在介质膜上涂一层厚度为d2的良导体材料。试确定消除电磁波从良导体表面上反射的条件。
解题7.17图中,区域(1)为空气,其波阻抗为
区域(2)为良导体,其波阻抗为
区域(3)为理想介质,其波阻抗为
区域(4)为理想导体 ,其波阻抗为
7.15均匀平面波的电场振幅 ,从空气中垂直入射到无损耗的介质平面上(介质的 ),求反射波和透射波的电场振幅。

反射系数为
透射系数为
故反射波的电场振幅为
透射波的电场振幅为
7.16最简单的天线罩是单层介质板。若已知介质板的介电常数 ,问介质板的厚度应为多少方可使频率为3GHz的电磁波垂直入射到介质板面时没有反射。当频率分别为3.1GHz及2.9GHz时,反射增大多少?
(10)
显然,若分界面①上的等效波阻抗 等于媒质1的本征阻抗 ,则 ,即分界面①上无反射。
通常天线罩的内、外都是空气,即 ,由式(9)得
欲使上式成立,必须 。故
频率f0=3GHz时

当频率偏移到f1=3.1GHz时,


故此时的等效波阻抗为
反射系数为
即频率偏移到3.1GHz时,反射将增大6%。
同样的方法可计算出频率下偏到 时,反射将增加约5%。
解媒质1中的波阻抗为
(1)
媒质2中的波阻抗为
(2)
当 时,由式(1)和(2)得
(3)
而分界面O1处(即 处)的等效波阻抗为
当 、即 时
(4)
分界面O1处的反射系数为
(5)
将式(3)和(4)代入式(5),则得
即 时,分界面O1上无反射。 的介质层称为匹配层。
7.20垂直放置在球坐标原点的某电流元所产生的远区场为
试求穿过r=1000m的半球壳的平均功率。
解将电场、磁场写成复数形式
平均坡印廷矢量为
故穿过r=1000m的半球壳的平均功率为
式中dS为球坐标的面积元矢量,对积分有贡献是

7.21在自由空间中, 。试求 平面内的边长为30mm和15mm长方形面积的总功率。
解将已知的电场写成复数形式
得与 相伴的磁场
故平均坡印廷矢量为
解在自由空间,入射波与反射波合成为驻波,驻波比为
由此求出反射系数
相关文档
最新文档