功能高分子的制备方法-.ppt
合集下载
功能高分子 ppt课件

高分子骨架上邻近功能基团的一些结构和基团对 功能基的性能具有明显的影响力,这种作用称为 高分子的邻位效应。
Chapter8 Polymer
12
高分子骨架的模板效应 高分子骨架的空间结构,包括构型和构象,在其周围建立 起特殊的局部空间环境,在有机合成和其他应用场合提供 一个类似于工业上浇铸过程中使用的模板的作用。这种作
——高分子骨架仅仅起支撑、分隔、固定和降 低溶解度等辅助作用
研究开发中都是围绕着发挥官能团的作用而展开的
Chapter8 Polymer
5
P N
+
Z SO3H
C O OH O
N
N
N
高分子过氧酸
N R
+
N R3 R
+
电活性聚合物
侧链聚合物液晶
离子交换树脂
Chapter8 Polymer
6
②
聚合物骨架与官能团协同作用
Chapter 8 Polymer
高分子材料
Chapter8 Polymer 1
8.3 功能高分子 Functional Polymer
功能高分子概述 导电高分子
生物医用高分子
感光高分子
Chapter8 Polymer
2
8.3.1 功能高分子概述
8.3.1.1 分类(按照性质和功能划分): ① 反应型高分子,包括高分子试剂和高分子催化剂; ② 光敏型高分子,包括各种光稳定剂、光刻胶,感光材 料和光致变色材料等; ③ 电活性高分子材料,包括导电聚合物、能量转换型聚 合物和其他电敏材料; ④ 膜型高分子材料,包括各种分离膜、缓释膜和其他半 透性膜材料; ⑤ 吸附型高分子材料,包括高分子吸附性树脂、高分子 絮凝剂和吸水性高分子吸附剂等; ⑥ 其他未能包括在上述各类中的功能高分子材料。
中科大功能高分子课件

功能高分子材料具有稳定的化学结构,不易与化学物质发生反应,因此能够抵御 各种酸、碱、盐等化学物质的侵蚀。这使得它们在化学工业、石油化工、医药等 领域中具有广泛的应用价值。
良好的热稳定性
总结词
功能高分子材料在高温条件下不易分解或氧化,具有良好的 热稳定性。
详细描述
功能高分子材料的热稳定性较好,能够在高温条件下保持稳 定的性能,不易分解或氧化。这使得它们在高温环境下的应 用中具有广泛的应用价值,如航空航天、汽车、能源等领域 。
动态共价键合成
利用动态共价键的特性,合成具有 自修复和可重构性质的高分子材料。
开发多功能和智能化的功能高分子材料
多功能性
通过分子设计和功能化改性,赋予功 能高分子材料多种特殊性能,如导电 、导热、发光、磁性等。
智能化
将传感器、驱动器和执行器等智能元 件集成到高分子材料中,实现智能化 响应和调控功能。
良好的电性能和磁性能
总结词
功能高分子材料具有优良的电性能和磁性能 ,能够满足各种电子和磁性器件的需求。
详细描述
功能高分子材料具有良好的导电性、绝缘性 、磁响应等性能,能够满足各种电子和磁性 器件的需求。这使得它们在电子、通信、信 息等领域中具广泛的应用价值。例如,导 电高分子材料可以用于制备电极、导电线路 等电子器件;磁性高分子材料可以用于制备
提高力学性能
研究和发展新型增强剂和填料,以提高功能高分子材料的强度、韧 性和耐冲击性能。
优化加工性能
改进加工工艺和开发新型加工设备,以降低加工成本和提高生产效 率。
探索新的合成方法
绿色合成方法
开发环境友好、低能耗和低排放 的合成工艺,减少对环境的负面
影响。
活性聚合方法
利用活性聚合技术合成具有精确结 构和分子量分布的高分子材料。
良好的热稳定性
总结词
功能高分子材料在高温条件下不易分解或氧化,具有良好的 热稳定性。
详细描述
功能高分子材料的热稳定性较好,能够在高温条件下保持稳 定的性能,不易分解或氧化。这使得它们在高温环境下的应 用中具有广泛的应用价值,如航空航天、汽车、能源等领域 。
动态共价键合成
利用动态共价键的特性,合成具有 自修复和可重构性质的高分子材料。
开发多功能和智能化的功能高分子材料
多功能性
通过分子设计和功能化改性,赋予功 能高分子材料多种特殊性能,如导电 、导热、发光、磁性等。
智能化
将传感器、驱动器和执行器等智能元 件集成到高分子材料中,实现智能化 响应和调控功能。
良好的电性能和磁性能
总结词
功能高分子材料具有优良的电性能和磁性能 ,能够满足各种电子和磁性器件的需求。
详细描述
功能高分子材料具有良好的导电性、绝缘性 、磁响应等性能,能够满足各种电子和磁性 器件的需求。这使得它们在电子、通信、信 息等领域中具广泛的应用价值。例如,导 电高分子材料可以用于制备电极、导电线路 等电子器件;磁性高分子材料可以用于制备
提高力学性能
研究和发展新型增强剂和填料,以提高功能高分子材料的强度、韧 性和耐冲击性能。
优化加工性能
改进加工工艺和开发新型加工设备,以降低加工成本和提高生产效 率。
探索新的合成方法
绿色合成方法
开发环境友好、低能耗和低排放 的合成工艺,减少对环境的负面
影响。
活性聚合方法
利用活性聚合技术合成具有精确结 构和分子量分布的高分子材料。
反应功能高分子PPT课件

• 二.反应型功能高分子材料的应用特点及研究目标
• 出发点:改进化学反应工艺过程
•
提高生产效率和经济效益
•
发展高选择性合成方法
•
消除或减少对环境的污染
•
探索新的合成路线
• 如洛克菲勒大学merrifield教授(1984年诺贝尔奖)在1963年 提出的氨基酸的固相合成简化了肽的合成过程,并使多肽可 以按预先的设计自动地进行合成反应,在些基础上诞生了聚 合物底物、聚合物试剂、聚合物催化剂等。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
• 1.氧化还原型高分子反应试剂的制备
• 两种方法:
• 高分子催化剂: • 高分子酸碱催化剂 • 聚合物氢化和脱羰基催化剂 • 聚合物相转移催化剂 • 聚合物过渡金属络合物催化剂 • 固定化酶
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
• 第二节 高分子化学反应试剂 • 一.高分子化学反应概述 • 高分子试剂参与的化学反应路线
注意:
• (1)为保证试剂的良好稳定性,苯环上的氢原子应由其它原子
或基团取代,当苯环上有未被取代的氢原子,试剂处于醌型氧
化态时,易受自由基的攻击,引起交联反应,从而降低高分子
试剂氧化还原的可逆性;
• (2)生成的聚合物中,氧化还原中心之间若能被有效地分隔,
减少相互间的作用可以降低其氧化还原半波电位的范围,从而
• 出发点:改进化学反应工艺过程
•
提高生产效率和经济效益
•
发展高选择性合成方法
•
消除或减少对环境的污染
•
探索新的合成路线
• 如洛克菲勒大学merrifield教授(1984年诺贝尔奖)在1963年 提出的氨基酸的固相合成简化了肽的合成过程,并使多肽可 以按预先的设计自动地进行合成反应,在些基础上诞生了聚 合物底物、聚合物试剂、聚合物催化剂等。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
• 1.氧化还原型高分子反应试剂的制备
• 两种方法:
• 高分子催化剂: • 高分子酸碱催化剂 • 聚合物氢化和脱羰基催化剂 • 聚合物相转移催化剂 • 聚合物过渡金属络合物催化剂 • 固定化酶
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
• 第二节 高分子化学反应试剂 • 一.高分子化学反应概述 • 高分子试剂参与的化学反应路线
注意:
• (1)为保证试剂的良好稳定性,苯环上的氢原子应由其它原子
或基团取代,当苯环上有未被取代的氢原子,试剂处于醌型氧
化态时,易受自由基的攻击,引起交联反应,从而降低高分子
试剂氧化还原的可逆性;
• (2)生成的聚合物中,氧化还原中心之间若能被有效地分隔,
减少相互间的作用可以降低其氧化还原半波电位的范围,从而
功能高分子05第2章吸附性高分子材料PPT

特性
具有高吸附容量、高选择性和稳定性 等特性,广泛应用于分离、净化、催 化剂载体、离子交换等领域。
吸附性高分子材料的分类
根据吸附机理
物理吸附高分子材料和化学吸附 高分子材料。
根据功能性质
离子交换树脂、活性炭、沸石等。
根据应用领域
水处理、气体分离、催化剂载体等。
吸附性高分子材料的应用领域
01
02
03
现对特定物质的吸附分离。
吸附性高分子材料的环境友好性
总结词
随着环保意识的增强,环境友好型吸附性高分子材料成为研究热点,旨在降低对环境的 负面影响。
详细描述
研究者们致力于开发可生物降解、低毒或无毒的高分子材料,以替代传统的高分子吸附 剂。同时,研究高分子材料的循环利用和废弃物处理方法,以降低对环境的影响。此外,
03
吸附性高分子材料的性能研究
吸附性能研究
吸附性能
吸附性高分子材料能够有效地吸 附气体、液体或固体物质,具有
较高的吸附容量和选择性。
吸附机理
吸附性高分子材料的吸附机理主 要包括物理吸附和化学吸附,其 中物理吸附主要依靠分子间的范 德华力,而化学吸附则涉及到化
学键的形成。
影响因素
影响吸附性能的因素包括高分子 材料的结构、孔径、比表面积、 极性等,这些因素都会对吸附性
能产生影响。
分离性能研究
1 2 不同组分进 行有效的分离,从而实现混合物的净化和纯化。
分离机理
分离机理主要包括筛分作用、亲和作用和选择性 吸附等,这些机理的协同作用使得吸附性高分子 材料具有出色的分离性能。
分离技术
常见的分离技术包括固定床吸附、移动床吸附、 流化床吸附等,这些技术能够根据不同的分离需 求进行选择和应用。
具有高吸附容量、高选择性和稳定性 等特性,广泛应用于分离、净化、催 化剂载体、离子交换等领域。
吸附性高分子材料的分类
根据吸附机理
物理吸附高分子材料和化学吸附 高分子材料。
根据功能性质
离子交换树脂、活性炭、沸石等。
根据应用领域
水处理、气体分离、催化剂载体等。
吸附性高分子材料的应用领域
01
02
03
现对特定物质的吸附分离。
吸附性高分子材料的环境友好性
总结词
随着环保意识的增强,环境友好型吸附性高分子材料成为研究热点,旨在降低对环境的 负面影响。
详细描述
研究者们致力于开发可生物降解、低毒或无毒的高分子材料,以替代传统的高分子吸附 剂。同时,研究高分子材料的循环利用和废弃物处理方法,以降低对环境的影响。此外,
03
吸附性高分子材料的性能研究
吸附性能研究
吸附性能
吸附性高分子材料能够有效地吸 附气体、液体或固体物质,具有
较高的吸附容量和选择性。
吸附机理
吸附性高分子材料的吸附机理主 要包括物理吸附和化学吸附,其 中物理吸附主要依靠分子间的范 德华力,而化学吸附则涉及到化
学键的形成。
影响因素
影响吸附性能的因素包括高分子 材料的结构、孔径、比表面积、 极性等,这些因素都会对吸附性
能产生影响。
分离性能研究
1 2 不同组分进 行有效的分离,从而实现混合物的净化和纯化。
分离机理
分离机理主要包括筛分作用、亲和作用和选择性 吸附等,这些机理的协同作用使得吸附性高分子 材料具有出色的分离性能。
分离技术
常见的分离技术包括固定床吸附、移动床吸附、 流化床吸附等,这些技术能够根据不同的分离需 求进行选择和应用。
合成高分子的基本方法ppt课件

催化剂
∆
O
HO—[ C—
端基原子团
O
—C—O—CH2—CH2—O—]nH +(2n-1)H2O
端基原子
2、缩聚反应的特点
(1)单体分子中至少含有两个官能团(如—OH、—COOH、—NH2 、—X等) (2)缩聚反应生成聚合物的同时,还有小分子副产物(如H2O、NH3 、HCl等)生成。由一种单体进行的缩聚反应,生成的小分子的物质
第五章 合成高分子
第一节 合成高分子的基本方法
学习目标
1、认识加聚反应的微观本质,构建加聚反应的一般认知思路,能 通过分析加聚物的结构推测相应的单体。 2、认识缩聚反应的微观本质,构建缩聚反应的一般认知思路; 能通 过分析缩聚物的结构推测相应的单体。 3、了解高分子的单体、链节、聚合度、端基和平均相对分子质量 等基本概念。
的量一般为n-1;由两种单体进行的缩聚反应,生成的小分子的物 质的量一般为2n-1。
(3)所得聚合物链节的化学组成与单体的化学组成不同 (4)缩聚物结构简式要在方括号外侧写出链节余下的端基原子或原 子团,如:
3、缩聚产物的书写
(1)书写缩聚物的结构简式时,要在方括号外侧写出链节余下的端 基原子或原子团,而加聚物的端基不确定,通常用横线“—”表示 。如:
(2)书写缩聚反应的方程式时,单体的计量数与缩聚物结构简式的 小角标要一致;要注意小分子的计量数。一般由一种单体进行的缩 聚反应,生成小分子的计量数为n-1;由两种单体进行的缩聚反应, 生成小分子的计量数为2n-1
4、加聚反应的常见类型
(1)仅由一种单体发生的缩聚反应 ①羟基羧基缩聚(乳酸缩聚)
②氨基羧基缩聚
(2)由两种单体发生的缩聚反应 ①二元酸与二元醇
②二元酸与二胺
功能高分子材料-第三章高分子分离膜PPT课件

01
03
超滤膜的应用,提高了食品工业的生产效率和产品质 量,同时也为消费者提供了更加安全、健康的食品。
04
超滤膜的过滤精度高,能够有效地去除杂质和有害微 生物,同时保留原有的营养成分和口感,为食品工业 提供了一种高效、环保的加工方法。
纳滤膜在医药工业中的应用
纳滤膜是一种特殊类型的过滤膜,孔径范围在1-1纳米之间,具有较高的过滤精度和 选择性。
循环利用。
用于分离空气中的氧气、 氮气等气体,以及工业
尾气中的有害气体。
用于食品、医药、化工 等领域中物料的浓缩和
提纯。
02
高分子分离膜制备方法
相转化法
浸没沉淀相转化法
热致相分离法
将聚合物溶液流过支撑体,通过控制 溶剂蒸发速度和溶液浓度,使聚合物 在支撑体上沉淀,形成分离膜。
通过加热使聚合物溶液发生相分离, 形成分离膜。
反渗透膜技术的出现,为人类提供了 大量的淡水资源,对于解决全球水资 源短缺问题具有重要的意义。
超滤膜在食品工业中的应用
超滤膜是一种孔径范围在1-100纳米的过滤膜,能够 过滤出大分子物质和杂质,广泛应用于食品工业。
输标02入题
在食品工业中,超滤膜主要用于饮料、酒类、乳制品、 肉制品等产品的过滤澄清和除菌处理,提高产品质量 和延长保质期。
渗透速率。
高分子分离膜制备技术改进
先进的成膜技术
随着成膜技术的不断改进,高分子分离膜的 制备效率和质量得到了显著提高。例如,采 用先进的拉伸成膜技术、喷丝成膜技术、溶 胶-凝胶成膜技术等,可以制备出具有优异 性能的高分子分离膜。
新型的制膜设备
为了提高高分子分离膜的制备效率和产品质 量,不断有新型的制膜设备被研发出来。这 些设备采用了先进的控制系统和精密的机械 结构,能够实现自动化、连续化的生产,并
《功能高分子 》课件

VS
详细描述
功能高分子材料具有良好的光电性能和化 学稳定性,可用于制造太阳能电池和燃料 电池。同时,一些功能高分子材料还可作 为锂电池的电极材料,提高电池的能量密 度和安全性。
04 功能高分子材料的未来发 展
新材料开发
高性能化
通过改进合成方法、引入新型功 能基团等方式,提高功能高分子 的性能,如强度、耐热性、耐腐 蚀性等。
功能高分子材料
指在分子水平上设计并合成的高分子 材料,具有特定功能和性能,以满足 各种应用需求。
分类
01
02
03
按功能分类
导电高分子、光敏高分子 、磁性高分子、吸附分离 高分子等。
按合成方法分类
加聚型、缩聚型、共聚型 等。
按应用领域分类
电子、能源、环保、生物 医药等。
常见功能高分子材料
导电高分子材料
环保领域
总结词
功能高分子材料在环保领域的应用包括水处理、空气净化、 土壤修复等。
详细描述
功能高分子材料具有吸附、分离、富集等功能,可用于水处 理和空气净化。同时,一些功能高分子材料还可用于土壤修 复,帮助去除重金属和有害物质。
新能源领域
总结词
功能高分子材料在新能源领域的应用包 括太阳能电池、燃料电池、锂电池等。
能源环保
利用功能高分子材料的特殊性质,开发高效能电 池、太阳能电池、环境治理材料等,推动清洁能 源和环保产业的发展。
智能制造
利用功能高分子材料的传感和响应特性,开发智 能传感器、驱动器等关键部件,推动智能制造和 工业自动化的发展。
绿色可持续发展
可降解性
开发可生物降解的功能高分子材料,降低对环境的污染和资源消 耗。
智能化
利用传感器、响应性高分子等技 术,开发具有自适应、自修复、 自感知等功能的智能高分子材料 。
第五章第一节合成高分子的基本方法.ppt-2024-2025学年高中化学选择性必修3教学课件

在物理、化学性质上有较大差异
合成高分子的基本方法
1.加聚反应
2.缩聚反应
二、再识加聚反应
探究
乙烯合成聚乙烯 氯乙烯合成聚氯乙烯 丙烯合成聚丙烯 用化学反应方程式表示出这个过程
单体
链节
聚合度
乙烯式加聚反应:
思考:乙烯式加聚有何规律?
[ CH2-CH2 ]n
nCH2=CH2
催化剂
催化剂
催化剂
加聚反应:由相对分子量小的化合物分子相互加成结合成相对分子量大的聚合物的反应 链节:高分子化合物中化学组成相同,可重复的最小单元 单体:能合成高分子的小分子物质
乙二酸和乙二醇
对苯二甲酸和乙二醇
己二酸和己二胺
HOOC(CH2)4COOH
HOCH2CH2OH
三、探讨缩聚反应
构建模型:1、AB型缩聚:
AB型缩聚反应方程式的书写(聚酯类)
+
n
n
缩聚反应中每一种单体至少有双官能团,且可以反应缩去小分子: 常见双官能团-OH -COOH -NH2
1.
的单体是____
2.
缩聚聚合物的单体推断规律
链节中含有酯基 或肽键 结构的聚合物,一去二断三补。
—C—
O
O—
—C—
O
NH—
链节不含酯基和酰胺键 一去即为单体。
小结:谈谈对聚合反应的认识
加聚反应
缩聚反应
H OH
1、去掉方括号和n,即得单体
一去
寻找聚合物的单体
涤纶
三 步 法
补上——OH
补上——H
单体
1、去掉方括号和n,变成小分子
2、断开分子中的酯基
3、接上OH,H即得单体
合成高分子的基本方法
1.加聚反应
2.缩聚反应
二、再识加聚反应
探究
乙烯合成聚乙烯 氯乙烯合成聚氯乙烯 丙烯合成聚丙烯 用化学反应方程式表示出这个过程
单体
链节
聚合度
乙烯式加聚反应:
思考:乙烯式加聚有何规律?
[ CH2-CH2 ]n
nCH2=CH2
催化剂
催化剂
催化剂
加聚反应:由相对分子量小的化合物分子相互加成结合成相对分子量大的聚合物的反应 链节:高分子化合物中化学组成相同,可重复的最小单元 单体:能合成高分子的小分子物质
乙二酸和乙二醇
对苯二甲酸和乙二醇
己二酸和己二胺
HOOC(CH2)4COOH
HOCH2CH2OH
三、探讨缩聚反应
构建模型:1、AB型缩聚:
AB型缩聚反应方程式的书写(聚酯类)
+
n
n
缩聚反应中每一种单体至少有双官能团,且可以反应缩去小分子: 常见双官能团-OH -COOH -NH2
1.
的单体是____
2.
缩聚聚合物的单体推断规律
链节中含有酯基 或肽键 结构的聚合物,一去二断三补。
—C—
O
O—
—C—
O
NH—
链节不含酯基和酰胺键 一去即为单体。
小结:谈谈对聚合反应的认识
加聚反应
缩聚反应
H OH
1、去掉方括号和n,即得单体
一去
寻找聚合物的单体
涤纶
三 步 法
补上——OH
补上——H
单体
1、去掉方括号和n,变成小分子
2、断开分子中的酯基
3、接上OH,H即得单体
《光功能高分子材料》课件

VS
环境监测
光功能高分子材料还可以用作环境监测的 探针和传感器,通过检测环境中特定物质 的变化来实现环境质量的实时监测和预警 。
05
光功能高分子材料的未来发
展
新材料开发
高性能光敏树脂
研究开发具有高感光度、高分辨 率和高稳定性的光敏树脂,以满 足3D打印、微纳制造等领域的需 求。
新型光聚合引发剂
探索新型光聚合引发剂,提高光 聚合反应的效率和可控性,促进 光功能高分子材料的发展。
将具有光功能的物质掺入到高分子基质中,形成光功能高分 子复合材料。例如,将荧光染料掺入聚合物中,可制备具有 荧光性能的聚合物材料。
复合制备
将两种或多种高分子材料进行复合,形成光功能高分子复合 材料。例如,将聚合物与无机纳米粒子复合,可制备具有光 催化性能的复合材料。
表面改性与涂层制备
表面改性
通过化学或物理方法对高分子材料表面进行改性,赋予其光功能特性。例如,使 用等离子体处理、紫外光照射等方法对高分子表面进行处理,可提高其光敏性。
《光功能高分子材料 》PPT课件
• 光功能高分子材料简介 • 光功能高分子材料的性质 • 光功能高分子材料的制备方法 • 光功能高分子材料的应用 • 光功能高分子材料的未来发展
目录
01
光功能高分子材料简介
定义与分类
总结词
光功能高分子材料是指具有光学功能的高分子材料,可以根据其特性进行分类 。
详细描述
环保等方向发展。
应用领域
总结词
光功能高分子材料在多个领域都有广泛的应用,如显 示、照明、生物成像等。
详细描述
光功能高分子材料因其独特的性能和广泛的应用前景 ,在多个领域都有广泛的应用。在显示领域,光功能 高分子材料可用于制造液晶显示器、有机电致发光显 示器等;在照明领域,光功能高分子材料可用于制造 高效LED灯具、荧光灯管等;在生物成像领域,光功 能高分子材料可用于荧光探针、生物成像标记物等。 此外,光功能高分子材料还可用于太阳能电池、信息 存储等领域。
功能高分子材料-PPT

除了单纯的连锁聚合和逐步聚合之外,采用多 种单体进行共聚反应制备功能高分子也是一种常见 的方法。特别是当需要控制聚合物中功能基团的分 布和密度时,或者需要调节聚合物的物理化学性质 时,共聚可能是最行之有效的解决办法。
(2)功能性小分子通过聚合包埋与高分子 材料结合
该方法是利用生成高分子的束缚作用将 功能性小分子以某种形式包埋固定在高分子 材料中来制备功能高分子材料。在聚合反应 之前,向单体溶液中加入小分子功能化合物, 在聚合过程中小分子被生成的聚合物所包埋。 在高分子药物、固定化酶的制备方面有独到 的优势。
例如,维生素C在空气中极易被氧化而变黄。 采用溶剂蒸发法研制以乙基纤维素、羟丙基甲基纤 维素苯二甲酸酯等聚合物为外壳材料的维生素C微 胶囊,达到了延缓氧化变黄的效果。将维生素C微 胶囊暴露于空气中一个月,外观可保持干燥状态, 色泽略黄。这种维生素C微胶囊进入人体后,两小 时内可完全溶解释放。
2. 已有高分子材料的功能化
一次功能主要有下面的八种: ①力学功能:如惯性、粘性、流动性、润滑性、成型性、 超塑性、恒弹性、高弹性、振动性和防震性。 ②声功能:如隔音性、吸音性。 ③热功能:如传热性、隔热性、吸热性和蓄热性等。 ④电功能:如导电性、超导性、绝缘性和电阻等。
⑤磁功能:如硬磁性、软磁性、半硬磁性等。 ⑥光功能:如遮光性、透光性、折射光性、反射光性、吸 光性、偏振光性、分光性、聚光性等。 ⑦化学功能:如吸附作用、气体吸收性、催化作用、生物 化学反应、酶反应等。 ⑧其他功能:如放射特性、电磁波特性等。
❖ 60年代以后,特种高分子和功能高分子得到发展。
特种高分子:高强度、耐高温、耐辐射、高频绝缘、 半导体等。
功能高分子:分离材料(离子交换树脂、分离膜
等)、导电高分子、感光高分子、高分子催化剂、 高吸水性树脂、医用高分子、药用高分子、高分 子液晶等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目前采用的制备方法来看,功能高分子材料的 制备可归纳为以下三种类型: 功能性小分子材料的高分子化; 已有高分子材料的功能化; 多功能材料的复合以及已有功能高分子材料的功
能扩展。 本章由近年来高分子合成的新方法开始,介绍
具有代表性的功能高分子设计的基本思路和方法。
3
第二章 功能高分子的制备方法
4
第二章 功能高分子的制备方法
Szwarc等人发现,在无水、无氧、无杂质、低 温条件下,以四氢呋喃为溶剂,萘钠引发剂引发的 苯乙烯阴离子聚合不存在任何链终止反应和链转移 反应,在低温、高真空条件下存放数月之久其活性 种浓度可保持不变。若再加入单体可得到更高相对 分子质量的聚苯乙烯。
基于此发现,Szwarc等人第一次提出了活性聚 合(living polymerization)的概念。
此后,阳离子活性聚合在聚合机理、引发体系、 单体和合成应用等方面都取得了重要进展。
目前,烷基乙烯基醚、异丁烯、苯乙烯及其衍 生物、1, 3 —戊二烯、茚和α-蒎烯等都已经实现了 阳离子活性聚合。
11
第二章 功能高分子的制备方法
Higashimura等人在用HI/I2引发烷基乙烯基醚的 阳离子聚合中,发现聚合过程具有以下活性聚合的
Mn× 10
3.0 2.5 2.0 1.5 1.0 0.5 0.0
0
追 加单体
2.0
1.0
50
100
150
200
转化率 %
图2—1 用HI/I2引发2-乙酰氧乙基乙烯基醚聚合时 单体转化率与数均分子量和分子量分布的关系
13
第二章 功能高分子的制备方法
采用HI/I2引发体系引发烷基乙烯基醚进行阳离 子活性聚合的机理为:
9
第二章 功能高分子的制备方法
2.2.3 阳离子活性聚合 阳离子聚合出现于20世纪40年代,典型工业产
品有聚异丁烯和丁基橡胶。 阳离子活性中心的稳定性极差,聚合过程不易
控制。多年来阳离子活性聚合的探索研究一直在艰 难地进行。
10
第二章 功能高分子的制备方法
1984年,Higashimura首先报道了烷基乙烯基 醚的阳离子活性聚合,随后又由Kennedy发展了异 丁烯的阳离子活性聚合。
已经开发成功的活性聚合主要是阴离子活性聚 合。其他各种聚合反应类型(阳离子聚合、自由基 聚合等)的链转移反应和链终止反应一般不可能完 全避免,但在某些特定条件下,链转移反应和链终 止反应可以被控制在最低限度而忽略不计。这样, 聚合反应就具有了活性的特征。通常称这类虽存在 链转移反应和链终止反应但宏观上类似于活性聚合 的聚合反应为“可控聚合”。
典型特征:
① 数均相对分子质量与单体转化率呈线性关系;
② 聚合完成后追加单体,数均分子量继续增长;
③ 聚合速率与HI的初始浓度[HI]0成正比; ④ 引发剂中I2浓度增加只影响聚合速率,对相对分 子质量无影响;
⑤ 在任意转化率下,产物的分子量分布均很窄,<
1.1。
12
第二章 功能高分子的制备方法
-3
5
第二章 功能高分子的制备方法
活性聚合最典型的特征是引发速度远远大于增 长速度,并且在特定条件下不存在链终止反应和链 转移反应,亦即活性中心不会自己消失。这些特点 导致了聚合产物的相对分子质量可控、相对分子质 量分布很窄,并且可利用活性端基制备含有特殊官 能团的高分子材料。
6
第二章 功能高分子的制备方法
第二章 功能高分子的制备方法
2.1 概述
特种与功能高分子材料的特点在于他们特殊的 “性能”和“功能”,因此在制备这些高分子材料
的时 候,分子设计成为十分关键的研究内容。
设计一种能满足一定需要的功能高分子材料是 高分子化学研究的一项主要目标。具有良好性质与 功能的高分子材料的制备成功与否,在很大程度上 取决于设计方法和制备路线的制定。
2.2 高分子合成新技术
2.2.1 活性与可控聚合的概念 活性聚合是1956年美国科学家Szwarc等人在研
究萘钠在四氢呋喃中引发苯乙烯聚合时发现的一种 具有划时代意义的聚合反应。其中阴离子活性聚合 是最早被人们发现,而且是目前唯一一个得到工业 应用的活性聚合方法。目前这一领域已经成为高分 子科学中最受科学界和工业界关注的热点话题。
16
第二章 功能高分子的制备方法
2.2.4 活性离子型开环聚合 活性开环聚合是正在发展的一个研究领域,和烯1Leabharlann 第二章 功能高分子的制备方法
功能高分子材料的制备是通过化学或者物理的 方法按照材料的设计要求将功能基与高分子骨架相 结合,从而实现预定功能的。
从上一世纪50年代起,活性聚合等一大批高分 子合成新方法的出现,为高分子的分子结构设计提 供了强有力的手段,功能高分子的制备越来越 “随 心所欲”。
2
第二章 功能高分子的制备方法
15
第二章 功能高分子的制备方法
实际上,阳离子活性聚合并非真正意义上的活 性聚合。聚合过程中的链转移反应和链终止反应并 没有完全消除,只是在某种程度上被掩盖了,因此 表现为活性聚合的特征。因此这些聚合过程可称为 表观活性聚合和准活性聚合。两者的区别在于前者 是指体系中存在一定程度的向单体链转移,后者则 是指体系中存在可逆链转移反应和链终止反应的聚 合体系。
HI CH2 CH
OR
CH3 CH I I2 CH3 CH I I2
OR
OR
n CH2 CH OR
H [ CH2 CH ]nCH2 CH I I2
OR
OR
14
第二章 功能高分子的制备方法
由上式可见,反应体系中HI首先加成到单体末 端,而I2可称为活化剂或共引发剂,它通过亲核作 用于I-形成I-…I2络合物,减弱了I-的亲核性,结 果不仅使活性中心的活性增大,而且使本来不稳定 的碳阳离子稳定在活性状态。
7
第二章 功能高分子的制备方法
目前,阳离子可控聚合、基团转移聚合、原子 转移自由基聚合、活性开环聚合、活性开环歧化聚 合等一大批“可控聚合”反应被开发出来,为制备
功 能高分子提供了极好的条件。
8
第二章 功能高分子的制备方法
2.2.2 阴离子活性聚合 基本特点:
1)聚合反应速度极快,通常在几分钟内即告完成; 2)单体对引发剂有强烈的选择性; 3)无链终止反应; 4)多种活性种共存; 5)相对分子质量分布很窄,目前已知通过阴离子活 性聚合得到的最窄相对分子质量分布指数为1.04。
能扩展。 本章由近年来高分子合成的新方法开始,介绍
具有代表性的功能高分子设计的基本思路和方法。
3
第二章 功能高分子的制备方法
4
第二章 功能高分子的制备方法
Szwarc等人发现,在无水、无氧、无杂质、低 温条件下,以四氢呋喃为溶剂,萘钠引发剂引发的 苯乙烯阴离子聚合不存在任何链终止反应和链转移 反应,在低温、高真空条件下存放数月之久其活性 种浓度可保持不变。若再加入单体可得到更高相对 分子质量的聚苯乙烯。
基于此发现,Szwarc等人第一次提出了活性聚 合(living polymerization)的概念。
此后,阳离子活性聚合在聚合机理、引发体系、 单体和合成应用等方面都取得了重要进展。
目前,烷基乙烯基醚、异丁烯、苯乙烯及其衍 生物、1, 3 —戊二烯、茚和α-蒎烯等都已经实现了 阳离子活性聚合。
11
第二章 功能高分子的制备方法
Higashimura等人在用HI/I2引发烷基乙烯基醚的 阳离子聚合中,发现聚合过程具有以下活性聚合的
Mn× 10
3.0 2.5 2.0 1.5 1.0 0.5 0.0
0
追 加单体
2.0
1.0
50
100
150
200
转化率 %
图2—1 用HI/I2引发2-乙酰氧乙基乙烯基醚聚合时 单体转化率与数均分子量和分子量分布的关系
13
第二章 功能高分子的制备方法
采用HI/I2引发体系引发烷基乙烯基醚进行阳离 子活性聚合的机理为:
9
第二章 功能高分子的制备方法
2.2.3 阳离子活性聚合 阳离子聚合出现于20世纪40年代,典型工业产
品有聚异丁烯和丁基橡胶。 阳离子活性中心的稳定性极差,聚合过程不易
控制。多年来阳离子活性聚合的探索研究一直在艰 难地进行。
10
第二章 功能高分子的制备方法
1984年,Higashimura首先报道了烷基乙烯基 醚的阳离子活性聚合,随后又由Kennedy发展了异 丁烯的阳离子活性聚合。
已经开发成功的活性聚合主要是阴离子活性聚 合。其他各种聚合反应类型(阳离子聚合、自由基 聚合等)的链转移反应和链终止反应一般不可能完 全避免,但在某些特定条件下,链转移反应和链终 止反应可以被控制在最低限度而忽略不计。这样, 聚合反应就具有了活性的特征。通常称这类虽存在 链转移反应和链终止反应但宏观上类似于活性聚合 的聚合反应为“可控聚合”。
典型特征:
① 数均相对分子质量与单体转化率呈线性关系;
② 聚合完成后追加单体,数均分子量继续增长;
③ 聚合速率与HI的初始浓度[HI]0成正比; ④ 引发剂中I2浓度增加只影响聚合速率,对相对分 子质量无影响;
⑤ 在任意转化率下,产物的分子量分布均很窄,<
1.1。
12
第二章 功能高分子的制备方法
-3
5
第二章 功能高分子的制备方法
活性聚合最典型的特征是引发速度远远大于增 长速度,并且在特定条件下不存在链终止反应和链 转移反应,亦即活性中心不会自己消失。这些特点 导致了聚合产物的相对分子质量可控、相对分子质 量分布很窄,并且可利用活性端基制备含有特殊官 能团的高分子材料。
6
第二章 功能高分子的制备方法
第二章 功能高分子的制备方法
2.1 概述
特种与功能高分子材料的特点在于他们特殊的 “性能”和“功能”,因此在制备这些高分子材料
的时 候,分子设计成为十分关键的研究内容。
设计一种能满足一定需要的功能高分子材料是 高分子化学研究的一项主要目标。具有良好性质与 功能的高分子材料的制备成功与否,在很大程度上 取决于设计方法和制备路线的制定。
2.2 高分子合成新技术
2.2.1 活性与可控聚合的概念 活性聚合是1956年美国科学家Szwarc等人在研
究萘钠在四氢呋喃中引发苯乙烯聚合时发现的一种 具有划时代意义的聚合反应。其中阴离子活性聚合 是最早被人们发现,而且是目前唯一一个得到工业 应用的活性聚合方法。目前这一领域已经成为高分 子科学中最受科学界和工业界关注的热点话题。
16
第二章 功能高分子的制备方法
2.2.4 活性离子型开环聚合 活性开环聚合是正在发展的一个研究领域,和烯1Leabharlann 第二章 功能高分子的制备方法
功能高分子材料的制备是通过化学或者物理的 方法按照材料的设计要求将功能基与高分子骨架相 结合,从而实现预定功能的。
从上一世纪50年代起,活性聚合等一大批高分 子合成新方法的出现,为高分子的分子结构设计提 供了强有力的手段,功能高分子的制备越来越 “随 心所欲”。
2
第二章 功能高分子的制备方法
15
第二章 功能高分子的制备方法
实际上,阳离子活性聚合并非真正意义上的活 性聚合。聚合过程中的链转移反应和链终止反应并 没有完全消除,只是在某种程度上被掩盖了,因此 表现为活性聚合的特征。因此这些聚合过程可称为 表观活性聚合和准活性聚合。两者的区别在于前者 是指体系中存在一定程度的向单体链转移,后者则 是指体系中存在可逆链转移反应和链终止反应的聚 合体系。
HI CH2 CH
OR
CH3 CH I I2 CH3 CH I I2
OR
OR
n CH2 CH OR
H [ CH2 CH ]nCH2 CH I I2
OR
OR
14
第二章 功能高分子的制备方法
由上式可见,反应体系中HI首先加成到单体末 端,而I2可称为活化剂或共引发剂,它通过亲核作 用于I-形成I-…I2络合物,减弱了I-的亲核性,结 果不仅使活性中心的活性增大,而且使本来不稳定 的碳阳离子稳定在活性状态。
7
第二章 功能高分子的制备方法
目前,阳离子可控聚合、基团转移聚合、原子 转移自由基聚合、活性开环聚合、活性开环歧化聚 合等一大批“可控聚合”反应被开发出来,为制备
功 能高分子提供了极好的条件。
8
第二章 功能高分子的制备方法
2.2.2 阴离子活性聚合 基本特点:
1)聚合反应速度极快,通常在几分钟内即告完成; 2)单体对引发剂有强烈的选择性; 3)无链终止反应; 4)多种活性种共存; 5)相对分子质量分布很窄,目前已知通过阴离子活 性聚合得到的最窄相对分子质量分布指数为1.04。