量子力学问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础。

19世纪末,经典力学和经典电动力学在描述微观系统时的不足越来越明显。量子力学是在20世纪初由马克斯·普朗克、尼尔斯·玻尔、沃纳·海森堡、薛定谔、沃尔夫冈·泡利、德布罗意、马克斯·玻恩、恩里科·费米、保罗·狄拉克等一大批物理学家共同创立的。通过量子力学的发展人们对物质的结构以及其相互作用的见解被革命化地改变。通过量子力学许多现象才得以真正地被解释,新的、无法直觉想象出来的现象被预言,但是这些现象可以通过量子力学被精确地计算出来,而且后来也获得了非常精确的实验证明。除通过广义相对论描写的引力外,至今所有其它物理基本相互作用均可以在量子力学的框架内描写(量子场论)。

关键现象

光与物质的相互作用

黑体辐射

19世纪末,许多物理学家对黑体辐射非常感兴趣。黑体是一个理想化了的物体,它可以吸收,所有照射到它上面的辐射,并将这些辐射转化为热辐射,这个热辐射的光谱特征仅与该黑体的温度有关。使用古典物理这个关系无法被解释。通过将物体中的原子看作微小的量子谐振子,马克斯·普朗克得以获得了一个黑体辐射的普朗克公式。但是在引导这个公式时,他不得不假设这些原子谐振子的能量,不是连续的(这是古典物理学的观点),而是离散的:

E

= nhν

n

这里n是一个整数,h是一个自然常数。(后来证明正确的公式,应该以n+ 1 / 2 来代替n,参见零点能量)。1900年,普朗克在描述他的辐射能量子化的时候非常地小心,他仅假设被吸收和放射的辐射能是量子化的。今天这个新的自然常数被称为普朗克常数来纪念普朗克的贡献。其值为 Js 。

光电效应

1905年,阿尔伯特·爱因斯坦通过扩展普朗克的量子理论,提出不仅仅物质与电磁辐射之间的相互作用是量子化的,而且量子化是一个基本物理特性的理论。通过这个新理论,他得以解释光电效应。海因里希·鲁道夫·赫兹和菲利普·莱纳德等人的实验,发现通过光照,可以从金属中打出电子来。同时他们可以测量这些电子的动能。不论入射光的强度,只有当光的频率,超过一个临限值后,才会有电子被射出。此后被打出的电子的动能,随光的频率线性升高,而光的强度仅决定射出的电子的数量。爱因斯坦提出了光的量子(光子这个名称后来才出现)的理论,来解释这个现象。光的量子的能量为

在光电效应中这个能量被用来将金属中的电子射出(逸出功)和加速电子(动能):这里m是电子的质量,v是其速度。假如光的频率太小的话,那么它无法使得电子越过逸出功,不论光强有多大。照射时间有多长,都不会发生光电应,而入射光的频率高于极限频率时,即使光不够强,当它射到金属表面时也会观察到光电子发射.

原子结构

20世纪初卢瑟福模型是当时被认为正确的原子模型。这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的原子核运转。在这个过程中库仑力与离心力必须平衡。但是这个模型有两个问题无法解决。

首先,按照经典电磁学,这个模型不稳定。按照电磁学,电子不断地在它的运转过程中被加速,同时应该通过放射电磁波丧失其能量,这样它很快就会坠入原子核。其次原子的发射光谱,由一系列离散的发射线组成,比如氢原子的发射光谱由一个紫外线系列(来曼系)、一个可见光系列(巴耳末系)和其它的红外线系列组成。按照经典理论原子的发射谱应该是连续的。

1913年,尼尔斯·玻尔提出了以他命名的玻尔模型,这个模型为原子结构和光谱线,给出了一个理论原理。玻尔认为电子只能在一定能量E n的轨道上运转。假如一个电子,从一个能量比较高的轨道(E n),跃到一个能量比较低的轨道(E m)上时,它发射的光的频率为

通过吸收同样频率的光子,可以从低能的轨道,跃到高能的轨道上。

玻尔模型可以解释氢原子,改善的玻尔模型,还可以解释只有一个电子的离子,即 He+, Li2+, Be3+等。但无法准确地解释其它原子的物理现象。

物质衍射

外村彰的衍射试验结果

1919年克林顿·戴维森等人,首次成功地使用电子进行了衍射试验,路易斯·德布罗意由此提出粒子拥有波性,其波长与其动量相关

简单起见这里不详细描写戴维森等人的试验,而是描写电子的双缝实验。通过这个试验,可以非常生动地体现出多种不同的量子力学现象。

右图显示了这个试验的结果:

∙打在屏幕上的电子是点状的,这个现象与一般感受到的点状的粒子相同。

∙电子打在屏幕上的位置,有一定的分布概率,随时间可以看出双缝衍射所特有的条纹图像。假如一个光缝被关闭的话,所形成的图像是单缝特有的波的分布概率。

在图中的试验里,电子源的强度非常低(约每秒10颗电子),因此电子之间的衍射可以被排除。显然电子同时通过了两个缝,与自己衍射导致了这个结果。对于经典物理学来说,这个解释非常奇怪。从量子力学的角度来看,电子的分布概率和衍射结果均可以通过这两个通过两个栅的、叠加在一起的状态,简易地演算出来。这个试验非常明显地显示出了波粒二象性。

这个试验证实了薛定谔开发他的量子力学时所作的假设,即每个粒子也同时可以被一个波函数来描写,而这个波函数是多个不同状态的叠加。

数学理论

1932年约翰·冯·诺伊曼将量子力学的最重要的基础严谨地公式化。按照诺伊曼的一个物理系统有三个主要部分:其量子态、其可观察量和其动力学(即其发展趋势),此外物理对称性也是一个非常重要的特性。

假设

非相对论性的单粒子量子力学的数学理论基于以下假设:

1.一个物理系统于时间点t的状态可以由希尔伯特空间中的一个归一化

矢量来定义。这里的希尔伯特空间指的是定义了内积的平方可积的线性矢量空间。

2.每个可观测量A可以通过状态空间中的一个厄米算符来表示,可观测量

A在状态的期望值(即测量结果的平均值)为。进一步的,对应于可观测量的厄米算符的所有本征态构成希尔伯特空间中的正交归一的完备函

数系。任意一个态矢量都可以由该算符的本征态展开。如果系统处于算符的本征态上,对应的可观测量具有唯一确定的测量值,即该本征态对应的本征值。对于任意的态,观测量的测量值是各本征值的带权平均。量子力学中的测量是不可逆的,测量后系统处于该测量值的一个特征向量上。

3.位置算符和动量算符之间满足正则对易关系。由此对易关系可以确定动量

算符的表达式,而所有的其他算符都可以由位置算符和动量算符表出。由算符的对易式可导出不确定性原理:两个可观察量和之间的不确定性

为。

4.状态矢量的动力学演化由薛定谔方程表示:,在这里哈密顿算符通常

对应于系统的总能量。

为了描写无法获得最多信息的量子状态物理学家创造了密度矩阵。密度矩阵包含了它所描写的系统通过测量可以获得的最多信息。

近年来数学家和物理学家才找到了一个非常广义的可观察量的数学描述,即广义量子测量(POVM)。这个理论在传统的教科书中基本上还未提到。完备正映射(completely positive maps)可以非常广泛、而且在数学上非常优美地描写量子系统的运算。这个新的描写方法扩展了上面所叙述的传统的诺伊曼方法,而且还可以描写上述方法无法描写的现象,比如持续性的不确定性的测量等等。

状态

主条目:量子态

在经典力学中,一个拥有f自由度的物理系统及其随时间的发展,可以通过f 对正则坐标完全决定。在量子力学中,两个相互共轭的可观察量,从原则上,

相关文档
最新文档