第三章 混合策略纳什均衡
3-混合策略的纳什均衡
博弈论教学/混合策略的纳什均衡出自MyKnowledgeBase< 博弈论教学Bread crumbs: Main Page > 博弈论教学/混合策略的纳什均衡目录■1 复习■2 混合策略(Mixed strategy)■2.1 举例/Example■2.2 概念■2.3 纯策略和混合策略■2.4 混合策略的争议■3 混合策略的纳什均衡■3.1 基本概念■3.2 混合策略纳什均衡的存在性/纳什定理■3.3 学术争议与批评■4 混合策略纳什均衡举例■4.1 社会福利博弈Social Welfare Game■4.1.1 博弈分析(方法1:收益无差异)■4.1.2 博弈分析(方法2:图形分析法)■4.1.3 博弈分析(方法3:导数(Derivative)极值法)■4.2 普通例子■4.3 审计博弈(Tax Game)■4.4 激励的悖论[5]■4.5 求解纳什均衡的一般方法■5 多重纳什均衡■5.1 多重纳什均衡举例■5.1.1 夫妻之争■5.1.2 制式问题■5.1.3 市场机会博弈■5.2 多重纳什均衡分析■5.2.1 帕累托上策均衡(Pareto Dominated Equilibrium)■5.2.1.1 帕累托最优Pareto optimality■5.2.1.2 帕累托上策均衡(Pareto Dominated Equilibrium)■5.2.1.3 举例分析■5.2.2 风险上策均衡(Risk-dominant Equilibrium)■5.2.3 聚点均衡(Focal Points Equilibrium)■5.2.4 相关均衡■5.2.5 抗共谋均衡(coalition-proof Nash equilibrium)■6 纳什均衡的意义■7 作业■8 参考文献pure strategy)相对应。
混合策略:在博弈中,博弈方的策略空间为,则博弈方i以概率分布随机在其选策略中选择的“策略”,称为一个“混合策略”,其中,对都成立,且。
3 混合纳什均衡
13
混合Nash均衡的解释(2)
纳什均衡要求每个参与人的混合战略是给定对方的混合战略下的最 优选择。因此在社会福利博弈中,* 0 . 2 , *=0.5是唯一的混合战略 纳什均衡。 从反面来说,如果政府认为流浪汉选择寻找工作的概率严格小于0.2, 那么政府的唯一最优选择是纯战略:不救济;
如果政府以1的概率选择不救济,流浪汉的最优选择是寻找工作,这 又将导致政府选择救济的战略,流浪汉则选择游荡。如此等等。
14
混合Nash均衡的解释(3)
流浪汉
政府
流浪汉
寻找工作的概率小于0.2
概率为1:不救济
寻找工作
政府 救济
15
猜谜游戏
求该猜谜游戏 的混合战略纳什 均衡
正面
1 -1, -1
5
社会福利博弈
寻找工作
2
流浪
3 -1,
救济
3, 1
0 0,
不救济
-1,
设:政府救济的概率:1/2 ;不救济的概率:1/2。
流浪汉:寻找工作的期望效用:1/2×2+1/2 ×1=1.5 流浪的期望效用: 1/2×3+1/2 ×0=1.5
因此,流浪汉的任何一种策略都是都是对政府混合战略的最优反应
6
社会福利博弈(2)
寻找工作
2 3, 1
流浪
3 -1, 0 0,
3r+(-1)(1-r)=4r-1
选择纯战略不救济的效用为:
-1r+0(1-r)=-r
如果一个混合战略(而不是纯战略) 是政府的最优选择,一定意味着政府 在救济与不救济之间是无差异的。
救济
不救济
-1,
4r-1=-r
第三讲_混合策略纳什均衡
混合策略
◆混合策略定义:在n人博弈的策略式表述 G S1, , Sn ; u1, , un Si Si1, , SiK ,那么,概率 中,假定参与人 i 有K个纯策略: 分布 pi pi1 , , piK 称为 i 的一个混合策略,这里
pik p(sik ) 是 i 选择 sik 的概率,对于所有
这个故事曾经被很多人当作博弈论的例 子来演绎,但实际上这个故事与博弈论无关。 博弈论会假定所有局中人都是理性的,不能假 定一些局中人聪明而另一些局中人却是傻子。 当田忌出下马时,齐威王最好的选择是出下马 而不是上马。孙膑的计谋中假定齐威王是傻子 ,当田忌出下、上、中马时,他仍然按上、中 、下马出,当然要输了。事实上,当田忌出下 马时,齐威王应出下马,但齐威王出下马时, 田忌不应出下马而是出中马,但此时齐威王又 应出中马而不是下马了,……。这样,博弈不 会有纯战略的均衡。
-2,3
2,2
假定老板选择混合战略(0.2,0.8) 工人选择“偷懒”期望支付为(-1)×0.2+3×0.8=2.2 工人选择“不偷懒”(期望)支付为2×0.2+2×0.8=2 工人应选择“偷懒” 老板选择“监督” “不偷懒’……
假定老板选择混合战略(0.5, 0.5) 工人选择“偷懒”期望支付 0.5 为 (-1)×0.5+3×0.5=1 工人选择“不偷懒”期望支 0.5 付为2×0.5+2×0.5=2 工人应选择“不偷懒” 老板选择“不监督” 工人选择“偷懒’……
由 VA =VB 可得 :q=0.8 博弈方2:
VB =3q (1 q)
博 弈 方 1
A B
VC =3 p (1 p)
VD =2 p 5(1 p)
混合策略纳什均衡
博弈论 第三章 混合策略纳什均衡
r*=R(q)
反应对应曲线
第二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77)
再看乙的最优反应,记为q*=R(r): 观察π乙(p甲, p乙)= 2q(2r-1)-(2r-1)
若r 1 / 2 2r 1 0, q越大越好 1, q* R( r ) [0,1], 若r 1 / 2 2r 1 0,无论q选什么都无影响 0, 若r 1 / 2 2r 1 0, q越小越好
博弈论 第三章 混合策略纳什均衡
第二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77)
先看甲的最优反应,记为r*=R(q): 观察π甲(p甲, p乙)= 2r(1-2q)+(2q-1)
若q 1 / 2 1 2q 0, r越小越好 0, r* R( q) [0,1], 若q 1 / 2 1 2q 0,无论r选什么都无影响 1, 若q 1 / 2 1 2q 0, r越大越好
解:Max π甲(p甲, p乙) r Max π乙(p甲, p乙) q
f.o.c. 2r-1=0
r*=1/2
混合策略纳什均衡是甲在策略空间{红,黑}上以概率分布 p甲*= (1/2,1/2)进行选择,乙也在策略空间{红,黑}上以概率p乙*= (1/2,1/2)进行选择
博弈论 第三章 混合策略纳什均衡
第二节 混合策略纳什均衡的求解方法
二、支付最大化法
例:扑克牌对色游戏(p77)
无纯策略NE 给定混合策略p甲=(r,1-r); p乙=(q,1-q) π甲(p甲, p乙)=r[q(-1)+(1-q) 1]+ (1-r)[q1+(1-q)(-1)] = 2r(1-2q)+(2q-1) π乙(p甲, p乙)=q [r1+(1-r)(-1)]+ (1-q)[r(-1)+(1-r)1] =2q(2r-1)-(2r-1) f.o.c. 1-2q=0 q*=1/2
混合策略
第一节 混合策略与期望支付
二、期望支付 (一)分析 1.概率 (偷,睡)的概率:pq (偷,不睡)的概率:p(1-q) (不偷,睡)的概率:(1-p)q (不偷,不睡)的概率:(1-p)(1-q)
第一节 混合策略与期望支付
二、期望支付 (一)分析 2.期望支付 U小偷=8pq+(-2)p(1-q)+0(1-p)q+0(1p)(1-q)=2p(5q-1) U守卫= (-2) pq+0p(1-q)+8(1p)q+0(1-p)(1-q)=2q(4-5p)
小偷与守卫博弈
无纳什均衡,如何分析?
第一节 混合策略与期望支付
一、混合策略 (二)混合策略 1.表述 参与人按照一定概率,随机从策略 组合中选择一种策略作为实际行动 随机行动的目的:使自己的行为不被 对手预测
混合策略
小偷的混合策略 以p的概率偷,(p,1-p) 守卫的混合策略 以q的概率睡(q,1-q)
第一节 混合策略与期望支付
一、混合策略 (二)混合策略 2.相对概念:纯策略 每个参与人的非随机性选择 纯粹行动计划,p=100%,1-p=0
第一节 混合策略与期望支付
一、混合策略 (二)混合策略 3.数学刻画 给定博弈G={S1,…,Sn;u1,…,un}以及参 与人i的纯策略Si= {si1,…,sik} 概率分布pi=(pi1,…,pik)为混合策略 其中:0≤ pik ≤1,∑ pik=1, pik=p( sik ) 混合策略组合p=(p1,…,pi,…pn)
两情若是久长时
足球 John 芭蕾 Candy 足球 芭蕾
2,1 0,0
-1,-1
1,2
研究方法:支付等价法
混合策略纳什均衡
03 混合策略纳什均衡的证明 方法
反证法
总结词
通过假设不成立来证明均衡的存在。
详细描述
反证法是一种常用的证明方法,它首先假设与结论相反的命题成立,然后通过逻辑推理和数学推导,得出矛盾的 结论,从而证明原命题的正确性。在证明混合策略纳什均衡的存在时,反证法可以用来证明当其他玩家采取了最 优策略时,某个玩家采取混合策略能够达到最优结果。
唯一性意味着在给定对手策略的情况下,每个参与者都只有一个最优反应,从而 避免了复杂的策略互动和不确定性。
存在性
混合策略纳什均衡的存在性是指在某 些博弈中,至少存在一个策略组合, 使得每个参与者在给定其他参与者策 略的情况下,采用混合策略是最优的 。
存在性通常通过数学证明和计算机搜 索等方法来证明,但并不是所有博弈 都有混合策略纳什均衡。
混合策略纳什均衡
目录
CONTENTS
• 混合策略纳什均衡的定义 • 混合策略纳什均衡的特性 • 混合策略纳什均衡的证明方法 • 混合策略纳什均衡的应用场景 • 混合策略纳什均衡的局限性 • 混合策略纳什均衡的发展前景
01 混合策略纳什均衡的定义
定义
混合策略纳什均衡是一种博弈论中的均衡概念,它描述了在 给定对手策略的情况下,参与者如何选择最优策略以最大化 自己的期望收益。
代数法是一种通过数学符号和公式进行推 理和证明的方法。在证明混合策略纳什均 衡的存在时,代数法可以用来推导和证明 纳什均衡的条件和性质,利用代数性质和 技巧来证明均衡的存在。
04 混合策略纳什均衡的应用 场景
经济学
竞争策略分析
混合策略纳什均衡在经济学中被用于分析竞 争策略,特别是在不完全竞争市场和寡头垄 断市场中。通过混合策略纳什均衡,可以研 究企业在不确定环境下的最优反应,以及企 业如何通过调整其策略来应对竞争对手的行 为。
混合的策略纳什均衡
流浪汉 寻找工作 流浪
救济 政府
不救济
2 3,
1 -1,
3 -1,
0 0,
虽这模型没有PNE,却有下述的MNE:参与人以一定的概率选择某种 策略,然后计算相应于不同概率的期望效用。
2020/6/17
9
设:政府救济的概率θ=1/2 ; 不救济的概率1-θ=1/2。 流浪汉寻找工作的期望效用: 1/2×2+1/2 ×1=1.5 流浪的期望效用: 1/2×3+1/2 ×0=1.5
✓ 每个参与人都想猜透对方的策略,而每个 参与人又不愿意让对方猜透自己的策略。
这种博弈的类型是什么?如何找到均衡?
2020/6/17
3
2. 混合策略、混合策略博弈和混合策略纳什均衡
• 策略:
– 参与人在给定信息集的情况下选择行动的规则,它规定参与人在 什么情况下选择什么行动,是参与人的“相机行动方案”。
E1(正面)=(-1)×r+1×(1-r)=1-2r 参与人1选取反面的期望效用为
E1(反面)=1×r+(-1)×(1-r)=2r-1
2020/6/17
15
参与人1的期望效用为 E1= E1(正面)×q + E1(反面)×(1- q ) =(1-2r)(2q-1)
类似地,得到参与人2的期望效用为
E2= E2(正面)×r + E2(反面)×(1- r ) =(1-2q)(2r-1)
参与人2
正面
反面
参与人1
正面 反面
-1, 1 1,-1
1,-1 -1, 1
由划线法可知,该博弈不存在纳什均衡。 所以采取纯策略不存在稳定的纳什均衡解。
2020/6/17
2
混合策略纳什均衡
第二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77)
先看甲的最优反应,记为r*=R(q): 观察π甲(p甲, p乙)= 2r(1-2q)+(2q-1)
若q 1 / 2 1 2q 0, r越小越好 0, r* R( q) [0,1], 若q 1 / 2 1 2q 0,无论r选什么都无影响 1, 若q 1 / 2 1 2q 0, r越大越好
纯策略(确定性)
q*=R(r)
(陈明德语) r 1 3/4
r*=R(q)
0 1/4 1 q (钟信德语)
博弈论 第三章 混合策略纳什均衡
第三节 寻找多重纳什均衡
二、反应对应法:情侣博弈
支付的帕累托优势:初步印象 π陈明=r(4q-1)+2(1-q),π钟信=q(4r-3)+(3-2r) r*=0, q*=0 纯策略(确定性)
第三节 寻找多重纳什均衡
例:情侣博弈
两个(多个)纯策略纳什均衡 问题:纳什均衡找完了吗?有无混合策略纳什均衡?
一、支付最大化法
给定混合策略p陈明=(r,1-r); p钟信=(q,1-q) Max π陈明(p陈明, p钟信)=r[3q+(1-q) ]+ (1-r)[0+2(1-q)] =r(4q-1)+2(1-q) r Max π钟信(p陈明, p钟信)=q (2r+0)+ (1-q)[r+3(1-r)] =q(4r-3)+(3-2二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77) 无纯策略NE 给定混合策略p甲=(r,1-r); p乙=(q,1-q)
3 混合策略纳什均衡(1)
扩展:二人博弈标准型
n人参与的策略式博弈混合策略定义
• i 表示局中人 i 的混合策略空间
• p ( p1,..., pi ,..., pn ), pi i 表示博弈的一个混合策
略组合
• i ( p) i ( p1,..., pi ,..., pn ) 表示局中人 i 在混合策略 组合 p ( p1,..., pi ,..., pn ) 下的期望支付,它是混 合策略组合 p 的函数。
3-2 反应函数法
• 寻找同时决策有限博弈的混合策略纳什均衡
• B的混合策略设定为(q,1-q)时,A的最佳 反应函数是:
UA( p, q) 2 p(1 2q) (2q 1)
• A的混合策略设定为(p,1-p)时,B的最 佳反应函数是:
UB ( p, q) 2q(2 p 1) (2 p 1)
游戏; • 另外4名同学负责以下工作
– 1名同学记录A分别出锤子剪子布的次数; – 1名同学记录A输和赢的次数 – 1名同学记录B分别出锤子剪子布的次数; – 1名同学记录B输和赢的次数
• 共进行30次 • 每个小组写下实验报告,内容包括:A和B选 择不同策略的次数;输赢的次数;怎么才能赢?
3-1混合策略、混合纳什均衡与期望 支付
数学语言表达
• 如果主体人对确定性收益x的效用为u(x),那么主体 人对不确定性收益X的效用就为E(u(X))。
• E(u(X))称为X的期望效用,常记为EU(X)。将X看作 自变量, EU(X)称为期望效用函数。
• 如果不确定性收益X退化成确定性收益x,则EU(X)= u(x),所以EU(X)可以同时表达主体人对确定性收益 和不确定性收益的效用。
混合策略纳什均衡
友军博弈
英 国 支持巴顿 支持蒙帅 支持巴顿 4,3 2,2 美国 1,1 3,4 支持蒙帅
友军博弈特征
两个(多个)纳什均衡 问题:博弈的最终结果?
第三章 混合策略纳什均衡
第三节 多重纳什均衡的选择 标准
第三节 多重纳什均衡的选择标准
一、帕累托优势标准:得益更大 (一)案例:战争与和平 C国 鹰战略 鸽战 略 -5,-5 8,-10 鹰战略 -10,8 10,10 A国 鸽战略
混合策略
小偷的混合策略 以p的概率偷,(p,1-p) 守卫的混合策略 以q的概率睡(q,1-q)
第一节 混合策略与期望支付
一、混合策略 (二)混合策略 2.相对概念:纯策略 每个参与人的非随机性选择 纯粹行动计划,p=100%,1-p=0
第一节 混合策略与期望支付
一、混合策略 (二)混合策略 3.数学刻画 给定博弈G={S1,…,Sn;u1,…,un}以及参 与人i的纯策略Si= {si1,…,sik} 概率分布pi=(pi1,…,pik)为混合策略 其中:0≤ pik ≤1,∑ pik=1, pik=p( sik ) 混合策略组合p=(p1,…,pi,…pn)
第三节 多重纳什均衡的选择标准
一、帕累托优势标准:得益更大 (二)纳什均衡的选择标准 帕累托优势标准 按照支付大小筛选纳什均衡
-5,-5 -10,8 8,-10 10,10
第三节多重纳什均衡的选择标准
二、风险优势标准:风险更小? (一)案例:串通作弊博弈 帕累托优 学生乙 势? 作弊 不作弊 作弊 9,9 0,8 学生甲 8,0 7,7 不作弊
第一节 混合策略与期望支付
二、期望支付 (二)数学刻画
1 ( p, q ) pi q j aij
第三讲 混合策略纳什均衡
EV1(p,q)=
q[ pu2 + (1 − p)u4 ] + (1 − q)[ pu6 + (1 − p)u8 ]
混合策略均衡
例:监督博弈
工人 偷懒 老板 监督 不监督 1,-1 -2,3 不偷懒 -1,2 2,2
给定工人偷懒,老板的最优 给定工人偷懒, 选择是监督;给定老板监督, 选择是监督;给定老板监督, 工人的最优选择是不偷懒; 工人的最优选择是不偷懒; 给定工人不偷懒, 给定工人不偷懒,老板的最 优选择是不监督; 优选择是不监督;给定老板 不监督, 不监督,工人的最优选择是 偷懒;如此循环。 偷懒;如此循环。
S21
参与 人2
q
S22
qu1 + (1 − q )u3
如果参与人1选择S 如果参与人1选择S12:
qu 5 + (1 − q ) u 7
S11 p S12 1-p
u1,u2 u5,u6
u3,u4 u7,u8
p[qu1 +(1−q)u3]+(1− p)[qu5 +(1−q)u7]
◆参与人2的期望支付: 参与人2的期望支付: 参与人 EV2(p,q)=
混合策略均衡
◆混合策略定义:在n人博弈的策略式表述 G = {S1 ,⋅ ⋅ ⋅, S n ; u1 ,⋅ ⋅ ⋅, un } 混合策略定义: 混合策略定义 S 中,假定参与人 i 有K个纯策略: i = {Si1 , ⋅⋅⋅, SiK } ,那么,概率 分布 pi = { pi1 , ⋅⋅⋅, piK } 称为参与人 i 的一个混合策略 混合策略,这里 混合策略 pik = p ( sik ) 是参与人 i 选择 sik 的概率,对于所有 K k = 1,⋅ ⋅ ⋅, K ,0 ≤ pik ≤ 1, ∑1 pik = 1 。 的 ◆ 显然,纯策略可以理解为混合策略的特例,比如说,纯 1 策略 s i 等价于混合策略 p i = { ,0,⋅ ⋅ ⋅,0} ,即选择纯策略 s i 的概率为1,选择任何其他纯策略的概率为0。
博弈论第三章混合策略纳什均衡.
如果一个混合策略是流浪汉的最优选择,那一定意味 着政府在救济与不救济之间是无差异的,即:
vG 1,
4
1 vG 0,
0.2
• 解二:支付等值法
如果一个混合策略是政府的最优选择,那一定意 味着流浪汉在寻找工作与游闲之间是无差异的, 即:
vL 1, 1 3 vL 0, 0.5
游闲
(3,2) (-1,3)
(-1,1) (0,0)
政府和流浪汉的博弈
• 思考:政府会采用纯策略吗?流浪汉呢?这 个博弈有没有纯策略的纳什均衡? • ——跟你玩剪子石头布游戏一样,你会一直 采用纯策略吗? • 那么政府和流浪汉最有可能采用什么策略? • ——使自己的预期支付最大化。 • ——若能够猜的对方的策略,就可以采用针 对性的策略,使自己的支付增加。
L 2 1 0
0.5
解二:支付等值法
• 政府选择救济策略 • 政府选择不救济策略
0 1 期望效用 期望效用 vG 1, 3 11 vG 0, 1 01 4 1
EUA p1 X 1 p 2 X 2 ... pnXn
政府和流浪汉的博弈
• 政府想帮助流浪汉,但前提是后者必须试图寻 找工作,否则,不予帮助;而流浪汉若知道政 府采用救济策略的话,他就不会寻找工作。他 们只有在得不到政府救济时才会寻找工作。他 们获得的支付如图所示:
流浪汉
寻找工作
救济 政府 不救济
乙 红q 红p 甲 黑1-p -1, 1 1, -1 黑1-q 1, -1 -1, 1
§ 反应函数
• A的目标是期望支付越大越好。我们之所以把A的 期望支付整理成不含p的一项和含p的一项这个样 子,是因为A只能选择p而不能q,因此,A能通过 选择p来影响第一项,而不能直接影响第二项。 (1-2q)>0即q<1/2时,A把p选择等于1最好;当 (1-2q)<0即q>1/2时,A把p选择等于0最好;当 (1-2q)=0即q=1/2时,A可以在[0,1]之间随便 选择一个p。这样我们可以得到A的反应函数是, 同样道理我们可以得到B的反应函数。 • 0, 如果q>1/2 1, 如果p>1/2 • p [0,1], 如果q=1/2 q [0,1], 如果p=1/2 • 1, 如果q<1/2 0, 如果p<1/2
03 混合策略纳什均衡
相关均衡例子 三个纳什均衡: 三个纳什均衡 (U,L)、(D,R) 和混合策略均衡[(1/2,1/2), (1/2,1/2)] 结果都不理想,不如(D,L)。
5)防联盟均衡 ) 博弈中若有三个及三个以上的局中人,就有可能部分人结 成“联盟”,在极大化联盟成员利益的同时损害了其他局 中人的利益。
甲 乙
2
( p, q ) = ∑∑ pi q j bij
i =1 j =1
混合策略纳什均衡 设 P * = ( P * , L, Pi* , L, Pn* ) 是 n 人策略式博弈 G = {S1 ,LSn ; u1 ,Lun } 1 的一个混合策略组合,如果对于所有的
i = 1, L , n ,
π i ( Pi* , P−*i ) ≥ π i ( Pi , P−*i ) 对于每一个 Pi ∈ ∑i 都成立,则称
i i
随机在其m个可选策略中选择的“策略”,称为一个“混合 策略”,其中 p ij 0≤
≤1
j 对,L, m =1
p 1i 都成立,且 + L + p im = 1
混合策略扩展博弈:博弈方在混合策略的策略空 混合策略扩展博弈 间(概率分布空间)的选择看作一个博弈,就是原 博弈的“混合策略扩展博弈。
L 0,0,10 -5,-5,0 A
R -5,-5,0 1,1,-5
乙 甲
L -2,-2,0 -5,-5,0 B
R -5,-5,0 -1,-1,5
U D
U D 丙
)、(D, , ) (U,L,A)、( ,R,B)——纯策略纳什均衡 , , )、( 纯策略纳什均衡 优于( , , ) (U,L,A) Pareto优于(D,R,B) , , ) 优于
2)制式问题
混合策略纳什均衡
目录[隐藏]1 什么是混合策略纳什均衡2 解混合策略纳什均衡的方法3 混合策略纳什均衡的经典博弈——猜谜博弈[1]4 混合策略纳什均衡博弈与其他均衡的关系[1]5 参考文献[编辑][编辑][编辑]混合策略纳什均衡混合策略纳什均衡(Mixed Strategy Nash Equilibrium )什么是混合策略纳什均衡混合策略纳什均衡:在n 个参与人的博弈G={S 1 ,... S n ; u 1,...u n }中,混合策略组合构成一个纳什均衡,如果对于所有的i =1,2...,n 下式成立:也就是说,如果一个策略组合使任何一个参与人的策略都是相对于其他参与人的策略的最佳策略,这个策略就构成一个纳什均衡,不管这个策略是混合策略还是纯策略。
混合策略纳什均衡是面对其他博弈者选择的不确定性的一个理性对策,其主要特征是作为混合策略一部分的每一个纯策略有相同的期望值,否则,一个博弈者会选择那个期望值最高的策略而排除所有其他策略,这意味着原初的状态不是一个均衡。
解混合策略纳什均衡的方法1、最大化支付法:即最大化各个参与人的效用函数。
2、支付相等法:根据前面分析的猜硬币博弈中参与人的策略的思路,每个参与人的混合策略都使其余参与人的任何纯策略的期望支付相等,因此,解混合策略纳什均衡可以令参与人的各个纯策略支付相等,构成方程组求解。
混合策略纳什均衡的经典博弈——猜谜博弈[1]两个局中人A 、B 手里各拿一枚硬币,每人可以选择正面向上或反面向上,然后同时亮出,如果两枚硬币正反面相同,B 付给A1元钱,如果两枚硬币正反面不相同,A 付给B1元钱。
在这种情况下,局中人A 、B 如何选择呢?下图给出这个博弈的双变量收益矩阵。
这是一个两人零和博弈,在每一个结局中一方所得即为另一方所失,即两个局中人的收益之和恰好等于零。
在双变量收益矩阵中采用画线的方法,在这个博弈中找不到纯策略纳什均衡。
那么,猜谜博弈是否存在混合策略纳什均衡呢?1950年纳什证明了任何有限博弈都至少存在一个纳什均衡(包括纯策略纳什均衡和混合策略纳什均衡)。
03 混合战略Nash均衡
1
三、混合战略Nash均衡的求解
1. 支付最大化法; 2. 支付等值法;
• 社会福利博弈
流浪汉 寻找工作 流浪
救济 政府 不救济
3,2 -1,1
-1,3 0,0
没有一个策略组合构成纳什均衡
1、支付最大化法 、 流浪汉
寻找工作 流浪
假定政府的混合策略是 σ G = θ,− θ); ( 1 流浪汉的混合策略是 σ L = γ,− γ)。 ( 1 政府的期望效用函数为 : ( v( σ G, σ L) θ(3γ + − 1)(1 − γ)) = ( 0 + 1 − θ)( − γ + (1 − γ)) = θ(5γ − 1) γ − 求微分,得到政府最优 化的一阶条件: ∂ vG = 5γ − 1 = 0 ∂θ 故 γ * = 0 .2
• 例:
2
q b1 p
1
1−q b2 x2 , y2 x4 , y4
a1
x1 , y1 x3 , y3
1 − p a2
• 参与人1 的混合战略σ 1 = ( p,1 − p) ,参与人2 的 混合战略 σ 2 = (q,1 − q ) ; • 在混合战略组合σ = (σ 1 , σ 2 )下,战略组合 (a1 , b1 ) (a1 , b2 ) 、(a2 , b1 ) 、和 (a2 , b2 ) 出现的概率就分别 为 pq 、p (1 − q ) 、 − p ) q和(1 − p )(1 − q ) 。 (1
= pqy1 + (1 − p)qy3 + p (1 − q ) y2 + (1 − p)(1 − q) y4
二、混合战略Nash均衡
• 问题: 问题: 在“猜硬币”游戏中,参与人往往会以50%的概 率选择正面(O),以50%的概率选择反面(R),即 选择混合战略σ=(0.5,0.5)。如我们在介绍Nash 均衡的概念时一样,我们想知道,有没有参与 有没有参与 人会偏离混合战略σ 人会偏离混合战略 i=(0.5,0.5)呢? , 呢
混合策略纳许均衡课件
策略纳什均衡的算法优化。
混合策略纳什均衡与人工智能
02
随着人工智能的发展,可以尝试将混合策略纳什均衡应用于机
器学习和人工智能领域,以实现更高效和智能的决策。
混合策略纳什均衡与演化博弈论的结合
03
研究混合策略纳什均衡与演化博弈论的结合,可以更好地解释
现实生活中的动态博弈现象。
06
参考文献
参考文献
定义
混合策略纳什均衡课件
CONTENTSБайду номын сангаас
• 混合策略纳什均衡简介 • 混合策略纳什均衡的数学模型 • 混合策略纳什均衡的求解方法 • 混合策略纳什均衡的应用实例 • 混合策略纳什均衡的挑战与展
望 • 参考文献
01
混合策略纳什均衡简介
定义与概念
混合策略纳什均衡是一种博弈论中的概念,它描述了在给定对手策略的情况下,参 与者如何选择最优的行动方案。
定义策略空间
为每个参与人定义一个策略选 择的空间,这些策略可以是离 散的、连续的或混合的。
定义支付函数
根据每个参与人的策略选择, 定义他们的支付函数,即每个 参与人在该策略下的期望收益。
构建博弈矩阵
根据参与人的策略空间和支付 函数,构建一个博弈矩阵,用 以表示每个参与人选择不同策
略时的收益。
模型参数解 释
纳什均衡点或满足一定的收敛条件。
优化算法
优化算法是一种基于数学优化的方法,用于求解混合策略纳什均衡。
优化算法的基本步骤包括:定义一个目标函数,然后使用优化算法(如 梯度下降法、牛顿法等)寻找目标函数的最大值或最小值,从而得到纳
什均衡点。
优化算法的优点是能够快速找到纳什均衡点,适用于大规模问题。但缺 点是需要对问题进行数学建模,且对初始点的选择敏感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• • • • • • • 混合策略与期望支付 计算混合策略纳什均衡的三种方法 支付最大值法 支付等值法 反应函数法 多重纳什均衡及其甄别 混合博弈在现实经济中的运用案例
§剪刀、石头、布的游戏
• 每个同学跟后面一排对应的同学玩剪刀、石 头、布的游戏. • 玩二十次,将结果记下来 • 赢了十次以上同学举起手来 • 告诉我你有什么秘决 • 怎么样才能赢得多?
讨论
• 尽管混合策略不像纯策略那样直观,但它确实是 一些博弈中参与人的合理行为方式。扑克比赛、 垒球比赛、划拳就是这样的例子,在这一类博弈 中,参与比赛的总是随机行动以使自己的行为不 被对方所预测。 • 经济学上的监督博弈也是这样一个例子。如税收 检查、质量检查、惩治犯罪、雇主监督雇员等都 可以看成猜谜博弈。
• 答案是否定的。 • 事实上,局中人的选择仍然是很有讲究的, 策略选择的好坏对局中人的利益仍然有很大 的影响。 • 在这个零和博弈里,无论双方采用哪种策略 组合,结果都是一方输一方赢,而输的一方 又总是可以通过单独改变策略而反输为赢。 如果哪个局中人能找到对手方的规律或者偏 好,他就能猜测到对手的策略而采用针对性 策略从而保证赢。
1 0 1
4 1
如果一个混合策略是流浪汉的最优选择,那一定意味 着政府在救济与不救济之间是无差异的,即: v G 1, 4 1 v G 0 ,
0 .2
• 解二:支付等值法
如果一个混合策略是政府的最优选择,那一定意 味着流浪汉在寻找工作与游闲之间是无差异的, 即:
§扑克牌对色游戏
• 甲乙玩扑克牌对色游戏,每人都有红黑两张 扑克牌,约定如果出牌颜色一样,甲输乙赢, 如果出牌颜色不一样,则甲赢乙输。 • 找到这个博弈的纳什均衡。
乙 红 黑 1, -1 -1, 1
红
甲
-1, 1 1, -1
黑
§ 反应函数法
• 假设甲、乙均采用混和策略,随机地以p的概率出 红牌和以(1-p)的概率出黑牌,而乙则随机地以q的 概率出红牌和以(1-q)的概率出黑牌。
策略 得益 博弈方1 (0.8,0.2) 2.6 博弈方2 (0.8,0.2) 2.6
夫妻之争的混合策略纳什均衡
看看这个博弈有几个均衡?
丈夫 时装 时装 妻 子 2, 1 足球 0, 0
之二
• 假设采用混合策略是税务机关的最优选择 那么给定p ,纳税人选择逃税和不逃税的期 望收益相等: • -(a+F) p +0(1- p)= -a • 得p *=a/(a+F)
说明
• • • • • • 如果税收机关检查概率小于p*, 即p<a/(a+F),纳税人的最优选择是逃税; 如果税收机关检查的概率大于p*, 即p=a/(a+F),纳税人的最优选择是不逃税; 如果税收机关检查的概率等于p*, 即p=a/(a+F),纳税人的选择无差异。
混合战略纳什均衡
• p *=a/(a+F), q*=C/(a+F)即税收机关以a/ (a+F)的概率检查,纳税人以C/(a+F)的概率 选择逃税。 • 这个均衡的另一个可能的解释是,经济中有许多 个纳税人,其中有C/(a+F)的比例的纳税人选 择逃税,(1- C/(a+F))比例选择不逃税;税 收机关随机地检查a/(a+F)比例的纳税人的纳 税情况。 • 思考一下:在这个博弈中,检查成本C,罚款F和应纳 税款数额a对纳税人逃税的影响是怎么样的?为什 么会有这样的影响?
2 q (1 2 p ) ( 2 p 1)
乙 红q 红p 甲 黑1-p -1, 1 1, -1 黑1-q 1, -1 -1, 1
§ 反应函数
• A的目标是期望支付越大越好。我们之所以把A的 期望支付整理成不含p的一项和含p的一项这个样 子,是因为A只能选择p而不能q,因此,A能通过 选择p来影响第一项,而不能直接影响第二项。 (1-2q)>0即q<1/2时,A把p选择等于1最好;当 (1-2q)<0即q>1/2时,A把p选择等于0最好;当 (1-2q)=0即q=1/2时,A可以在[0,1]之间随便 选择一个p。这样我们可以得到A的反应函数是, 同样道理我们可以得到B的反应函数。 • 0, 如果q>1/2 1, 如果p>1/2 • p [0,1], 如果q=1/2 q [0,1], 如果p=1/2 • 1, 如果q<1/2 0, 如果p<1/2
纳什均衡的存在性
{ S 1 , S n ; u 1 , 中, un} i 1,),则该博弈 n
纳什定理:在一个由n个博弈方的博弈G
如果n是有限的,且 都是有限集(对 Si 至少存在一个纳什均衡,但可能包含混合策略。
• 证明过程省略,主要根据是布鲁威尔和角谷的不动点定理。
• 纳什均衡的普遍存在性正是纳什均衡成为非合作博弈分析 核心概念的根本原因之一。
• 解一:支付最大化
• 流浪汉的期望效用函数为:
L
2 1 0
0 .5
解二:支付等值法
• 政府选择救济策略
1
期望效用 v G 1,
• 政府选择不救济策略
0
期望效用
1 1
3
v G 0 ,
讨论
• 上面的均衡要求每个参与人以特定的概率 选择纯策略。也就是说,一个参与人选择 不同策略的概率不是由他自己的支付决定 的,而是由他的对手的支付决定的。 • 正是由于这个原因,许多人认为混合策略 纳什均衡是一个难以令人满意的概念。 • 事实上,正是因为它在几个(或全部)策 略之间是无差异的,他的行为才难以预测, 混合策略纳什均衡才会存在。
v L 1, 1 3 v L 0 ,
0 .5
政府和流浪汉的博弈
• • • • • • 如果政府救济的概率小于0.5; 则流浪汉的最优选择是寻找工作; 如果政府救济的概率大于0.5; 则流浪汉的最优选择是游闲等待救济。 如果政府救济的概率正好等于0.5; 流浪汉的选择无差异。
求解混合策略纳什均衡
1、假定政府采用混合策略:
G ,1
1 的概率选择不救济。
即政府以 的概率选择救济,
2、流浪汉的混合策略为:
LБайду номын сангаас
,1
的概率选择寻找工作,
即流浪汉以
1 的概率选择游闲。
解一:支付最大化 那么,政府的期望效用函数为:
§剪刀、石头、布的游戏
• 因此,秘决在于—— • 自己的策略选择不能预先被对手方知道或猜 测到,在该博弈的多次重复中,博弈方一定 要避免自己的选择具有规律性; • 观察对手方策略选择是否具有规律或者偏好, 预先猜测对手策略,从而采用针对性策略赢 得这个博弈。
§ 第三章 混合策略纳什均衡
• 纯策略(pure strategies):如果一个策略规 定参与人在一个给定的信息情况下只选择一 种特定的行动。 • 混合策略(mixed strategies):如果一个策 略规定参与人在给定的信息情况下,以某种 概率分布随机地选择不同的行动。 • 在静态博弈里,纯策略等价于特定的行动, 混合策略是不同行动之间的随机选择。
EU
A
p 1 X 1 p 2 X 2 ... p n X n
政府和流浪汉的博弈
• 政府想帮助流浪汉,但前提是后者必须试图寻 找工作,否则,不予帮助;而流浪汉若知道政 府采用救济策略的话,他就不会寻找工作。他 们只有在得不到政府救济时才会寻找工作。他 们获得的支付如图所示:
流浪汉
寻找工作
• 在这个博弈中,检查成本C越高,纳税人逃税的概率 越大;罚款F越高,纳税人逃税的概率越小;应纳税 款越大,纳税人逃税的概率反而越小。 • 应纳税款越大,纳税人逃税的概率反而越小?这 跟我们的假设有关,假定一检查逃税行为就会被 发现;假定检查成本一定,而不是跟应交税额有 关,即应交税额越大,检查成本越高;不考虑纳 税人在应交税额高时贿赂税务人员的积极性越高 的情况。如果放开这些假设,其结果就有可能与 现实更贴近。纳税税款越高,纳税人逃税的概率 越高。
§ 期望支付
• 与混合策略(mixed strategies)相伴随的一个问 题,是局中人支付的不确定性(uncertainty).可用 期望支付(expected payoff)来描述——有个n可 能的取值X1,X2…,Xn ,并且这些取值发生的概率 分别为p1,p2,…,pn,那么我们可以将这个数量指 标的期望值定义为发生概率作为权重的所有可能 取值的加权平均,也就是
这样甲的期望支付是 2 p (1 2 q ) ( 2 q 1) 乙的期望支付是 U B ( p , q ) 1[ pq (1 p )( 1 q )] ( 1)[ p (1 q ) (1 p ) q ] U A ( p , q ) ( 1)[ pq (1 p )( 1 q )] 1[ p (1 q ) (1 p ) q ]
§剪刀、石头、布的游戏
• 我们知道—— • 如果博弈只进行一次,我们无法明确预测博 弈的结果,不管是哪个博弈方,也不管他们 的选择是哪个策略,都不能保证得到较好的 结果。根据我们上一章所学的方法,这个博 弈没有纳什均衡。 • 那么是不是意味着这样的博弈中,你可以随 意选择,结果都一样呢?
§剪刀、石头、布的游戏
A
2, 3
5, 2
B
3, 1
1, 5
对于博弈方1采用的混合策略,博弈方2的支付无差异
pA 3 pB 1 pA 2 pB 5
对于博弈方2采用的混合策略,博弈方1的支付无差异