人教版初中九年级数学上册教案全册

合集下载

人教版数学九年级上册教案优秀6篇

人教版数学九年级上册教案优秀6篇

人教版数学九年级上册教案优秀6篇中学九年级数学的学习特点和学习重点应该是什么?在这个学习阶段,教案该怎样设计,下面是小编精心为大家整理的人教版数学九年级上册教案优秀6篇,在大家参照的同时,也可以分享一下给您最好的朋友。

新人教版九年级上数学教案篇一1. 各种时态的被动语态结构如下:一般现在时的被动语态:主语+am / is / are (not)+过去分词一般过去时的被动语态:主语+was / were +过去分词现在完成时的被动语态:主语+have / has +been +过去分词一般将来时的被动语态:主语+will +be +过去分词过去将来时的被动语态:主语+would / should + be +过去分词过去进行时的被动语态:主语+was / were + being +过去分词过去完成时的被动语态:主语+had + been +过去分词情态动词的被动语态:情态动词+be+过去分词2. 被动语态的用法(1)不知道或没有必要说明动作的执行者是谁,不用by+动作执行者短语。

Football is played widely all over the world.全世界都广泛地踢足球。

(2)强调动作的承受者。

The bank was robbed yesterday afternoon.昨天下午这家银行遭到抢劫。

(3)作客观说明时,常采用一种被动语态句型。

It is reported that about twenty children have died of flu in the USA.据报道美国大约二十名儿童死于流感。

3. 主动语态的句子变为被动语态的步骤(1)把原句中的宾语变为主语(2)动词改为被动形式,即be+过去分词(3)原来的主语,如果需要的话,放在by后面;如果没必要,可省略。

人教版数学九年级上册教案篇二一、指导思想:以《初中数学新课程标准》为依据,全面推进素质教育。

数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

人教版九年级上数学教案(6篇)

人教版九年级上数学教案(6篇)

人教版九年级上数学教案(6篇)人教版九年级上数学教案(6篇)好的数学教学教案很有意义的。

教案的作用有很多,作为新的老师教案的重要性是不容小觑的,随着教案的完成,对于教材和知识点的把握更有力度,更有利于将来的讲课。

下面小编给大家带来关于人教版九年级上数学教案,希望会对大家的工作与学习有所帮助。

人教版九年级上数学教案【篇1】在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。

在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。

事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。

一、注重类比教学不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学。

在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的。

有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。

因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。

是一种既经济又实效的教学方法。

下面我就举例说明如何采用类比的方法实现函数的教学。

首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。

但是,我们有些教师却因为正比例函数过于简单,而轻视。

匆匆给出概念,然后应用。

等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。

九年级数学上册(人教版)教案

九年级数学上册(人教版)教案

九年级数学上册(人教版)教案第一章:实数1.1 有理数教学目标:理解有理数的定义及其分类。

掌握有理数的运算方法,包括加法、减法、乘法和除法。

教学内容:有理数的定义及分类。

有理数的运算方法及运算律。

教学步骤:1. 引入有理数的概念,解释有理数的定义。

2. 讲解有理数的分类,包括整数、分数和零。

3. 演示有理数的加法、减法、乘法和除法运算。

4. 引导学生进行练习,巩固运算方法。

1.2 实数教学目标:理解实数的定义及其与有理数的关系。

掌握实数的运算方法,包括加法、减法、乘法和除法。

教学内容:实数的定义及与有理数的关系。

实数的运算方法及运算律。

教学步骤:1. 引入实数的概念,解释实数的定义。

2. 讲解实数与有理数的关系,包括实数是将有理数扩展到全体实数。

3. 演示实数的加法、减法、乘法和除法运算。

4. 引导学生进行练习,巩固运算方法。

第二章:方程2.1 线性方程教学目标:理解线性方程的定义及其解的意义。

掌握解一元一次方程的方法。

教学内容:线性方程的定义及解的意义。

一元一次方程的解法。

教学步骤:1. 引入线性方程的概念,解释线性方程的定义。

2. 讲解线性方程的解的意义,即满足方程的值。

3. 演示解一元一次方程的方法,包括代入法和消元法。

4. 引导学生进行练习,巩固解方程的方法。

2.2 不等式教学目标:理解不等式的定义及其解集的意义。

掌握解一元一次不等式的方法。

教学内容:不等式的定义及解集的意义。

一元一次不等式的解法。

教学步骤:1. 引入不等式的概念,解释不等式的定义。

2. 讲解不等式的解集的意义,即满足不等式的值的集合。

3. 演示解一元一次不等式的方法,包括代入法和消元法。

4. 引导学生进行练习,巩固解不等式的方法。

第三章:函数3.1 一次函数教学目标:理解一次函数的定义及其图像的特点。

掌握一次函数的解析式及图像的绘制方法。

教学内容:一次函数的定义及图像的特点。

一次函数的解析式及图像的绘制方法。

教学步骤:1. 引入一次函数的概念,解释一次函数的定义。

人教版数学九年级上册教案精选7篇

人教版数学九年级上册教案精选7篇

人教版数学九年级上册教案精选7篇人教版九年级上数学教案篇一一、教学思想:教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。

会用归纳演绎、类比进行简单的推理。

使学生懂得数学来源与实践又反过来作用于实践。

提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。

顽强的学习毅力和独立思考、探索的新思想。

培养学生应用数学知识解决问题的能力。

二、抓常规课堂管理入手,严格规范课前准备,立足提高课堂效率,重视课后反思,定位规律探究。

做到:1.备好课:争取每节课前,与同组同仁们讨论、研究确定教学的重点、难点、教学目标、教法、学法,甚至例题的选用,作业的布置等等,做到五备,让每一节课上出实效,让每位学生愉悦的获得新知。

认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

2.上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。

抓住课堂45分钟,严格按照教学计划,备课组统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

3.注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。

精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

4.批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。

九年级数学上册(人教版)教案

九年级数学上册(人教版)教案

九年级数学上册(人教版)教案第一章:实数1.1 有理数教学目标:理解有理数的定义及其分类;掌握有理数的运算方法,包括加、减、乘、除、乘方和开方;能够运用有理数解决实际问题。

教学内容:有理数的定义及分类;有理数的运算方法及运算律;有理数在实际问题中的应用。

教学步骤:1. 引入有理数的概念,引导学生理解有理数的定义及分类;2. 通过示例讲解有理数的运算方法,让学生进行练习;3. 引导学生运用有理数解决实际问题,巩固所学知识。

作业布置:完成课后练习题,巩固有理数的运算方法;选取一些实际问题,让学生运用有理数解决。

1.2 实数教学目标:理解实数的定义及其与有理数的关系;掌握实数的运算方法,包括加、减、乘、除、乘方和开方;能够运用实数解决实际问题。

教学内容:实数的定义及其与有理数的关系;实数的运算方法及运算律;实数在实际问题中的应用。

教学步骤:1. 引入实数的概念,引导学生理解实数的定义及其与有理数的关系;2. 通过示例讲解实数的运算方法,让学生进行练习;3. 引导学生运用实数解决实际问题,巩固所学知识。

作业布置:完成课后练习题,巩固实数的运算方法;选取一些实际问题,让学生运用实数解决。

第二章:方程2.1 一元一次方程教学目标:理解一元一次方程的定义及其解法;能够运用一元一次方程解决实际问题。

教学内容:一元一次方程的定义及解法;一元一次方程在实际问题中的应用。

教学步骤:1. 引入一元一次方程的概念,引导学生理解一元一次方程的定义;2. 通过示例讲解一元一次方程的解法,让学生进行练习;3. 引导学生运用一元一次方程解决实际问题,巩固所学知识。

作业布置:完成课后练习题,巩固一元一次方程的解法;选取一些实际问题,让学生运用一元一次方程解决。

2.2 二元一次方程教学目标:理解二元一次方程的定义及其解法;能够运用二元一次方程解决实际问题。

教学内容:二元一次方程的定义及解法;二元一次方程在实际问题中的应用。

教学步骤:1. 引入二元一次方程的概念,引导学生理解二元一次方程的定义;2. 通过示例讲解二元一次方程的解法,让学生进行练习;3. 引导学生运用二元一次方程解决实际问题,巩固所学知识。

人教版九年级上册数学教案5篇

人教版九年级上册数学教案5篇

人教版九年级上册数学教案5篇人教版九年级上册数学教案篇1二次根式的乘除法教学目标1、使学生掌握二次根式的除法运算法则,会用它进行简单的二次根式的除法运算。

2、使学生了解两个二次根式的商仍然是一个二次根式或有理式。

3、使学生会将分母中含有一个二次根式的式子进行分母有理化。

4、经历探索二次根式的除法运算法则过程,培养学生的探究精神和合作交流的习惯。

教学过程一、创设问题情境问题l 上一节课,我们采取什么方法来研究二次根式的乘法法则?问题2 是否也有二次根式的除法法则呢?问题2 两个二次根式相除,怎样进行呢?二、加强合作,探索规律让抽象的问题具体化,这是我们研究抽象问题的一个重要方法、请同学们参考二次根式的乘法法则的研究,分组讨论两个二次根式相除,会有什么结论,并提出你的见解,然后其他小组同学补充,归纳为:提问:1、a和b有没有限制?如果有限制,其取值范围是什么?2、= (a≥0,b0)成立吗?为什么?请举例。

三、范例例1、计算。

教学要求:(1)对于(1)可由教师解答示范;(2)对于(2)可由学生自己计算。

提问:1、除了课本中的解答外,是否还有其他解法?如果有,请给出另外解法。

2、哪种方法更简便?例2、化简:(要求分母不带根号)说明:二次根式的化简要求满足以下两条:(1)被开方数的因数是整数,因式是整式,也就是说“被开方数不含分母”。

(2)被开方数中不含能开得尽的因数或因式,也就是说“被开方数的每一个因数或因式的指数都小于2”。

把一个二次根式化简的具体方法是:化去根号下的分母;并把被开方数中能开得尽方的因数或因式用它的算术平方根代替后移到根号外面。

四、做一做化简:教学要点:(1)叫两位同学板演,其他同学做完练习进行评价、(2)可用提问的方式引导学生探索其他解法。

五、课堂练习P12 练习1、(3)、(4)六、小结本节课,我们学习了二次根式的除法法则,即= (a≥0,b0),并利用它进行计算和化简。

化简要做到“被开方数不含分母”和“被开方数的每一个因数或因式的指数都小于2”。

【人教版】九年级数学上册全册教案(精选)

【人教版】九年级数学上册全册教案(精选)

【人教版】九年级数学上册全册教案(精选)第二十一章一元二次方程21.1一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c =0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=13.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.A.0B.1C.2D.3活动2探究新知根据题意列方程.1.教材第2页问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是 2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2教材第3页例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p 转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5 解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1 用配方法解下列关于x 的方程:(1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略.三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤.难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略.(2)与(1)有何关联?二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q <0,方程无实根.例1解下列方程:(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx +c =0(a ≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x 2=4 (2)(x -2)2=7提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程 2x 2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.二、探索新知用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a(这个方程一定有解吗?什么情况下有解?) 分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-c a配方,得:x 2+b a x +(b 2a )2=-c a +(b 2a)2 即(x +b 2a )2=b 2-4ac 4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac 4a 2≥0 ∴(x +b 2a )2=(b 2-4ac 2a)2 直接开平方,得:x +b 2a =±b 2-4ac 2a即x =-b±b 2-4ac 2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac 2a就得到方程的根. (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x(3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x -2)(3x -5)=0三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程.难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?) 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x-1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1三、巩固练习教材第14页 练习1,2.四、课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页习题6,8,10,11.21.2.4一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用.2.培养学生分析、观察、归纳的能力和推理论证的能力.3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:观察上面的表格,你能得到什么结论?(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0)∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=c a(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)x2-3x-1=0(2)2x2+3x-5=0(3)13x2-2x=0 (4)2x2+6x= 3(5)x2-1=0 (6)x2-2x+1=0例2不解方程,检验下列方程的解是否正确?(1)x2-22x+1=0 (x1=2+1,x2=2-1)(2)2x2-3x-8=0 (x1=7+734,x2=5-734)例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0(4)3x2+x+1=02.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.21.3实际问题与一元二次方程(2课时)第1课时解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x +1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.重点二次函数的概念和解析式.难点本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.一、创设情境,导入新课问题1现有一根12 m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题).二、合作学习,探索新知请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系:(1)圆的半径x(cm)与面积y(cm2);(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y。

人教版九年级数学上册教案5篇

人教版九年级数学上册教案5篇

人教版九年级数学上册教案5篇人教版九年级数学上册教案1一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点:理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.人教版九年级数学上册教案2一、创设情境导入新课1、介绍七巧板师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?一千多年前,中国人发明了七巧板。

人教版九年级上册数学全册教案

人教版九年级上册数学全册教案

人教版九年级上册数学全册教案第二十一章一元二次方程21. 1一元二次方程教学目标知识技能1.通过类比一元一次方程,了解一元二次方程的概念及一般形式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.数学思考与问题解决通过丰富的实例,列出一元二次方程,让学生体会一元二次方程是刻画现实世界数量关系的有效模型,培养学生初步形成“模型思想”,增强学生应用数学知识解决实际问题的意识.情感态度使学生经历类比一元一次方程得到一元二次方程概念的过程,减少学生对新知识的陌生感,提高学生学习数学的兴趣.重点难点重点:通过类比一元一次方程,了解一元二次方程的概念及一般形式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点:一元二次方程及其二次项系数、一次项系数和常数项系数的识别.教学设计活动一:创设情境1.什么是方程?什么是一元一次方程?2.指出下面哪些方程是已学过的方程?分别是什么方程?(1)3x+4=1;(2)6x-5y=7;(3)43x-5y=0;(4)15y=5;(5)x2-70x+825=0;(6)7+3 y-2=4;(7)x(x+5)=150;(8)4x5-y3=0.3.什么是“元”?什么是“次”?活动二:一元二次方程及其相关概念的学习自学教材第2~3页,思考教师所提下列问题:1.问题1中列方程的等量关系是________,所列方程为________,化简后为________.2.问题2中列方程的等量关系是________,为什么要乘12?所列方程为________,化简后为________.3.观察上面化简后的方程,会发现:等号两边都是________,只含有________个未知数,并且未知数的最高次数是________的方程,叫做一元二次方程.4.任何一个方程都要化成它的一般形式,一元二次方程的一般形式为________(a ≠________).为什么?5.说出一元二次方程ax 2+bx +c =0(a ≠0)的二次项、二次项系数、一次项、一次项系数、常数项,在确定各个系数时要注意什么?设计意图:通过设问的方式来加深学生对一元二次方程的理解,排除学生对一元二次方程及其相关概念理解的障碍,让学生体会到一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型,同时,通过设问也给学生学习探究搭建了交流平台.活动三:尝试练习1.判断下列方程是否为一元二次方程.(1)3x +2=5y -3;(2)x 2=4;(3)3x 2-5x =0;(4)x 2-4=(x +2)2;(5)ax 2+bx +c =0.2.方程2x 2=3(x -6)化为一般形式后二次项系数、一次项系数和常数项分别为( )A .2,3,-6B .2,-3,18C .2,-3,6D .2,3,6(答案:1.略;2.B.)活动四:知识拓展例 关于x 的方程(m +1)x |m|+1+3x =6,当m =________时,该方程是一元二次方程.分析:要使(m +1)x |m|+1+3x =6为一元二次方程,除了考虑未知数的最高次数为2,还要想到m +1≠0.解题过程略.活动五:课堂小结和作业布置课堂小结:1.一元二次方程的概念是什么?一个一元二次方程必须同时满足三个要素:(1)整式;(2)方程整理后含有一个未知数;(3)未知数的最高次数是二次.2.一元二次方程的一般形式是什么?二次项、二次项系数、一次项、一次项系数、常数项的概念分别是什么?作业布置:1.教材第4页练习第1~2题.2.若x2-2x m-1+3=0是关于x的一元二次方程,求m的值.板书设计一元二次方程1.创设情境2.一元二次方程及其相关概念一般形式:ax2+bx+c=0(a≠0)3.尝试练习4.知识拓展5.课堂小结和作业布置21. 2. 1配方法(2课时)第1课时配方法的基本形式教学目标知识技能1.理解一元二次方程降次的转化思想.2.会利用直接开平方法对形如(x+m)2=n(n≥0)的一元二次方程进行求解.数学思考与问题解决1.会用直接开平方法解简单的一元二次方程.2.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.情感态度1.通过探究活动,培养学生勇于探索的良好学习习惯.2.感受数学的严谨性以及数学结论的确定性.重点难点重点:运用开平方法解形如(x +m)2=n(n ≥0)的方程,领会降次——转化的数学思想.难点:通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.教学设计活动一:情境引入印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽叽喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起.”大意是说:一群猴子分成两队,一队猴子数是猴子总数的18的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?(多媒体展示问题.学生互相讨论、分析理解.教师点拨、启发、引导学生分析解题.)设计意图:寓教于乐,可激发学生的探索欲望.活动二:探索发现1.如图,在△ABC 中,∠B =90°,点P 从点B 开始,沿BA 边向点A 以1 cm/s 的速度移动,点Q 从点B 开始,沿BC 边向点C 以2 cm/s 的速度移动,如果AB =6 cm ,BC =12 cm ,P 、Q 都从B 点同时出发,几秒后△PBQ 的面积等于8 cm 2?2.能否求下列方程的解?(1)(2t +1)2=8;(2)4(x -3)2=225;(3)9x 2-6x +1=0;(4)x 2+4x +4=1.(教师引导学生观察、分析、探索.学生小组内交流、探讨知识的发展变化,找出规律,升华为理论知识.)设计意图:通过该活动引导学生探究、发现解一元二次方程的解法.通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.活动三:归纳总结——由感性到理性问题1:你能和同伴交流吗?降次的实质:____________________.降次的方法:____________________.降次体现了________思想.2.如果方程能化成x 2=p 或(nx +m)2=p(p ≥0)的形式,那么可得x =________,或nx +m =________.(学生与同伴交流后将其发现告诉教师并共同探索.)设计意图:进一步体验充满探索与创造的数学活动,感受数学的严谨性和数学结论的确定性. 活动四:巩固练习1.教材第6页练习.2.你学会了吗?解下列方程:(1)(12x -2)2=3;(2)2x 2-98=0;(3)x 2-6x +9=2;(4)10(1+x)2=14.4;(5)(1+x +12)2=2.56;(6)x 4-6x 2+9=0;(7)14(3x +1)2-15=0. (教师引导,组织学生练习,巡回辅导,重点问题进行强化、点拨方法、总结规律,对学生存在的共性问题做好补教.强调该方法的依据是平方根的意义.学生独立思考解决问题.)设计意图:通过练习,帮助学生熟练掌握开平方法的应用,从而培养学生分析问题、解决问题的能力.活动五:师生小结1.本节课你感受到了什么?2.根据本节课解方程的方法,你能谈谈你的收获吗?3.你认为应该注意什么?4.本节课你的困惑是什么?5.你认为最让你费解的地方在哪里?(教师启发学生回忆.学生可以与同伴交流,也可以请教老师.)设计意图:创造一个平等民主的学习氛围,尽可能地让学生把自己的所思所想表达出来,以期共同提高.活动六:布置作业教材第16页习题21.2第1题.(教师布置作业,学生按要求课外完成.)设计意图:加深认识,深化提高.板书设计配方法的基本形式一、情境引入二、探索发现——降次是解一元二次方程的一般思路三、归纳总结——由感性到理性1.问题12.问题2四、巩固练习1.教材练习2.补充练习五、师生小结六、布置作业第2课时配方法的灵活应用教学目标知识技能1.理解配方法.2.会利用配方法熟练、灵活地解二次项系数为1的一元二次方程.数学思考与问题解决1.会用配方法解简单的一元二次方程.2.发现不同方程的转化方式,运用已有知识解决新问题.3.通过对计算过程的反思,获得解决新问题的经验,体会在解决问题的过程中所呈现的数学方法和数学思想.情感态度1.通过配方法的探究活动,培养学生勇于探索的良好学习习惯.2.感受数学的严谨性以及数学结论的确定性.3.由题目的特点找到与旧知识的联系,将新知化为旧知,从而解决问题.培养学生的观察能力和运用学过的知识解决问题的能力.重点难点重点:用配方法熟练地解二次项系数为1的一元二次方程.难点:灵活地运用配方法解二次项系数不为1的一元二次方程.教学设计活动一:复习引入问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,场地的长和宽应各是多少?(1)如何设未知数?根据题目的等量关系如何列出方程?(2)所列方程和之前我们学习的方程x2+6x+9=2有何联系与区别?(3)你能由方程①x2+6x+9=2的解法联想到怎样解方程②x2+6x-16=0吗?(学生完成问题(1),列出方程.如何解这个方程呢?学生观察问题(2),找到联系与区别,教师可点拨启发.问题(3),学生思考、讨论.)设计意图:问题(1)益于培养学生的应用意识,可激发学生的探究欲.问题(2)激起学生学习的欲望.活动二:实验发现我们研究方程x2+6x+7=0的解法:将方程视为x2+2·x·3=-7,配方,得x2+2·x·3+32=32-7,即(x+3)2=2,由此可得x+3=±2,所以x1=-3+2,x2=-3- 2.这种解一元二次方程的方法叫做配方法.这种方法的特点是:先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解.总结发现:用配方法解一元二次方程的步骤.①把原方程化为ax 2+bx +c =0(a ≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解;如果右边是一个负数,则判定此方程无实数解.(教师引导学生观察、分析、发现和提出问题.让学生用自己的方法探究一元二次方程的解法.) 设计意图:通过引导学生自主、合作、探究、验证,培养学生分析问题、解决问题的意识和能力.培养学生善于总结思考的能力.活动三:用配方法解决问题例 解下列方程:(1)x 2-2x -35=0;(2)2x 2-4x -1=0.分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:(1)x 2-2x =35.x 2-2x +12=35+12.(x -1)2=36,x -1=±6,x -1=6,x -1=-6,x 1=7,x 2=-5.可以验证x 1=7,x 2=-5都是方程x 2-2x -35=0的根.(2)x 2-2x -12=0,x 2-2x =12, x 2-2x +12=12+12, (x -1)2=32, x -1=±62, 即x -1=62,x-1=-6 2,x1=1+62,x2=1-62.可以验证x1=1+62,x2=1-62都是方程2x2-4x-1=0的根.(可以让两位学生演示.可给学生提示两边同时除以二次项的系数.验证不可少,但可写也可不写.)设计意图:通过练习,使学生认识到:配方的关键是在方程两边同时添加的常数项等于一次项系数一半的平方(二次项系数必须为1).培养学生做事严谨周密的习惯.活动四:巩固练习1.填空:(1)x2+10x+()=()2;(2)x2-8x+()=(x-)2;(3)x2+x+()=(x+)2;(4)4x2-6x+()=4(x-)2+().2.用配方法解方程:(1)x2+8x-2=0;(2)x2-5x-6=0;(3)x2+7=6x.(教师引导,组织学生练习,巡回辅导,重点问题进行强化、点拨方法、总结规律,共性问题做好补教.学生独立思考解决问题.)设计意图:通过练习,帮助学生熟练掌握方法的应用,从而培养学生分析问题、解决问题的能力.活动五:师生小结1.小结:应用配方法解一元二次方程ax2+bx+c=0(a≠0)的要点是:(1)化二次项系数为1;(2)移项,使方程左边为二次项和一次项,右边为常数;(3)方程两边各加上一次项系数一半的平方.2.布置作业:教材第17页习题21.2第2,3题.(教师发动学生共同参与,语言切忌主观,站在学生的角度看待每一点.教师布置作业,分层次提出要求.)设计意图:梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系.加深认识,深化提高,形成知识体系.板书设计配方法的灵活应用一、复习引入二、实验发现用配方法解一元二次方程的步骤①将原方程化为ax2+bx+c=0(a≠0)的形式②将二次项系数化为1③方程两边同时加上一次项系数一半的平方④把左边化为完全平方式,右边化为常数⑤判断方程解的情况三、用配方法解决问题例题四、巩固练习练习1、2五、师生小结1.归纳 2.作业21. 2. 2 公式法教学目标知识技能1.理解一元二次方程求根公式的推导过程.2.会利用求根公式解简单数字系数的一元二次方程.数学思考与问题解决1.经历探索求根公式的过程,发展学生合情合理的推理能力.2.提高学生的运算能力,并让学生养成良好的运算习惯.情感态度1.通过运用公式法解一元二次方程,提高学生的运算能力,并让学生在学习活动中获得成功的体验,建立学好数学的自信心.2.学会和他人合作,并能与他人交流思维的过程和结果.重点难点重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式的推导.教学设计活动一:复习引入用配方法解下列方程:(1)6x2-7x+1=0;(2)4x2-3x=52.总结用配方法解一元二次方程的步骤(学生总结,教师点评).(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解;如果右边是负数,则一元二次方程无解.(安排两名学生板书.教师引导学生回忆用配方法解一元二次方程的基本思路及基本步骤.)设计意图:通过复习引入,让学生回忆配方法的解题思路,并通过两道练习题巩固所学知识,同时为本节课的学习做好铺垫.活动二:实验发现如果一个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它的两根?请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1=-b+b2-4ac2a ,x2=-b-b2-4ac2a.分析:因为前面具体数字已做得很多了,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤可以一直推导下去.解:移项,得ax 2+bx =-c , 二次项系数化为1,得 x 2+b a x =-c a ,配方,得 x 2+b a x +(b 2a )2=-c a +(b2a )2,即(x +b 2a )2=b 2-4ac 4a 2①.因为a ≠0,所以4a 2>0,式子b 2-4ac 的值有以下三种情况: (1)当b 2-4ac>0时,b 2-4ac 4a 2>0.由①直接开平方,得 x +b 2a = ±b 2-4ac 2a , 即x =-b ±b 2-4ac 2a ,∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a.(2)当b 2-4ac =0时,b 2-4ac4a 2=0,由①可知,方程有两个相等的实数根x 1=x 2=-b 2a. (3)当b 2-4ac<0时,b 2-4ac 4a 2<0,由①可知(x +b 2a)2<0,因此方程无实数根.由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,一般地,式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母Δ表示它,即Δ=b2-4ac,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当Δ≥0时,将a,b,c的值代入式子x=-b±b2-4ac2a就能得到方程的根;当Δ<0时就能得到方程无实数根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.(教师引导、启发学生探索求根公式并得出公式法的概念.也可课件演示推导过程.引导学生做完题后总结.)设计意图:让学生亲自动手实验,探究结论,激发兴趣.培养学生爱动脑思考的好习惯.活动三:利用公式解决问题教材第11页例2.(找四位学生板书,教师巡视及时发现错误及时纠正,对于部分学生给予适当鼓励.) 设计意图:加深对所学知识的理解.活动四:巩固练习1.解下列方程:(1)x2+3x+2=0;(2)2x2-7x=4;(3)2x2-3x+1=0.2.应用题:有一长方形的桌子,长为3 m,宽为2 m,一长方形桌布的面积是桌面面积的2倍,且将桌布铺到桌面上时各边垂下的长度相同,则桌布长为________,宽为长度相同,则桌布长为________.(教师引导,组织练习,巡回辅导,重点问题进行强化、点拨方法、总结规律,共性问题做好补教.学生独立思考解决问题.)设计意图:通过练习,帮助学生熟练掌握公式法,从而培养学生分析问题、解决问题的能力.活动五:师生小结1.本节课你有什么困惑,请你大声地告诉老师.2.本节课你有何感想,请你畅所欲言.3.本节课你有何收获,请你与同伴分享.布置作业:教材第17页习题21.2第4,5题.(发动学生对本节课内容进行总结,鼓励同学们大胆发言.教师分层要求,学生课下完成.)设计意图:梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系.加强教、学反思,进一步提高教、学效果.巩固所学知识.板书设计公式法一、复习引入二、实验发现一元二次方程求根公式的推导x=-b±b2-4ac2a(b2-4ac≥0)三、利用公式解决问题例2四、巩固练习1.解方程 2.应用题五、师生小结1.反思 2.作业21. 2. 3 因式分解法教学目标知识技能1.了解因式分解法的概念.2.会利用因式分解法解某些简单数字系数的一元二次方程.数学思考与问题解决1.经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.2.体验解决问题的方法的多样性,灵活选择解方程的方法.情感态度1.学会和他人合作,并能与他人交流思维的过程和结果.2.积极探索不同的解法,并和同伴交流,勇于发表自己的观点,从交流中发现最优方法,在学习活动中获得成功的体验,建立学好数学的自信心.重点难点重点:应用因式分解法解一元二次方程.难点:将方程化为一般形式后,对方程左侧二次三项式进行因式分解.教学设计活动一:复习引入问题(学生活动)解下列方程.(1)2x2+x=0(用配方法).(2)3x2+6x=0(用公式法).(3)要使一块矩形场地的长比宽多3 m,并且面积为28 m2,场地的长和宽应各是多少?(4)如何设未知数并根据题目的等量关系列出方程?(5)所列方程和以前我们学习的方程x2+6x+9=2有何联系与区别?(6)你能由方程x2+6x+9=2的解法联想到怎样解方程x2+3x-28=0吗?(鼓励学生自主探究、小组合作交流.)设计意图:通过复习引入,让学生回忆配方法和公式法的解题思路,并通过两道练习题巩固所学知识,同时为本节课的学习做好铺垫.活动二:实验发现思考:(1)x(2x+1)=0;(2)3x(x+2)=0.问题:(1)你能观察出这两题的特点吗?(2)你知道方程的解吗?说说你的理由.因式分解法的理论根据是:两个因式的积等于零,那么这两个因式的值就至少有一个等于零.即:若ab=0,则a=0或b=0.由上述过程我们知道:当方程的一边能够分解成两个一次因式的乘积而另一边等于0时,即可解之.这种方法叫做因式分解法.(3)因式分解法解一元二次方程的一般步骤:①移项,使方程的右边为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解都是原方程的解.(教师展示练习.对于一部分学生老师可给予一定的帮助,也可以鼓励同学之间互相帮助.)设计意图:让学生亲自动手实验、探究结论、激发兴趣.活动三:用因式分解法解决问题教材第14页例3.补充例题:解方程.(1)3x2=8x,(2)(x-4)2=3x-12.分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-3x+12,提取因式-3,即-3(x-4),再提取公因式x-4,便可达到分解因式的目的,一边为两个一次式的乘积,另一边为0的形式.解:(1)移项,得3x2-8x=0,因式分解,得x(3x-8)=0,于是,得x=0或3x-8=0,x 1=0,x2=83.(2)移项,得(x-4)2-3x+12=0,(x-4)2-3(x-4)=0,因式分解,得(x-4)(x-4-3)=0,整理,得(x-4)(x-7)=0,于是,得x-4=0或x-7=0.x 1=4,x2=7.(找两位同学板书,教师巡视及时发现错误及时纠正,对于部分学生给予适当鼓励.) 设计意图:加深对所学知识的理解.活动四:巩固练习1.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,则这个三角形的周长是( )A.8 B.8或10 C.10 D.8和102.用因式分解法解方程4(x+1)-3x(x+1)=0,可把其化为两个一元一次方程________、________求解.3.方程(x+1)(x-2)=0的根是( )A.x=-1 B.x=2 C.x1=1,x2=-2 D.x1=-1,x2=24.解下列方程:(1)x2-3x-10=0;(2)(x+3)(x-1)=5.(教师引导,组织练习,巡回辅导,重点问题进行强化、点拨方法、总结规律,共性问题做好补教.学生独立思考解决问题.)设计意图:通过练习,帮助学生熟练掌握一元二次方程的解法,从而培养学生分析问题、解决问题的能力.活动五:师生小结(1)用因式分解法,即用提取公因式法、平方差公式、完全平方公式等解一元二次方程.(2)三种方法(配方法、公式法、因式分解法)的联系与区别:联系:①降次,它们的解题的基本思想是:将二次方程化为一次方程,即降次.②公式法是由配方法推导而得到.③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程.区别:①配方法要先配方,再开方求根.②公式法直接利用公式求根.③因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使每个一次因式等于0.布置作业:教材第17页习题21.2第6题.(发动学生对本节课内容总结,鼓励同学们大胆发言.教师布置作业,学生课下完成.)设计意图:梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系.加强教、学反思,进一步提高教、学效果.通过作业巩固本节所学知识.板书设计因式分解法一、复习引入二、实验发现因式分解法解一元二次方程的步骤三、用因式分解法解决问题1.例32.补充例题四、巩固练习五、师生小结1.小结2.作业21. 2. 4 一元二次方程的根与系数的关系教学目标知识技能1.熟练掌握一元二次方程根与系数的关系.2.灵活运用一元二次方程根与系数的关系解决实际问题.3.提高学生综合运用基础知识分析解决复杂问题的能力.数学思考与问题解决通过创设一定的问题情境,注重由学生自己探索,让学生参与韦达定理的发现,不完全归纳验证以及演绎证明等整个数学思维过程.情感态度通过学生探索一元二次方程的根与系数的关系,培养学生观察、分析和综合、判断的能力.激发学生发现规律的积极性,鼓励学生勇于探索的精神.重点难点重点:一元二次方程的根与系数的关系.难点:对根与系数的关系的理解和推导.教学设计活动一:引入新课我们知道,方程的根是由一元二次方程ax2+bx+c=0(a≠0)的各项系数a,b,c 决定的.我们还知道根是由b2-4ac决定其情况的.今天我们来研究方程的两根的和及两根的积与a,b,c有怎样的关系?(教师出示问题,学生初步了解本节课的学习内容.教师引出新课并板书课题.) 设计意图:开门见山,引入新课.活动二:思考与归纳从下表中找出两根之和x1+x2与两根之积x1x2和a,b,c的关系:归纳:(1)形如x 2+px +q =0的一元二次方程两根的和、积分别与系数有如下关系:x 1+x 2=-p ,x 1x 2=q.(2)形如ax 2+bx +c =0(a ≠0)的一元二次方程的两根的和、积分别与系数有如下关系:x 1+x 2=-b a ,x 1x 2=c a.(教师引导学生先观察表格中前三行,看有什么共同规律?再观察后三行.学生观察、思考、归纳、总结.)设计意图:通过几个具体的方程,经过观察、归纳得出一般规律. 活动三:推理验证验证ax 2+bx +c =0(a ≠0)的两根x 1,x 2与a ,b ,c 的关系. 设ax 2+bx +c =0(a ≠0)的两根为x 1,x 2. 则x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a ,由此可知x 1+x 2=-b +b 2-4ac 2a +-b -b 2-4ac2a=-2b 2a =-ba, x 1x 2=-b +b 2-4ac 2a ·-b -b 2-4ac 2a=(-b )2-(b 2-4ac )4a 2=c a.(教师让学生通过推导证明前面的结论.教师引导:由求根公式求出x 1+x 2,x 1x 2.) 设计意图:通过推导证明渗透由特殊到一般的认知规律. 活动四:巩固练习 1.应用例4 教材第16页.补充例题:不解方程,若知道5x 2+kx +12=0的一个根为4,你能求出方程的另一个根吗?2.巩固练习 教材第16页练习.(教师让学生尝试独立解决,师生共议.学生独立完成后,小组交流.教师引导:方法一,利用根与系数的关系,由两根之积和一个根,求出另一个根;方法二,把已知的一根4,代入原方程求出k ,再把k 值代入原方程,再利用两根之和与系数的关系求出另一根.教师巡视,学生独立完成.)设计意图:巩固根与系数的关系(韦达定理)的同时,增强学生的应用意识.巩固所学知识,培养学习能力.活动五:师生小结1.一元二次方程的根与系数有怎样的关系? 2.对本节课你还有什么困惑? 3.布置作业:必做题:教材第17页第7题.选做题:已知方程5x 2+kx -6=0的一个根是2,求它的另一个根及k 的值. (教师引导学生谈自己的收获和疑感.教师布置作业,学生按要求课外完成.) 设计意图:梳理学习的内容、方法,加强反思,进一步提高教学效果.复习巩固,查漏补缺.板书设计一元二次方程的根与系数的关系一、引入新课。

九年级数学上册(人教版)教案

九年级数学上册(人教版)教案

九年级数学上册(人教版)教案第一章:实数与代数式1.1 有理数教学目标:理解有理数的定义及其分类;掌握有理数的运算方法。

教学内容:有理数的定义;有理数的分类;有理数的运算(加法、减法、乘法、除法)。

教学步骤:1. 引入实数的概念,引导学生回顾小学学过的数;2. 讲解有理数的定义,通过实例让学生理解有理数的概念;3. 介绍有理数的分类,包括整数、分数和零;4. 引导学生掌握有理数的运算方法,进行相应的练习。

1.2 代数式教学目标:理解代数式的概念及其表示方法;掌握代数式的运算方法。

教学内容:代数式的定义;代数式的表示方法;代数式的运算(加法、减法、乘法、除法)。

教学步骤:1. 引入代数式的概念,让学生理解代数式表示数的方法;2. 讲解代数式的表示方法,包括字母和数字的组合;3. 引导学生掌握代数式的运算方法,进行相应的练习。

第二章:方程与不等式2.1 方程教学目标:理解方程的概念及其解法;掌握一元一次方程的解法。

教学内容:方程的定义;一元一次方程的解法。

教学步骤:1. 引入方程的概念,让学生理解方程表示数的方法;2. 讲解一元一次方程的解法,包括代入法和消元法;3. 引导学生掌握一元一次方程的解法,进行相应的练习。

2.2 不等式教学目标:理解不等式的概念及其解法;掌握一元一次不等式的解法。

教学内容:不等式的定义;一元一次不等式的解法。

教学步骤:1. 引入不等式的概念,让学生理解不等式表示数的方法;2. 讲解一元一次不等式的解法,包括比较法和图像法;3. 引导学生掌握一元一次不等式的解法,进行相应的练习。

第三章:函数与图形3.1 函数教学目标:理解函数的概念及其表示方法;掌握一次函数的性质和图像。

教学内容:函数的定义;一次函数的性质;一次函数的图像。

教学步骤:1. 引入函数的概念,让学生理解函数表示数的方法;2. 讲解一次函数的性质,包括斜率和截距;3. 引导学生掌握一次函数的图像,进行相应的练习。

人教版九年级数学上册教学设计人教版九年级数学上册教案设计(5篇)

人教版九年级数学上册教学设计人教版九年级数学上册教案设计(5篇)

人教版九年级数学上册教学设计人教版九年级数学上册教案设计(5篇)人教版九年级数学上册教学设计人教版九年级数学上册教案设计篇一学问与技能目标:理解生活中的百分率,把握求百分率的方法,能正确求出百分率。

过程与方法目标:通过自主探究、合作沟通,理解常用百分率的含义及计算方法。

情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并效劳于生活的数学思想。

教学重难点教学重点:理解生活中常见的百分率的含义。

教学难点:正确计算常见的百分率。

教学过程一、创设情境,探究导入1、课件出示看图,答复下面的问题。

(1)图中阴影局部占整个图形的几分之几?用百分数怎样表示?(2)图中空白局部占阴影局部的几分之几?用百分数怎样表示?2、百分数的意义我们班有36%的学生参与了美术兴趣小组。

世界总人口中大约有50%的人口年龄低于25岁。

一瓶农夫果园饮料中果汁含量大约是10%。

我们班学生的近视率是45%。

3、小刚做了10道题,错了2道做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?做对的题数占总题数的百分之几?做错的题数占总题数的百分之几?求a是b的百分之几和求a是b的几分之几方法是一样的,都是:a ÷b4、六年级有学生160人,已到达《国家体育熬炼标准》(儿童组)的有120人,占六年级学生人数的几分之几? 六年级有学生160人,已到达《国家体育熬炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?学生独立思索、同桌沟通:尝试计算,得出结论。

5、谈话,导入新课在我们的日常生活中像这样的百分率还有许多,如发芽率、及格率、出米率等,它可以帮忙我们解决生活中的一些实际问题。

下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。

二、学习新知1、教学例1——在详细情境中熟悉百分率,探究计算方法(1)出例如1:六年级有学生160人,已到达《国家体育熬炼标准》(儿童组)的有120人。

人教版九年级数学上册教案5篇

人教版九年级数学上册教案5篇

人教版九年级数学上册教案5篇人教版九年级数学上册教案5篇数学是一种精确的艺术,它要求我们严谨和准确地表达思想,从而减少误解和歧义。

这里给大家分享一些关于人教版九年级数学上册教案,供大家参考学习。

人教版九年级数学上册教案【篇1】教材分析:学生在三年级初步感受了生活中的平移与旋转现象,并能在方格纸上画出一个沿水平、垂直方向平移后的图形,本节课所学的图形的旋转内容是在上述基础上的进步发展,通过具体实例的展示,通过操作活动,使学生知道一个简单图形在旋转或平移的过程中,能形成一个较复杂的图形,它的学习对于培养学生的空间观念,感受数学美、运用数学知识进行设计具有重要作用。

教学要求:1、通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。

2、能在方格纸上画出简单图形旋转后的图形。

教学重点、难点:1、能在方格纸上将简单图形旋转90,明确是绕哪一点进行旋转的。

2、能找出旋转或平移后的原图形。

教具准备:多媒体、三角形纸学具准备:4张扇形张、方格纸、三角形纸教学过程:一、创设情景电脑出示一组图案,请学生欣赏。

师:这些图案美吗?生:美。

师:这些图案是怎样设计的呢?生:通过旋转设计成的。

师:这些图形是怎样旋转的呢?今天我们就来学习有关图形旋转的知识,并板书课题:图形的旋转。

二、探究新知1、理解顺时针方向。

(1)师出示一个钟面模型。

(2)问:钟面上的时针是怎样旋转的呢?你能用手势比一比吗?(3)抽生比划时针转动的方向,全班一起跟着比手势。

(4)师:时针转动的方向叫顺时针方向。

板书:顺时针方向(5)师:生活中很多图形都是按顺时针方向进行旋转的。

2、体会旋转900的过程,明确是绕哪个点进行旋转的。

(1)电脑出示主题图,请学生仔细观察并思考:图a是怎样变化就得到了图b?生:图a按顺时针方向旋转就得到图b。

师:图a是以哪个点为中心,旋转多少度得到图b的?生:图a是以o点为中心旋转900得到图b的。

师:谁能用完整的语言说说图a到图b的变化过程?生:图a以o点为中心,按顺时针方向旋转900得到图b。

人教版九年级数学上册全册教案(打印)

人教版九年级数学上册全册教案(打印)

人教版九年级数学上册全册教案(打印)二十一章一元二次方程第1课时 21.1 一元二次方程教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人想用扁担进屋,但门框挡住了竹子,四脚横两竖,哭不出声。

有个聪明的邻居,教他把杆子往两个角倾斜。

愚人照言试,多多少少刚到。

请问,杆子有多长?我钦佩任何健身的人。

如果假设门的高为x尺,那么,这个门的宽为_______尺,长为_______尺,根据题意,得________.整理、化简,得:__________.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:略三、巩固练习教材练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2-=0 (4) x2-4=(x+2)2(5)ax2+bx+c=0四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.·练习:1.方程(2a—4)x2—2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业第2课时 21.1 一元二次方程教学内容1.一元二次方程根的概念;2.根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.教学目标了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点关键1.重点:判定一个数是否是方程的根;2.难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.问题1.前面有关“执竿进屋”的问题中,我们列得方程x2-8x+20=0列表:问题2.前面有关长方形的面积的问题中,我们列得方程x2+7x-44=0即x2+7x=44列表:老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题2中还有其它解吗?老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫做一元二次方程的根.回过头来看:x2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.例3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:略三、巩固练习教材思考题练习1、2.四、归纳小结(学生归纳,老师点评)本节课应掌握:(1)一元二次方程根的概念;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.(“夹逼”方法; 平方根的意义)六、布置作业1.教材复习巩固3、4 综合运用5、6、7 拓广探索8、9.2.选用课时作业设计.第3课时 21.2.1配方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重难点关键1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+____)2.问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=--2例1:解方程:(1)(2x-1) 2=5 (2)x2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±即x+3=,x+3=-所以,方程的两根x1=-3+,x2=-3-例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材练习.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+)2=2.56,即(x+)2=2.56x+=±1.6,即x+=1.6,x+=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解六、布置作业1.教材复习巩固1、2.第4课时 22.2.1配方法(1)教学内容间接即通过变形运用开平方法降次解方程.教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.重难点关键1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p (p≥0)的形式,那么可得x=±或mx+n=±(p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→ (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略三、巩固练习教材P38讨论改为课堂练习,并说明理由.教材P39练习1 2.(1)、(2).四、应用拓展例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:(8-x)(6-x)=××8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.五、归纳小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.六、布置作业1.教材复习巩固2.3(1)(2)第5课时 21.2.1配方法(2)教学内容给出配方法的概念,然后运用配方法解一元二次方程.教学目标了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点关键1.重点:讲清配方法的解题步骤.2.难点与关键:把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方.教具、学具准备小黑板教学过程一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联?二、探索新知讨论:配方法届一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.例1.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略三、巩固练习教材P 练习 2.(3)、(4)、(5)、(6).四、归纳小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(--(质.(--((1,3)y /mO 1 2 3 x /m321经过下列平移后得到的抛物线的解析式(--((1),2-(1)2-抛物线x - h)(1,3)y /m O 1 2 3 x /m321经过下列平移后得到的抛物线的解析式并写【课堂小结】已知图象上三点或三对对应值,通常选择一般式求函数解析式. 【当堂达标】1.如图,抛物线的解析式为( )A.y=-x2-x+2B.y=x2+x+2C.y=-x2-x+2D.y=-x2+x+22.一个二次函数的图象过(0,1)、(1,0)、(2,3)三点,求这个二次函数的解析式.3.(思考题)有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.【布置作业】课本P42 练习10题(2)(4)、11题【课后反思】度.2.如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A 、B 分别移动______________3.如图:∆ABC 是等边三角形,D 是BC 上一点,∆ABD 经过旋转后到达∆ACE 的位置。

(1)旋转中心是_______(2)旋转了_______度.(3)如果M 是AB 的中点,那么经过上述旋转后,点M 转到了________________.(三)自学教材P57探究,总结归纳旋转地性质。

①_______________________________________________________ ②__________________________________________________________ ③_____________________________________________________________ 三、教师强调 旋转的性质 【跟踪练习】1、已知△ABC 是直角三角形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC 绕点C 逆时针方向旋转90°后得到△DEC ,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝,DE 与AB 的位置关系为_________________.2、正方形ABCD 中有一点P ,把△ABP 绕点点B 旋转到△CQB,连结PQ ,则△PBQ 的形状是_____________________________.【当堂达标】1.下列现象中属于旋转的有________________①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头的转动;⑤钟摆的运动;⑥荡秋千2.等边三角形至少旋转__________度才能与自身重合。

3.图1可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数E DCBAMABCB'A'可以是( )A .90B .60C .45D .304.如图2,图形旋转一定角度后能与自身重合,则旋转的角度可能是( ) A 、300B 、600C 、900D 、1200图1 图2 图3 图4 5.如图3,把△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,若∠BCA '=1000,则∠B /CA 的度数是__________。

6.如图4,P 是等边△ABC 内一点,△BMC 是由△BPA 旋转所得,则∠PBM =______°7.配套练习 【课堂小结】 1.旋转的定义 2.旋转的性质 3.旋转的运用 【布置作业】教材P56 练习1、2、3.【课后反思】主备人:王三平 备课组成员:张立奇 薛宏国 贾凤 翟晓蓉 李光明课堂教学设计时间:年月日总第 22 课时备课组:九年级数学课题图形的旋转(2)授课年级九周次 6 授课人教学目标知识与能力能够按照要求做出简单的图形旋转后的图形。

过程与方法用操作几何、实验探究图形的旋转的基本性质.情感态度价值观继续利用旋转的性质解决相关问题教学重点图形的旋转的基本性质及其应用教学难点运用操作实验几何得出图形的旋转的三条基本性质教学方法自学探究课型新授教学准备电子白板教学过程设计备注【复习回顾】1.旋转的要素2.旋转的性质【新课探究】一、出示教学目标能够按照要求做出简单的图形旋转后的图形二、指导学生自学自学教材P57例题,画出旋转后的图形,并写出画法,写出理由。

三、教师强调旋转画法的步骤【跟踪练习】练习:①画出△ABC绕点D顺时针旋转90°后的图形△A1B1C1②△ABC绕点D顺时针旋转后的图形为△A1B1C1,找出旋转中心点D。

D【当堂达标】1.如果两个图形可通过旋转而相互得到,则下列说法中正确的有( ).①对应点连线的中垂线必经过旋转中心.②这两个图形大小、形状不变.③对应线段一定相等且平行.④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.A.1个 B.2个 C.3个 D.4个2.如图,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG可以看成是把菱形ABCD以A为中心( ).A.顺时针旋转60°得到 B.顺时针旋转120°得到C.逆时针旋转60°得到 D.逆时针旋转120°得到3.4张扑克牌如图3(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图3(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张 B.第二张、第三张C.第三张、第四张 D.第四张、第一张图3(1)图3(2)4..如图,有四个图案,它们绕中心旋转一定的角度后,都能和原来的图案相互重合,其中有一个图案与其余三个图案旋转的角度不同,它是( ).5、已知△ABC的BC边的中点D,①画出△ABC绕点D旋转180°的图形△EBC;②四边形ABEC是怎样的四边形?为什么?课堂教学设计时间:年月日总第 23 课时备课组:九年级数学课题图形的旋转(3)授课年级九周次 6 授课人教学目标知识与能力选择不同的旋转中心或不同的旋转角,设计不同美丽的图案过程与方法掌握根据需要用旋转的知识设计出美丽的图案.情感态度价值观教学重点用旋转的有关知识画图教学难点根据需要设计美丽图案教学方法自学探究课型新授教学准备电子白板教学过程设计备注【复习回顾】1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.【新课探究】一、出示教学目标选择不同的旋转中心或不同的旋转角,设计不同美丽的图案二、指导学生自学从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.三、教师强调旋转画法的步骤【跟踪练习】如图,如何作出该图案绕O点按逆时针旋转90°的图形分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A•′G′、G′D′、D′H′、H′A′;(4)所作出的图案就是所求的图案.【当堂达标】1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.【课堂小结】1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.【布置作业】教材P60 综合运用7、8、9..【课后反思】主备人:王三平备课组成员:张立奇薛宏国贾凤翟晓蓉李光明。

相关文档
最新文档