最新人教版初一数学知识点大全
2023年最新版人教版七年级数学全册知识点
第一章:有理数知识框架:正分数负分数正整数0负整数基本概念:1.大于0的数叫做正数。
2.在正数前面加上负号“-”的数叫做负数。
3.整数和分数统称为有理数。
4.人们通常用一条直线上的点表达数,这条直线叫做数轴。
5.在直线上任取一个点表达数0,这个点叫做原点。
6.一般的,数轴上表达数a 的点与原点的距离叫做数a 的绝对值。
7.由绝对值的定义可知:(1) 一个正数的绝对值是它自身;一个负数的绝对值是它的相反数;0的绝对值是0。
(2)正数大于0,0大于负数,正数大于负数。
(3)两个负数,绝对值大的反而小。
8.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
9.有理数的加法中,两个数相加,互换互换加数的位置,和不变。
10.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
11.有理数减法法则减去一个数,等于加上这个数的相反数。
12.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
13.有理数中仍然有:乘积是1的两个数互为倒数。
14.一般的,有理数乘法中,两个数相乘,互换因数的位置,积相等。
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
15.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
16.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
17.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a n 中,a叫做底数,n叫做指数18.根据有理数的乘法法则可以得出负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
初中数学知识点总结人教版(精选7篇)
初中数学知识点总结人教版(精选7篇)初中数学知识点总结篇一1、一元一次方程根的情况△=b2-4ac当△0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
初中九年级数学知识点总结篇二第一章实数一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a1;D.积为1.4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1.5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
新人教版七年级数学上册重要知识点汇总
新人教版七年级数学上册重要知识点汇总以下是新人教版七年级数学上册的重要知识点汇总:
1. 整数的概念和表示方法,正整数和负整数的比较
2. 整数的加法和减法运算,数轴上的加法和减法运算
3. 整数的乘法和除法运算,同号相乘除法的规律,异号相乘除法的规律
4. 分数的概念和表示方法,分数的大小比较
5. 分数的加法和减法运算,同分母的分数相加减,不同分母的分数相加减
6. 分数的乘法和除法运算,分数乘整数/分数,分数除以整数/分数
7. 小数的概念和表示方法,小数的大小比较
8. 小数的加法和减法运算,同数位的小数相加减
9. 小数的乘法和除法运算,小数乘整数/小数,小数除以整数/小数
10. 比例的概念和表示方法,比例的性质和运算,比例的倒数、倒数的比例
11. 百分数的概念和表示方法,百分数的大小比较,百分数的转化和计算
12. 简单利益的计算,利率的概念和表示方法,复利的计算
13. 平均数的概念和表示方法,算术平均数的计算
14. 数据的收集和整理,可以文章描述的数据和实际情况不符的数据
15. 数据的分组和统计,频数、频率、众数、中位数的计算
以上是新人教版七年级数学上册的重要知识点汇总,希望对你有帮助。
新人教版初中数学知识点总结(完整版)
人教新版初中数学知识点总结(全面最新)目录一、七年级数学(上)知识点1、有理数2、整式的加减3、一元一次方程4、图形的认识初步二、七年级数学(下)知识点5、相交线与平行线6、实数7、平面直角坐标系8、二元一次方程组9、不等式与不等式组10、数据的收集、整理与描述三、八年级数学(上)知识点11、三角形12、全等三角形13、轴对称14、整式的乘除与分解因式15、分式四、八年级数学(下)知识点16、二次根式17、勾股定理18、平行四边形19、一次函数20、数据的分析五、九年级数学(上)知识点21、一元二次方程22、二次函数23、旋转24、圆25、概率六、九年级数学(下)知识点26、反比例函数27、相似28、锐角三角函数29、投影与视图七年级数学(上)知识点第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数. (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数;0的相反数还是0;(2) a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)绝对值的意义是数轴上表示某数的点离开原点的距离; (2) ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧<-≥=)0a (a )0a (a a 或⎩⎨⎧≤->=)0()0(a a a a a ; 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组; 5.有理数比大小:两个负数比大小,绝对值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数-小数 > 0,小数-大数 < 0.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1; 若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数; 注意:零不能做除数,无意义即a . 13.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;14.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或(a-b)n =(b-a)n .15.科学记数法:把一个大于10的数记成a×10n的形式,(其中1≤a<10)这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教版初一数学主要知识点最新总结
人教版初一数学主要知识点最新总结初一是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合。
下面是小编为大家整理的关于最新人教版初一数学主要知识点,希望对您有所帮助!初一数学综合知识点总结实数1 平方根如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数(radicand)。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。
求一个数a的平方根的运算,叫做开平方(extraction of square root)。
2 立方根如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。
求一个数的立方根的运算,叫做开立方(extraction of cube root)。
3 实数无限不循环小数又叫做无理数(irrational number)。
有理数和无理数统称实数(real number)。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
人教版初中数学知识点(全)
人教版初中数学知识点(全)一、整数与有理数1. 整数的概念与表示方法2. 整数的加减法3. 整数的乘法4. 整数的除法5. 整数的混合运算6. 有理数的概念与表示方法7. 有理数的加减法8. 有理数的乘法9. 有理数的除法10. 有理数的混合运算二、代数与方程1. 代数式的基本概念2. 代数式的运算3. 初等代数式4. 一元一次方程5. 一元一次方程的解6. 一元一次方程的应用三、平面图形1. 点、线、面的基本概念2. 直线的性质3. 角的概念与性质4. 线段的概念与性质5. 三角形的基本概念与性质6. 三角形的分类与判定7. 直角三角形与勾股定理8. 平行线与平行四边形9. 四边形的分类及其性质10. 梯形和平行四边形的面积四、图形的位置与方位1. 坐标系2. 图形的部分、全及简单运动3. 图形的位置关系4. 图形的投影和视图五、数据的处理与统计1. 统计调查与数据收集2. 单图形的统计3. 标线图4. 等距统计图与频数分布直方图5. 旋转、平移、翻折、镜面变换6. 几何图形的位置关系六、函数的初步认识1. 函数的概念与表示2. 函数的自变量、因变量与函数图象3. 线性函数及其图象的特征4. 恒等函数和常数函数5. 一元一次方程与一元一次函数七、空间与立体图形1. 立体图形的基本概念2. 正交投影3. 立体图形的展开图4. 空间中的位置关系与方向八、相似与全等1. 点、线、平面的基本性质2. 同位角和同旁内角3. 两个线的夹角与两个平面的夹角4. 直线与平面的位置关系5. 立体图形的拆分九、变量与变化1. 变量与量的关系2. 变量的代数表示3. 变量之间的关系及其图象4. 变量间比例关系及其图象十、数系的扩充1. 自然数、整数、有理数的关系2. 实数的概念与性质3. 几何图形的相似比与相似定理4. 实际问题与解整数方程5. 锐角三角函数、直角三角函数十一、平面直角坐标系1. 平面直角坐标系的建立2. 点与平面直角坐标系3. 点在平面直角坐标系中的坐标4. 平面直角坐标系与方程十二、几何图形的变换1. 图形的变换2. 平移和旋转3. 对称与中心对称4. 拓展与概括(图形自相似、放缩)以上是人教版初中数学知识点的概述,其中包括整数与有理数、代数与方程、平面图形、图形的位置与方位、数据的处理与统计、函数的初步认识、空间与立体图形、相似与全等、变量与变化、数系的扩充、平面直角坐标系以及几何图形的变换等内容。
人教初一数学上册知识点
人教初一数学上册知识点一、知识概述1. 《有理数》①基本定义:有理数就是能够写成两个整数之比的数,简单来说就是整数、有限小数还有无限循环小数这一类的数。
比如2是有理数,也是,因为可以写成1/2,…(无限循环)写成1/3也是有理数。
②重要程度:在初一数学里超级重要。
它是学习后面各种计算、方程的基础。
很多数学概念和实际问题的解决都是基于有理数的运算。
③前置知识:在学有理数之前,得知道整数的概念,会简单的加减法等算术运算。
④应用价值:在生活中算钱的时候就会用到,假如买东西花了元,就是有理数,还有计算距离、速度啥的也用到有理数运算。
2. 《整式》①基本定义:像3x、-4y²这种数与字母的乘积形式就是整式。
单独的一个数或者一个字母也叫做整式,就好比5是整式,a也是整式。
②重要程度:这是代数的起步知识,以后学各种函数、方程等都会涉及到整式的相关知识。
③前置知识:要对有理数运算比较熟,还有知道字母可以表示数这个概念。
④应用价值:举个例子,如果要计算长方形面积,设长为x,宽为y,面积就是xy,这就是整式在生活几何中应用的例子。
二、知识体系1. 《有理数》①知识图谱:有理数在初一数学上册中属于数的概念范畴,是基础的基础,很多其他数的学习都和它相关或基于它拓展。
②关联知识:和后面要学的无理数合起来就是实数了。
有理数的运算规则对整式运算也有启发意义。
③重难点分析:对有理数的正负性在运算中的影响是个难点,像两个负数相乘得正数这种规则有些同学一开始很难理解。
关键点就是得牢记运算规则,多做练习。
④考点分析:考试中经常单独出题考查有理数的运算,要么就是和后面的知识结合一起考查。
考查方式从单纯的计算,到在应用题中的运算都有。
2. 《整式》①知识图谱:整式在代数部分处于起始位置,往后的多项式、因式分解等都以整式为基础。
②关联知识:和方程关系紧密,比如一元一次方程中的未知数就是整式的形式。
③重难点分析:整式的系数、次数概念容易混淆,这是难点。
新人教版七年级数学上册重要知识点汇总
新人教版七年级数学上册重要知识点汇总第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
〔根据需要,有时在正数前面也加上“+”〕②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
1.2 有理数1、有理数〔1〕整数:正整数、0、负整数统称整数;〔2〕分数;正分数和负分数统称分数;〔3〕有理数:整数和分数统称有理数。
2、数轴〔1〕定义:通常用一条直线上的点表示数,这条直线叫数轴;〔2〕数轴三要素:原点、正方向、单位长度;〔3〕原点:在直线上任取一个点表示数0,这个点叫做原点;〔4〕数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
〔例:2的相反数是-2;0的相反数是0〕〔2〕一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法。
1.4 有理数的乘除法①有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法那么:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
1.5 有理数的乘方1、求n个一样因数的积的运算,叫乘方,乘方的结果叫幂。
在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法那么:先乘方,再乘除,最后加减;同级运算,从左到右进展;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进展。
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a⑵打满14场比赛最高能得17+〔14-8〕×3=35分.⑶由题意知,以后的6场比赛中,只要得分不低于12分即可.∴胜不少于4场,一定能到达预期目的. 而胜了3场,平3场,正好到达预期目的. 所以在以后的比赛中,这个球队至少要胜3场.例10. 国家为了鼓励青少年成才,特别是贫困家庭的孩子能上得起大学,设置了教育储蓄,其优惠在于,目前暂不征收利息税. 为了准备小雷5年后上大学的学费6000元,他的父母如今就参加了教育储蓄,小雷和他父母讨论了以下两种方案:⑴先存一个2年期,2年后将本息和再转存一个3年期;⑵直接存入一个5年期.你认为以上两种方案,哪种开场存入的本金较少?[教育储蓄〔整存整取〕年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%. ]解析:理解储蓄的有关知识,掌握利息的计算方法,是解决这类问题的关键,对于此题,我们可以设小雷父母开场存入x元. 然后分别计算两种方案哪种开场存入的本金较少.⑴2年后,本息和为x〔1+2. 70%×2〕=1. 054x;再存3年后,本息和要到达6000元,那么1. 054x〔1+3. 24%×3〕=6000.解得x≈5188.⑵按第二种方案,可得方程x〔1+3. 60%×5〕=6000.解得x≈5085.所以,按他们讨论的第二种方案,开场存入的本金比拟少.例11. 扬子江药业集团消费的某种药品包装盒的侧面展开图如下图. 假如长方体盒子的长比宽多,求这种药品包装盒的体积.分析^p :从展开图上的数据可以看出,展开图中两高与两宽和为350px,所以一个宽与一个高的和为175px,假如设这种药品包装盒的宽为xcm,那么高为〔7-x〕cm,因为长比宽多100px,所以长为〔x+4〕cm,根据展开图可知一个长与两个高的和为325px,由此可列出方程.解:设这种药品包装盒的宽为xcm,那么高为〔7-x〕cm,长为〔x+4〕cm.根据题意,得〔x+4〕+2〔7-x〕=13,解得x=5,所以7-x=2,x+4=9.故长为225px,宽为125px,高为50px.所以这种药品包装盒的体积为:9×5×2=90〔cm3〕.例12. 某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得〔1+x〕〔1-5%〕=1+14%解得x=20%答:这个月的石油价格相对上个月的增长率为20%.点评:此题是一道增长率的应用题. 本月的进口石油的费用等于上个月的费用加上增加的费用,也就是本月的石油进口量乘以本月的价格. 设出未知数,分别表示出每一个数量,列出方程进展求解. 列方程解应用题的关键是找对等量关系,然用代数式表示出其中的量,列方程解答.例13. 某市参加省初中数学竞赛的选手平均分数为78分,其中参赛的男选手比女选手多50%,而女选手的平均分比男选手的平均分数高10%,那么女选手的平均分数为____________.解析:总平均分数和参赛选手的人数及其得分有关. 因此,必须增设男选手或女选手的人数为辅助未知数. 不妨设男选手的平均分数为x分,女选手的人数为a 人,那么女选手的平均分数为1. 1x分,男选手的人数为1. 5a人,从而可列出方,解得x=75,所以1. 1x=82. 5. 即女选手的平均分数为82. 5分.第四章几何图形初步4.1 几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
2024年人教版七年级数学知识点总结(2篇)
2024年人教版七年级数学知识点总结一、有理数1. 有理数的概念:有理数是可以表示为两个整数的比值的数。
2. 有理数的分类:整数、分数、零。
3. 有理数的表示形式及比较大小:分数、小数、整数。
二、整数1. 整数的概念:由整数可以用整数1表示,包含正整数、负整数和零。
2. 整数的运算:加法、减法、乘法、除法的运算法则。
3. 知识点:正负整数的加减法、乘法及除法的运算规则。
三、分数1. 分数的概念:分母为0的数除外,一个不能化为整数的数叫分数。
2. 分数的基本概念:分子、分母、真分数、假分数和带分数。
3. 分数的化简和等值分数:化简分数的方法,等分数的概念。
4. 分数的加减法:同分母的分数相加减,异分母的分数相加减。
5. 分数的乘法:分数与整数相乘,分数之间相乘。
6. 分数的除法:分数与整数相除,分数之间相除。
四、小数1. 小数的概念:有限小数和无限循环小数。
2. 小数的读法和写法:小数的读法,小数的书写规则。
3. 小数的四则运算:小数的加减法,小数的乘法,小数的除法。
4. 小数与分数的相互转换:小数转分数,分数转小数。
五、实数1. 实数的定义:有理数和无理数的统称。
2. 无理数的概念:不能表示为两个整数之比的数,如根号2,根号3等。
六、代数式与方程式1. 代数式的概念:用字母表示数的式子。
2. 方程式的概念:含有等号的代数式叫做方程式。
3. 一元一次方程的解:方程的根、方程的解集。
4. 一元一次方程的应用:利用一元一次方程解决实际问题。
七、比例与百分数1. 比例的概念:两个含有比的式子叫做比例。
2. 比例的性质:比例的基本性质、相等比例的性质。
3. 比例的计算:已知两个相等比例的三个量中的任意两个量,可以求出第三个量。
4. 百分数的概念:以百分号表示的数。
5. 百分数与分数、小数的相互转换。
6. 增长量和减少量的计算:已知原数和增长量(减少量)之比和增长率(减少率),可以求出增加量(减少量)。
八、平面图形的初步认识1. 二维图形的分类:几何图形、点、线段、直线、角、多边形、平行四边形、正方形、长方形、正三角形、等腰三角形。
人教版初一数学必学知识点详解与练习
人教版初一数学必学知识点详解与练习数学是一门实践性很强的学科,是培养学生思维能力和逻辑推理能力的重要工具。
初中数学作为数学学科中的基础阶段,不仅为中学阶段的学习奠定了基础,也准备了以后高中数学的学习。
下面将详细介绍人教版初一数学的必学知识点,并提供相应的练习题供学生巩固知识。
一、有理数1. 有理数的定义有理数是指可以表示为两个整数比值的数,包括整数、分数和小数。
2. 有理数的四则运算(1) 加法与减法:有理数的加减法运算规则是根据同号相加、异号相减的原则进行运算。
(2) 乘法与除法:有理数的乘除法运算规则是根据正数乘除正数为正,正数乘除负数为负,负数乘除正数为负的原则进行运算。
练习题:1. 计算下列各题。
(1) (-5) + 3 = ?(2) (-7) - (-4) = ?(3) 6 × 5 = ?(4) (-12) ÷ 4 = ?二、整数1. 整数的定义整数是由零、正整数和负整数组成的数集。
2. 整数的表示与顺序整数可以用数轴表示,正整数在数轴的右侧,负整数在数轴的左侧,0位于数轴的原点。
3. 整数的比较(1) 正整数与零的比较:对于任意正整数a,都有a > 0。
(2) 负整数与零的比较:对于任意负整数b,都有b < 0。
(3) 正整数与负整数的比较:对于任意正整数a和负整数b,若a > b,则- a < -b。
练习题:1. 比较下列各组数的大小。
(1) -3, -5, 0(2) 1, -2, -3(3) -7, 0, 5三、有序数对1. 有序数对的定义有序数对是由两个数按照一定的顺序排列所构成的数对,通常以(x, y)表示,其中x为第一个数,y为第二个数。
2. 有序数对的应用(1) 在直角坐标系中,有序数对可以表示平面上的点。
(2) 有序数对还可以表示时间、温度等有序现象。
练习题:1. 将下列有序数对标识出对应的点,并在直角坐标系中画出来。
(1) (2, 4)(2) (-3, -5)(3) (0, 0)四、小数(十进制数)1. 小数的定义小数是由整数部分和小数部分构成的数。
最新版人教版七年级数学全册知识点
最新版人教版七年级数学全册知识点最新版人教版七年级数学全册知识点一、代数初步知识1、正数与负数:在以前学过的0以外的数叫做正数,在正数前面加上负号“-”的数叫做负数。
2、有理数:把正整数、0、负整数、正分数、负分数都可以看做是数轴上的有理数。
注意:整数和分数统称有理数;在有理数的句子中,有时“正”可以省略不写,但“负”不能省掉。
3、有理数的分类:按整数、分数的关系分类;按正数、0、负数的关系分类。
4、小数:有限小数和无限循环小数。
5、数的开方:利用二次根式开方;利用分数指数幂的意义开方。
6、数的混合运算:先乘方,后乘除,最后加减;有括号先算括号里面的;同级运算,从左到右进行。
二、代数式1、用字母表示数的意义:用字母可以表示数量、图形、公式等。
2、用代数式表示几个相等关系:用代数式可以表示几个相等关系;用代数式表示几个不等的数量关系;用代数式表示一个运算规律。
3、代数式的值:用数值代替代数式里的字母,计算所得的结果叫做代数式的值。
注意求值时,必须把所代入的数值所所求的代数式中的字母看作同一个字母来对待。
4、代数式的分类:含有字母的数学表达式称为代数式;不含字母的数学表达式称为常数式。
三、数据的收集与整理1、数据的收集方法:计数器观察法、调查法、重复实验法。
2、数据的整理方法:用统计表整理;用统计图整理。
四、命题与证明1、命题的概念:能够判断真假的语句叫做命题。
一个命题由题设和结论两部分组成。
2、反证法证明命题的步骤:假设结论不成立;从假设出发推出矛盾;假设不成立,结论成立。
浙教版七年级数学知识点复习资料全浙教版七年级数学知识点复习资料第一章有理数1、有理数的定义:能写成两个整数之比的数称为有理数。
2、有理数的性质:(1)有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。
(2)有理数减法法则:减去一个数,等于加上这个数的相反数。
人教版初一数学主要知识点
人教版初一数学主要知识点初中数学必考知识点篇一1、数轴(1)数轴的概念:定义原点、正方向、单位长度的直线称为数轴。
数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有有理数都可以用数轴上的点来表示,但不是所有数轴上的点都表示有理数。
(一般右方向就是正方向,数轴上的点对应任意实数,包括无理数。
)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
2、相反数(1)对跖的概念:只有两个符号不同的数叫做对跖。
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3、绝对值1.概念:数轴上的一个数到原点的距离称为这个数的绝对值。
①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。
③有理数的绝对值都是非负数。
2、如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零。
即|a|={a(a>0)0(a=0)﹣a(a<0)4、有理数大小比较1、有理数的大小比较数轴可以用来比较有理数的大小,它们的顺序是从左到右,即从大到小(数轴上表示的两个有理数右边的数总是大于左边的数);还可以利用数字的性质比较两个不同符号和0的数字的大小,利用绝对值比较两个负数的大小。
2、有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。
人教版初一数学上册知识点
人教版初一数学上册知识点
1. 有理数呀,这可太重要啦!就像生活中的各种小惊喜和小挫折,有正有负呢!比如温度有零上多少度和零下多少度,这就是有理数呀!
2. 整式,嘿,这不就是数学世界里的一个个小团体嘛!像一堆有组织的小伙伴一样。
比如说买苹果,一个苹果 3 元,那 5 个苹果不就是3×5 嘛,这里的 3 就是单项式呀。
3. 一元一次方程,哇塞,那简直就是解决问题的一把好手!就好比你有一堆糖果要分给小伙伴,知道总数和人数,不就能求出每人分几颗了嘛!例如:小明有 10 颗糖分给 5 个朋友,设每人分 x 颗,不就是 5x=10 嘛。
4. 几何图形,这可有趣啦,就像我们生活中的各种物品的形状呀!像那圆圆的盘子就是个圆呀。
比如给你一个足球,那就是个球体啦。
5. 相交线与平行线,这就像是人生路上有的交叉有的平行的轨迹一样!好比两条火车轨道,永远不会相交,就是平行线呀。
6. 实数,这可是很实在的家伙们呢!就好像你口袋里实实在在的钱一样。
像根号 4 就等于 2 呀,这就是实数呀。
7. 平面直角坐标系,哇哦,这就像是给每个点都安了个家一样!比如在地图上找一个地点,不就是通过坐标嘛。
8. 数据的收集与整理,这就像在整理你的宝贝们一样呢!比如说统计班级里同学喜欢的颜色,这就是在收集和整理数据呀!
我的观点结论:人教版初一数学上册的这些知识点真的都超级重要,好好学,肯定能让你在数学的世界里畅游无阻呀!。
人教版七年级数学知识点汇总
人教版七年级数学知识点汇总第一章有理数1.1 有理数•定义有理数的概念•正数、负数、零的定义•有理数的大小比较及图像表示法•有理数的加减乘除运算规律1.2 数轴及其应用•数轴的概念及表示方法•数轴上有理数加减法的计算方法•数轴上数量的比较及意义的解释•数轴上实际问题的分析及解决方法1.3 练习题及解答第二章图形的认识2.1 基本图形•点、直线、射线、线段、圆•方形、长方形、正方形、平行四边形2.2 计算图形的周长和面积•了解周长和面积的概念•两个长方形的面积关系及计算方法•长方形与正方形的面积关系及计算方法•平行四边形的面积计算方法2.3 练习题及解答第三章方程与代数式3.1 代数式•代数式的定义及基本形式•代数式的加减乘除运算及应用•梳理多项式中的同类项3.2 字母的应用•在式子中用字母表示未知量•字母在代数式中的应用和意义•列表方程解问题3.3 方程•方程的概念及种类•一元一次方程的解法及应用•对一般的代数式作变形,使之成为一元一次方程•实际问题选择解法及组方程3.4 练习题及解答第四章几何图形的变换4.1 平移•平移的概念及运用•对称图形的平移4.2 向量•向量的概念及表示方法•向量的平移及性质•一些应用4.3 旋转•旋转的概念及旋转角度•角度、弧度、圆周角度数之间的转换•公式法旋转•利用三角函数旋转4.4 练习题及解答第五章数据分析5.1 统计量•数据的收集及统计量的计算•众数、中位数、平均数的定义及计算方法•以上各统计量在实际中的应用5.2 数据的表示•数据的分组及其分布•直方图和折线图的理解和绘制•了解数学基础课程的相关知识5.3 练习题及解答以上为人教版七年级数学知识点汇总,通过学习以上内容,同学们可以系统地掌握数学基础知识,并能够熟练运用于实际生活中。
人教版七年级数学知识点汇总
人教版七年级数学知识点汇总
人教版七年级数学课程涵盖了丰富的数学知识点,这些知识点为学生
日后的数学学习打下了坚实的基础。
以下是对这些知识点的详细汇总:
首先,我们学习了有理数的运算,包括加法、减法、乘法和除法。
这
些运算规则是数学中最基本的,对于理解更复杂的数学概念至关重要。
接着,我们探讨了代数的初步知识,如代数式的表示方法和简化技巧。
我们学习了如何用字母表示数,以及如何进行代数式的加减和乘除运算。
在几何部分,我们了解了线段、射线和直线的概念,以及它们之间的
关系。
我们还学习了角的分类,包括锐角、直角、钝角和平角,以及
如何测量角度。
此外,我们掌握了平面图形的基本概念,如三角形、四边形、圆等,
并学习了它们的一些基本性质,例如三角形的内角和定理和四边形的
对角线性质。
在统计与概率方面,我们学习了如何收集和整理数据,以及如何用图
表来表示数据。
我们还初步了解了概率的概念,包括随机事件和概率
的计算方法。
最后,我们学习了一元一次方程的解法,包括方程的建立、求解和应用。
这些知识对于解决实际问题非常有帮助。
通过这些知识点的学习,我们不仅掌握了数学的基本技能,还培养了
逻辑思维和问题解决能力。
这些能力对于我们的学习和生活都具有重要意义。
人教版初中数学知识点总结及公式大全
人教版初中数学知识点总结及公式大全一、数与式1.自然数与整数•自然数是从1开始的正整数:1, 2, 3, 4…•整数是包括0及其正整数和负整数的集合:…,-3,-2,-1,0,1,2,3,…•正整数、负整数、0之间的大小关系:负整数<0<正整数2.有理数•有理数包括整数、分数及它们的负数:–整数可以表示为分母为1的分数。
–有理数可用分数表示,分数有正负之分。
3.实数•实数是包括有理数和无理数的集合:–有理数是可以准确表示为有限位小数或无限循环小数的数。
–无理数是不能准确表示为有限位小数或无限循环小数的数,如π,√2等。
4.数轴与数的比较•数轴是用于表示数与数之间大小关系的图形。
•数轴上的两个数,位于数轴的左侧的数较小,位于数轴右侧的数较大。
5.数的绝对值•数a的绝对值表示为|a|,用来表示a与0之间的距离。
–若a>0,|a|=a;–若a=0,|a|=0;–若a<0,|a|=-a。
6.数与式的定义和性质•数是表示数量的抽象概念,如:0,1,2,3…•式是由数、代数式、运算符号和等号组成的符号集合。
7.集合与集合间的关系•集合是由不同对象组成的整体,如:奇数集合{1, 3, 5, …},偶数集合{2, 4, 6, …}。
•子集:集合B的一切元素都是集合A的元素,则集合B是集合A的子集,用B⊆A表示。
•并集:由集合A和集合B的所有元素组成的集合,记作A∪B。
•交集:既属于集合A又属于集合B的元素组成的集合,记作A∩B。
二、代数式1.代数式的定义和性质•代数式是由数、字母、运算符号和括号组成的符号集合,代表一类数。
•代数式的值与其中的字母有关,通常用字母x表示。
2.代数式化简•合并同类项:将含字母和数的项的系数相加,字母部分保持不变。
•变形:利用代数式的特性经过一系列变形达到化简的目的。
3.代数式的加减法与乘除法•加减法:合并同类项的加减法则,将相同字母的项的系数相加减。
•乘法:用Distributive Law,即分配律,将每一个字母项进行相乘。
人教版数学七年级上册知识点总结
人教版数学七年级上册知识点总结第一章有理数知识点总结正数: 大于0的数叫做正数。
1.概念负数: 在正数前面加上负号“—”的数叫做负数。
注: 0既不是正数也不是负数, 是正数和负数的分界线, 是整数, 一、正数和负数自然数, 有理数。
(不是带“—”号的数都是负数, 而是在正数前加“—”的数。
)2.意义: 在同一个问题上, 用正数和负数表示具有相反意义的量。
有理数: 整数和分数统称有理数。
1.概念整数: 正整数、0、负整数统称为整数。
分数: 正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注: 正数和零统称为非负数, 负数和零统称为非正数, 正整数和零统称为非负整数, 负整数和零统称为非正整数。
2.分类: 两种二、有理数⑴按正、负性质分类: ⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念: 规定了原点、正方向、单位长度的直线叫做数轴。
三要素: 原点、正方向、单位长度2.对应关系: 数轴上的点和有理数是一一对应的。
三、数轴比较大小: 在数轴上, 右边的数总比左边的数大。
3.应用求两点之间的距离: 两点在原点的同侧作减法, 在原点的两侧作加法。
(注意不带“+”“—”号)代数: 只有符号不同的两个数叫做相反数。
1.概念(0的相反数是0)几何: 在数轴上, 离原点的距离相等的两个点所表示的数叫做相反数。
2.性质: 若a与b互为相反数, 则a+b=0, 即a=-b;反之,若a+b=0, 则a与b互为相反数。
四、相反数两个符号: 符号相同是正数, 符号不同是负数。
3.多重符号的化简多个符号: 三个或三个以上的符号的化简, 看负号的个数, 当“—”号的个数是偶数个时, 结果取正号当“—”号的个数是奇数个时, 结果取负号1.概念: 乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数, 则a·b=1;反之, 若a·b=1, 则a与b互为倒数。
人教版初一数学上册知识点归纳总结
人教版初一数学上册知识点归纳总结人教版初一数学上册知识点归纳总结,让我们一起来了解一下吧!我们要学好加减法。
加减法是我们日常生活中最基本的计算方法,比如说买东西、做饭等等。
我们要熟练掌握加减法的口诀和技巧,这样才能在生活中游刃有余哦!我们要学会分数。
分数是数学中的一个很重要的概念,它可以用来表示一个整体被分成若干份后所占的比例。
比如说,如果你吃了一块蛋糕的一半,那么你就吃掉了蛋糕的二分之一。
这个概念在生活中也很常见,比如说你要把一块巧克力分成几块给小伙伴们分享。
我们要学习代数式。
代数式是数学中的一种表达式,它可以用来表示一些数量之间的关系。
比如说,如果你有三个苹果,再加上两个香蕉,那么你一共有多少个水果呢?这个问题可以用代数式来解决:3+2=5。
学好代数式对我们来说非常重要哦!我们要学习几何图形。
几何图形是数学中的一个很重要的概念,它可以用来描述一些空间中的形状和大小关系。
比如说,如果你要画一个正方形,那么你需要知道正方形的四条边都相等,四个角都是直角。
学好几何图形可以帮助我们更好地理解世界哦!我们要学习数据分析。
数据分析是现代社会中非常重要的一项技能,它可以用来分析和解决各种问题。
比如说,如果你要开一家餐厅,那么你需要了解顾客的口味偏好、消费习惯等等信息,才能做出更好的经营决策。
学好数据分析对我们的未来发展非常重要哦!人教版初一数学上册知识点归纳总结包括了加减法、分数、代数式、几何图形和数据分析等内容。
这些知识点在我们日常生活中都有广泛的应用,学好它们可以帮助我们更好地理解和应对各种问题。
大家一定要认真学习哦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册各章知识点第1章有理数一、正数与负数1.正数与负数表示具有相反意义的量。
问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数。
判断:有理数可分为正有理数和负有理数()②零既不是正数,也不是负数。
判断:0是最小的正整数(),正整数负整数统称整数(),正分数负分数统称分数()③有限小数和无限循环小数因都能化成分数,故都是有理数。
判断:0是最小的有理数()④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。
判断:整数和小数统称有理数()二、数轴1.数轴三要素:原点、正方向、单位长度(另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。
3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a和数b为端点的线段中点为a与b和的一半(如何用代数式表示?)三、相反数1.定义:若a+b=0,则a与b互为相反数特例:因为0+0=0,所以0的相反数是02.性质:①若a与b互为相反数,则a+b=②-a不一定表示负数,但一定表示a的相反数(仅仅相差一个负号)③若a与b互为相反数且都不为零,a/b<0④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。
⑤互为相反数的两个数绝对值相等,平方也相等。
即:∣a∣=∣-a∣四、绝对值1.定义:在数轴上表示数a点到原点的距离,称为a的绝对值。
记作a2.法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。
即3.一个数的绝对值越小,说明这个数越接近0(离原点越近)。
绝对值最小的有理数是04.数轴上数a与数b之间的距离d满足:d五、倒数1.定义:若ab=1,则a与b互为倒数。
注意:因为0乘以任何数都为0,所以0没有倒数。
2.若a与b互为倒数,则ab=1。
3.因两数相乘同号才能得正,故互为倒数的两数必定同号。
所以负数的倒数肯定还是负数。
4.求带分数的倒数要先将其化为假分数,再颠倒分子分母位置(有负号的勿忘负号!)5.注意:只有当指明0a ≠时,1a才能表示a 的倒数! 六、有理数的运算加:000,与相加:等于没加同号相加:取相同的符号,绝对值相加两数相加无参与互为相反数和为异号相加取绝对值较大数的符号绝对值大减小互为相反数优先结合相加多数相加分母相同的分数优先结合相加同号的数优先结合相加⎧⎧⎪⎪⎪⎧⎪⎨⎪⎪⎨⎧⎪⎪⎨⎪⎪⎩⎩⎩⎨⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩ 减:减去一个数等于加上这个数的相反数!切一刀就搞定加减混合运算要求对()()(),,,a a a a --+--+--型符号化简相当纯熟,你行吗?乘⎧⎧⎪⎪⎨⎧⎫⎪⎪⎨⎬⎪⎩⎩⎭⎨⎪⎧⎪⎨⎪⎩⎩与0相乘:马上得0两数相乘同号得正无0参与绝对值相乘异号得负只要有0:马上得0多数相乘无0参与:先定符号,奇负偶正;再将绝对值直接相乘作为最终结果的绝对值除:除以一个不为零的数等于乘以这个数的倒数!(两数相除也满足同号得正,异号得负的法则)乘方()()()432332*********,1,1,1,1n n n a a n n 定义:个相乘记做,作用: 为偶数性质:为奇数区分:⨯=-=------⎧⎪⎪⎧⎨⎨⎩⎪⎪⎩混合运算顺序:先乘方,再乘除,最后加减;对于同级运算,一般按从左到右的顺序进行;如果有括号的,先做括号内的运算,按小括号、中括号、大括号依次进行.七、有理数的大小比较1)宏观比较法:正数>0>负数2)数轴法:在数轴上右边的数总比左边的大.(沿着数轴正方向数在逐渐变大)3)绝对值法:正数绝对值越大,数就越大;负数绝对值越大;数越小。
4)作差法:与0作比较.若a>b,则a-b>0;若a=b,则a-b=0;若a<b,则a-b<0.注:这就是:大数减小数等于正数,小数减大数等于负数,相等两数差为0.八、科学记数法,近似数,有效数字 把一个绝对值较大的数,表示为()10110,n a a n ⨯≤<为正整数称为科学记数法。
a 与原数只是小数点位置不同, n 等于a 化为原数时小数点移动的位数精强记1万=410,1亿=810;确到X 位就是指四设五入到X 位(这时要看X 后面那一位上的数字) 一个数,从左边第一个不是0的数起到末位为止,所有的数字称为这个数的有效数字。
对于较小数,只要能准确的写出0.0010061800的所有有效数字即掌握有效数字概念对于较大数,一般先用科学记数法表示,a 的有效数字即为原数的有效数字,a 的末位数字在原数中的位置(数位)即为原数精确度;Q 万,Q 亿中Q 的有效数字即为原数的有效数字。
4.23与4.23万各自精确到哪位?第2章《整式的加减》代数式:含有 的算式。
特例:单独的一个数也是代数式。
注意:代数式中不含:,,,,, 代数式的书写规则:1)数与字母,字母与字母相乘,乘号可以省略,数字与数字相乘,乘号不能省略。
2)数与字母相乘时,数要写在字母(包括带括号的多项式)前面3)带分数一定要写成假分数4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式5)式子后面有单位时,和差形式的代数式要在单位前把代数式用括号括起来。
试列代数式:a 与b 的差的一半,a 与b 的一半的差,a 与b 的平方和,a 与b 的和的平方,a 与b 差的绝对值,a 与b 绝对值的差单项式:数与字母的 构成的代数式叫做单项式一个书写习惯:当数字因数是1时,“1”省略不写;一个特例:单独的一个数也是单项式简称常数项;一个特殊字母:圆周率π是常数两条判断捷径:A :单项式中不含“+”“—”号,如2a b 不是单项式. B.单项式的分母中不含字母,如23bca 不是单项式。
单项式中的 叫做这个单项式的系数。
单项式中 叫做这个单项式的次数。
说出2325ab系数和次数多项式:几个单项式的 叫做多项式。
在多项式中,每个单项式简称为多项式的 。
多项式里, 次数,就是这个多项式的次数.练习:多项式9x 4-2x 3+xy -4,常数项为 ,次数最高项为 ,三次项系数为 ,这个多项式是 次 项式.整式: 和 统称为整式.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项,另外,所有的常数项都是同类项.“两个相同”是指:①含有的字母相同;②相同字母的指数也分别相同“两个无关”是指:①与系数无关;②与字母顺序无关合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:同类项的系数相 ,所得的结果作为系数,字母和字母的指数 ,不是同类项, 。
去括号法则:括号外的是“+”号,把括号和括号外的“+”号一起去掉,括号内各项的符号都 。
括号外的是“—”号,把括号和括号外的“—”号一起去掉,括号内各项都变号(变成它的 )。
若括号外有系数应先用乘法分配律将系数绝对值乘给括号内的每一项,再按以上法则去括号。
整式加减:把去括号,合并同类项的过程统称为整式加减。
(与X 无关=不含X 项=X 项系数为0) 代数式求值三个要点:(1) 代入准备:“先化简,再代入”——化到最简形式的标准:再也没有括号可去,再也没有同类项可合并(2) 代入格式:“当…………时,原式=…………”只有规范,才能得分!(3) 代入方法:“先挖坑,后填数”——保持代数式的形式不变,只是把字母换成数,注意:该带的括号不能丢!第3章 一元一次方程等式性质辨析:性质1同加(同减)同一个数。
性质2,同乘(同除)同一个数。
【性质2中有陷阱】①若a=b,则3a+2=2b+3. ( ), ②若a=b,则3a-2=3b-2. ( ), ③若-2a+3=-2b+3,则a=b. ( ) ④若ax=ay,则x=y. ( ) ⑤若a=b,则xa+y=xb+y. ( ) ⑥若xa+y=xb+y,则a=b. ( )方程,整式方程,一元一次方程概念辨析含有字母的等式叫做方程. 方程的命名:先移项使得方程右端为0,判左端代数式名称定方程名称。
分母中含字母的统称分式方程。
①5=4+1,②222a b ab ,③1x y ,④210x x ,⑤1x ,⑥13x x ,⑦4322x ,⑧211x以上8个式子哪些是方程?哪些是整式方程?哪些是一元一次方程?“方程的解”与“解方程”概念辨析使方程中等号左右两边相等的未知数的值,叫做方程的解.它是一个数,不是x 这个字母!而解方程是指求出方程的解的过程.方程解的“不管三七二十一”:已知方程的解,不管三七二十一,把解代回方程建立等式方程的解检验方法(验根)把未知数的值分别代入方程的左、右两边计算它们的值,比较两边的值是否相等.(格式还记得吗?)去括号可按“小、中、大”的顺序去括号乘法分配律、去括号法则①不要漏乘括号里面的项;②防止出现符号错误移项把含有未知数的移项刀方程的一边,其他项移到方程的另一边等式性质移项法则①移项要变号②不要漏项合并同类项把方程化为ax=b(a≠0)的形式合并同类项法则①系数相加减;②字母和字母的指数不变系数化为1 方程两边都除以未知数的系数等式性质①除数不能为0;②不要把分子、分母颠倒列方程解应用题步骤:1)写2)审3)设4)找5)列6)解7)验8)答一元一次方程应用题归类:(1)和差倍分问题(2)调配问题(3)比例问题(4)配套问题(5)行程问题(6)工程问题(7)利息问题(8)盈不足问题(9)增长率问题(10)打折销售与利润率问题(11)年龄问题(12)数字问题(13)日历与数表问题(14)“超过的部分”问题(15)等积问题(16)方案设计问题第4章几何图形初步线段中点性质:如果点M是线段AB的中点,那么AM=BM.=12AB (请补图)角平分线的性质:如果射线OM平分AOB,那么12AOM MOB AOB(请补图)第5章相交线与平行线一知识要点1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。
如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,与互为邻补角。
+ = 180°;+ = 180°;+ = 180°;+ = 180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。