计量经济学第五章 异方差

合集下载

《计量经济学》第五章精选题及答案

《计量经济学》第五章精选题及答案

第五章 异方差二、简答题1.异方差的存在对下面各项有何影响? (1)OLS 估计量及其方差; (2)置信区间;(3)显著性t 检验和F 检验的使用。

2.产生异方差的经济背景是什么?检验异方差的方法思路是什么? 3.从直观上解释,当存在异方差时,加权最小二乘法(WLS )优于OLS 法。

4.下列异方差检查方法的逻辑关系是什么? (1)图示法 (2)Park 检验 (3)White 检验5.在一元线性回归函数中,假设误差方差有如下结构:()i i i x E 22σε=如何变换模型以达到同方差的目的?我们将如何估计变换后的模型?请列出估计步骤。

三、计算题1.考虑如下两个回归方程(根据1946—1975年美国数据)(括号中给出的是标准差):t t t D GNP C 4398.0624.019.26-+= e s :(2.73)(0.0060) (0.0736)R ²=0.999t t t GNP D GNP GNP C ⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡4315.06246.0192.25 e s : (2.22) (0.0068)(0.0597)R ²=0.875式中,C 为总私人消费支出;GNP 为国民生产总值;D 为国防支出;t 为时间。

研究的目的是确定国防支出对经济中其他支出的影响。

(1)将第一个方程变换为第二个方程的原因是什么?(2)如果变换的目的是为了消除或者减弱异方差,那么我们对误差项要做哪些假设? (3)如果存在异方差,是否已成功地消除异方差?请说明原因。

(4)变换后的回归方程是否一定要通过原点?为什么?(5)能否将两个回归方程中的R²加以比较?为什么?2.1964年,对9966名经济学家的调查数据如下:资料来源:“The Structure of Economists’Employment and Salaries”, Committee on the National Science Foundation Report on the Economics Profession, American Economics Review, vol.55, No.4, December 1965.(1)建立适当的模型解释平均工资与年龄间的关系。

计量经济学第五章

计量经济学第五章
• 首先估计出一般方程 • View/Coefficient Tests/Redundant
Variables-Likelihood Ratio • 出现对话框时,写入删除变量名--OK • 对比删除前后的AIC与SC信息值,信息
值小的结论是应采纳的。
9
用Eviews的误设定检验3
• 第一,估计出简单(单纯)方程 • 第二,在命令窗口上写入genr v_hat=resid 或者 Procs/Generate Series中 v_hat=resid 发现 v_hat • 第三,估计出新的回归方程
无约束模型(U)
有约束模型(K) (general to simple)
计算统计量F
F=(RSSK-RSSu)/J RSSu/(n-k-1)
~F(J, n-k)
J 为表示约束条件数, K 为表示自变量数 或者 应估计的参数数, n 为表示样本数(obs)
4
2. LM检验(Lagrange Multiplier
多重共线性多出现在横截面资料上。
16
三、异方差性的检验及对策
Var(ℇi)≠Var(ℇj) (i≠j)时, ℇi中存在异方差性(Herteroskedasticity)。 即随机项中包含着对因变量的影响因素。 异方差性多发生在横截面资料上。
17
异方差性的检验
1.图示检验法 如模型为Yi=0+1X1i+2X2i+…+ℇi 时,
7
用Eviews的误设定检验1
• 首先估计出简单(单纯)方程 • View/Coefficient Tests/Omitted
Variables-Likelihood Ratio • 出现对话框时,写入新变量名 OK • 检验结果出现在上端,如果P值很小时, 拒

计量经济学题库第5章异方差

计量经济学题库第5章异方差

第5章异 方 差习 题一、单项选择题1. 回归模型中具有异方差性时,仍用OLS 估计模型,则以下说法正确的是( )A. 参数估计值是无偏非有效的B. 参数估计量仍具有最小方差性C. 常用F 检验失效D. 参数估计量是有偏的 2.更容易产生异方差的数据为 ( )A. 时序数据B. 修匀数据C. 横截面数据D. 年度数据 3.在具体运用加权最小二乘法时, 如果变换的结果是则Var(u)是下列形式中的哪一种?( )A. B. C. D.4. 在异方差性情况下,常用的估计方法是( )A .一阶差分法 B. 广义差分法 C .工具变量法 D. 加权最小二乘法 5. 在异方差的情况下,参数估计值的方差不能正确估计的原因是( )A. B.C. D. 6. 设,则对原模型变换的正确形式为( )7. 下列说法不正确的是( )A.异方差是一种随机误差现象B.异方差产生的原因有设定误差C.检验异方差的方法有F 检验法D.修正异方差的方法有加权最小二乘法8. 如果回归模型违背了同方差假定,最小二乘估计是( )A .无偏的,非有效的 B. 有偏的,非有效的011yx ux x x x ββ=++2x σ22xσσ2log x σ22()i E u σ≠()0()i j E u u i j ≠≠()0i i E x u ≠()0i E u ≠)()(,2221i i i i i i x f u Var u x y σσββ==++=01212222212...()()()().()()()()i i i i i i i i i i i i i i i i i A y x u B y x u C f x f x f x f x D y f x f x x f x u f x βββββββ=++=+=++=++C .无偏的,有效的 D. 有偏的,有效的 9. 在检验异方差的方法中,不正确的是( )A. Goldfeld-Quandt 方法B. ARCH 检验法C. White 检验法D. DW 检验法10. 在异方差的情况下,参数估计值仍是无偏的,其原因是( )A.零均值假定成立B.序列无自相关假定成立C.无多重共线性假定成立D.解释变量与随机误差项不相关假定成立11. 在修正异方差的方法中,不正确的是( )A.加权最小二乘法B.对原模型变换的方法C.对模型的对数变换法D.两阶段最小二乘法 12. 下列说法正确的是( )A.异方差是样本现象B.异方差的变化与解释变量的变化有关C.异方差是总体现象D.时间序列更易产生异方差二、多项选择题1. 如果模型中存在异方差现象,则会引起如下后果( )A. 参数估计值有偏B. 参数估计值的方差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是无偏的2. Goldfeld-Quandt 检验法的应用条件是( )A. 将观测值按解释变量的大小顺序排列B. 样本容量尽可能大C. 随机误差项服从正态分布D. 将排列在中间的约1/4的观测值删除掉 E .除了异方差外,其它假定条件均满足三、计算题1.根据某城市1978——1998年人均储蓄(y)与人均收入(x)的数据资料建立了如下回归模型x y6843.1521.2187ˆ+-=se=(340.0103)(0.0622)下面取时间段1978——1985和1991——1998,分别建立两个模型(括号内为t 值), 模型1:模型2:计算F 统计量,即,对给定的,查F 分布表,得临界值。

庞浩 计量经济学5第五章 异方差性

庞浩 计量经济学5第五章  异方差性

同方差
递增型异方差
递减型异方差
复杂型异方差
18
2.借助X-e2散点图进行判断 观察散点的纵坐标是否随解释变量Xi的变化而 变化。
~2 e2e i ei e2 ~2
X 同方差 递增异方差
X
e2
~2 e i
~2 e 2 e i
X 递减异方差 复杂型异方差
X
19
二、戈德菲尔德—夸特 (Goldfeld-Quanadt)检验
3
说明1
矩阵表示: Y X u 随机扰动项向量 其方差—协 u1 u 方差矩阵不 2 u 再是: un n1 而是:
2 2 Var Cov ( ui ) 2 nn
ei X i v i
ei
1 vi Xi
ei X i v i 1 ei vi Xi
③利用上述回归的R2、t统计量、F统计量等判断,R2 好、t统计量和F统计量显著,即可判定存在异方差。 28
说明: 1.也可以用 e i 与可能产生异方差的多个解释变 量进行回归模拟; 2.戈里瑟检验的优点在于不仅检验了异方差是否 存在,同时也给出了异方差存在时的具体表现 形式,为克服异方差提供了方便。 3.试验模型选得不好,也可能导致检验不出是否 存在异方差性。
12 2 2 Var Cov ( ui ) 2 n nn
4
说明2
随机扰动项 ui具有异方差性,可理解释为被解释变量 的条件分散程度随解释变量的变化而变化,如下图所 示:var( ui ) i2 2 f ( X i)(i 1,2,, n)
10
第二节 异方差性的后果

计量经济学课件第五章 异方差性

计量经济学课件第五章 异方差性

计量经济学课件第五章异方差性第五章异方差性1 / 80计量经济学课件第五章 异方差性 2 / 80引子:更为接近真实的结论是什么?根据四川省2000年21个地市州医疗机构数及人口数资料,分析医疗机构及人口数量的关系,建立卫生医疗机构数及人口数的回归模型。

对模型估计的结果如下:ˆ Yi -563.0548 5.3735 X i(291.5778) (0.644284) t (-1.931062) (8.340265) R2 0.785456 R 2 0.774146 F 69.56003式中 Y 表示卫生医疗机构数(个), X 表示人口数量(万人)。

计量经济学课件第五章 异方差性3 / 80模型显示的结果和问题 ●人口数量对应参数的标准误差较小;● t 统计量远大于临界值,可决系数和修正的可决系数结果较好,F 检验结果明显显著;表明该模型的估计效果不错,可以认为人口数量每增加1万人,平均说来医疗机构将增加5.3735人。

然而,这里得出的结论可能是不可靠的,平均说来每增加1万人口可能并不需要增加这样多的医疗机构,所得结论并不符合真实情况。

有什么充分的理由说明这一回归结果不可靠呢?更为接近真实的结论又是什么呢?计量经济学课件第五章 异方差性4 / 80第五章 异 方 差 性 本章讨论四个问题:●异方差的实质和产生的原因●异方差产生的后果●异方差的检测方法●异方差的补救计量经济学课件第五章 异方差性5 / 80第一节 异方差性的概念 本节基本内容:●异方差性的实质●异方差产生的原因计量经济学课件第五章 异方差性6 / 80一、异方差性的实质 同方差的含义同方差性:对所有的 i (i1,2,..., n)有: Var(ui ) = 2 (5.1) 因为方差是度量被解释变量 Y 的观测值围绕回归线 E(Yi ) 1 2 X 2i 3 X 3i ... k X ki (5.2) 的分散程度,因此同方差性指的是所有观测值的分散程度相同。

计量经济学第五章异方差性

计量经济学第五章异方差性

计量经济学第五章异⽅差性第五章异⽅差性本章教学要求:根据类型,异⽅差性是违背古典假定情况下线性回归模型建⽴的另⼀问题。

通过本章的学习应达到,掌握异⽅差的基本概念包括经济学解释,异⽅差的出现对模型的不良影响,诊断异⽅差的⽅法和修正异⽅差的若⼲⽅法。

经过学习能够处理模型中出现的异⽅差问题。

第⼀节异⽅差性的概念⼀、⼆个例⼦例1,研究我国制造业利润函数,选取销售收⼊作为解释变量,数据为1998年的⾷品年制造业、饮料制造业等28个截⾯数据(即n=28)。

数据如下表,其中y表⽰制造业利润函数,x表⽰销售收⼊(单位为亿元)。

Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较⼩,有的点分散幅度较⼤。

因此,这种分散幅度的⼤⼩不⼀致,可以认为是由于销售收⼊的影响,使得制造业利润偏离均值的程度发⽣变化,⽽偏离均值的程度⼤⼩的不同,就是所谓的随机误差的⽅差存在变异,即异⽅差。

如果⾮线性,则属于哪类⾮线性,从图形所反映的特征看,并不明显。

下⾯给出制造业利润对销售收⼊的回归估计。

模型的书写格式为212.03350.1044(0.6165)(12.3666)0.8547,..56.9046,152.9322213.4639,146.4905Y Y X R S E F Y s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在异⽅差性。

例2,改⾰开放以来,各地区的医疗机构都有了较快发展,不仅政府建⽴了⼀批医疗机构,还建⽴了不少民营医疗机构。

各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,⽽医疗服务需求与⼈⼝数量有关。

为了给制定医疗机构的规划提供依据,分析⽐较医疗机构与⼈⼝数量的关系,建⽴卫⽣医疗机构数与⼈⼝数的回归模型。

根据四川省2000年21个地市州医疗机构数与⼈⼝数资料对模型估计的结果如下:i iX Y 3735.50548.563?+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表⽰卫⽣医疗机构数(个),X 表⽰⼈⼝数量(万⼈)。

第五章-异方差性-答案说课讲解

第五章-异方差性-答案说课讲解

第五章-异方差性-答案第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。

( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。

( F )3. 存在异方差时,可以用广义差分法进行补救。

(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。

(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。

( T )二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B )A. B. C. D. 7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=A. B. C. D. ∑=i i x y n 1b ˆ 8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模型时,应将模型变换为( C )。

计量经济学第五章 异方差性

计量经济学第五章 异方差性
第五章 异 方 差 性
●异方差性的概念 ●异方差产生的后果 ●异方差的检测方法 ●异方差的补救
1
第一节 异方差性的概念
一、异方差性的实质 二、异方差产生的原因
2
一、异方差性的实质
设模型为
Yi 1 2 X 2i 3 X3i ... k X ki ui
如果对于模型中随机误差项,有:
8
第二节 异方差性的后果
一、对参数估计统计特性的影响 二、对参数显著性检验的影响 三、对预测的影响
9
一、对参数估计式统计特性的影响
1、仍然具有线性性 2、仍然具有无偏性
参数估计的无偏性仅依赖于基本假定中的零 均值 假定(即 E(ui ) 0 )。所以异方差的存在对 无偏性的成立没有影响。
3、仍然具有一致性 4、不再具有最小方差性
24
4、检验的特点
(1)适用于大样本; (2)检验递增型或递减型异方差; (3)只能判断异方差是否存在,在多个解释变 量的情下,对哪一个变量引起异方差的判断存在局 限; (4)该检验的功效取决于C,C值越大,检验功 效越好; Continued
25
Continued (5)两个子样回归所用的观测值个数如果不 相等时,也可以用该检验,需要通过改变自由度 和统计量的计算公式来调整; (6)当模型中包含多个解释变量时,应对每 个可能引起异方差的解释变量都进行检验。
26
三、White检验
1、基本思想:
构造残差平方序列与解释变量之间的辅助函 数,通过判断辅助函数的显著性来判断原方程是 否存在异方差。 一般而言,辅助回归的解释变量包括常数项、 原模型中的解释变量、解释变量平方、其交叉乘 积。
27
2、检验的基本步骤:
原模型为

计量经济学-第五章-异方差

计量经济学-第五章-异方差
若权项 t 未知,则 也未知,最小二乘估计量无 法解出。然而, t 可能是某些解释变量的函数 即
t2 f ( X t1 , X t 2 ,, X tk )
权项 1 f ( X t1 , X t 2 ,, X tk )
Xt
通常取权重为 t 1 。
第五节 案例分析
例 5.1 已知某地区的个人储蓄 Y ,可支配收入 X 的
——加权最小二乘法
第五节:案例分析
第一节 异方差的概念
1. 什么是异方差?
12 2 0 0 2 0 0 Var (u ) 0 Var (u ) 2 0 0 0 0
2 2
天津商业大学经济学院
计量经济学
授课人:田立法 教材:张晓峒《计量经济学基础(第3版)》 授课班级:金融0905、0906,信用0901 公共信箱:sd_jiliang_2011@ tianlifa
2011年10月
第五章 异方差
第一节:异方差的概念 第二节:异方差的来源与后果 第三节:异方差检验 第四节:异方差的修正方法
1.2E+11 RESID 8.0E+10
4.0E+10
6.0E+11
0.0E+00
4.0E+11 2.0E+11 0.0E+00 84 86 88 90 92 94 96 98 00 02
-4.0E+10
-8.0E+10 84 86 88 90 92 94 96 98 00 02
第二节 异方差的来源与后果
X 1* ' 11 0 0 X 1 ' X 1 ' / 1 * X 2 ' 0 21 0 X 2 ' X 2 ' / 2 X* * X T ' 0 0 T1 X T ' X T ' / T

计量经济学课后思考题答案

计量经济学课后思考题答案

计量经济学课后思考题答案第五章异⽅差性思考题5.1 简述什么是异⽅差?为什么异⽅差的出现总是与模型中某个解释变量的变化有关?答:设模型为,如果其他假定均不变,但模),....,,(....n 21i X X Y i i 33i 221i =µ+β++β+β=型中随机误差项的⽅差为,则称具有异⽅差性。

由于异⽅差性),...,,()(n 21i Var 2i i =σ=µi µ指的是被解释变量观测值的分散程度是随解释变量的变化⽽变化的,所以异⽅差的出现总是与模型中某个解释变量的变化有关。

5.2 试归纳检验异⽅差⽅法的基本思想,并指出这些⽅法的异同。

答:各种异⽅差检验的共同思想是,基于不同的假定,分析随机误差项的⽅差与解释变量之间的相关性,以判断随机误差项的⽅差是否随解释变量变化⽽变化。

其中,⼽德菲尔德-跨特检验、怀特检验、ARCH 检验和Glejser 检验都要求⼤样本,其中⼽德菲尔德-跨特检验、怀特检验和Glejser 检验对时间序列和截⾯数据模型都可以检验,ARCH 检验只适⽤于时间序列数据模型中。

⼽德菲尔德-跨特检验和ARCH 检验只能判断是否存在异⽅差,怀特检验在判断基础上还可以判断出是哪⼀个变量引起的异⽅差。

Glejser 检验不仅能对异⽅差的存在进⾏判断,⽽且还能对异⽅差随某个解释变量变化的函数形式进⾏诊断。

5.3 什么是加权最⼩⼆乘法?它的基本思想是什么?答:以⼀元线性回归模型为例:12i i i Y X u ββ=++经检验存在异⽅差,公式可以表i µ⽰为22var()()i i i u f X σσ==。

选取权数,当越⼩时,权数越⼤。

当 i w 2i σi w 越⼤时,权数越⼩。

将权数与残差平⽅相乘以后再求和,得到加权的残差平⽅和:2i σi w ,求使加权残差平⽅和最⼩的参数估计值。

这种2i 21i 2i i X Y w e w )(**β-β-=∑∑**??21ββ和求解参数估计式的⽅法为加权最⼩⼆乘法。

第五章 异方差性 答案

第五章 异方差性 答案

第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。

( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。

( F )3. 存在异方差时,可以用广义差分法进行补救。

(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。

(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。

( T ) 二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法 3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验 5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用 6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B ) A. B.C. D.7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )A. B.C. D. ∑=ii x y n 1b ˆ8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=∑∑=2ˆxxy b 22)(ˆ∑∑∑∑∑--=x x n y x xy n b xyb=ˆ型时,应将模型变换为( C )。

计量经济学 第五章 异方差 ppt课件

计量经济学 第五章 异方差 ppt课件
OLS回归。注意,上式中要保留常数项。求辅助回归式的可决系数R2。 ③White检验的零假设和备择假设是
H0:ut不存在异方差, H1:ut存在异方差。
10
5.4 异方差检验
(2) White检验
④在同方差假设条件下,统计量
TR 2 2(5)
其中T表示样本容量,R2是辅助回归式的OLS估计的可决系数。 自由度5表示辅助回归式中解释变量项数(注意,不计算常数 项)。T R 2属于LM统计量。 ⑤判别规则是
2
1
0
-1
1
0 20 40 60 80 100 120 140 160 180 200
-2
-3 0
T
50
100
150
200
散点图
残差图
7
5.4 异方差检验
(1) Goldfeld-Quandt 检验
H0: ut 具有同方差, H1: ut 具有递增型异方差。
①把原样本分成两个子样本。具体方法是把成对(组)的观 测值按解释变量顺序排列,略去m个处于中心位置的观测值 (通常T 30时,取m T / 4,余下的T- m个观测值自然分成 容量相等,(T- m) / 2,的两个子样本。)
主对角线上的部分或全部元素都不为零,误差项就是自相关的。
异方差通常有三种表现形式,(1)递增型,(2)递减型,(3)条件自回
归型。 7
Байду номын сангаас
6
Y 6
4
DJ P Y
5
2
4
0
3
-2
2
-4
1
-6
0 20 40 60 80 100 120 140 160 180 200
-8

计量经济学第五章异方差性参考答案讲解

计量经济学第五章异方差性参考答案讲解

计量经济学第五章异⽅差性参考答案讲解第五章异⽅差性课后题参考答案 5.1(1)因为22()i i f X X =,所以取221iiW X =,⽤2i W 乘给定模型两端,得 312322221i i ii i i i Y X u X X X X βββ=+++ 上述模型的随机误差项的⽅差为⼀固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最⼩⼆乘法,可得修正异⽅差后的参数估计式为***12233Y X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223?i i i i i i i i i i i i i i i i i iW y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223?ii ii i i iii i i ii i i i i iW y x W x W y x W x x Wx W x W x x β-=-∑∑∑∑∑∑∑其中22232***23222,,iii i i i iiiW XW X W Y X X Y WWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y=-=-=- 5.2 (1)2222211111 ln()ln()ln(1)1 u ln()1Y X Y X Yu u X X X u ββββββββββ--==+≈=-∴=+ [ln()]0 ()[ln()1][ln()]11E u E E u E u µ=∴=+=+=⼜(2)[ln()]ln ln 0 1 ()11i i iiP P i i i i P P i i E P E µµµµµµµ===?====∑∏∏∑∏∏不能推导出所以E 1µ()=时,不⼀定有E 0µ(ln )= (3)对⽅程进⾏差分得:1)i i βµµ--i i-12i i-1lnY -lnY =(lnX -X )+(ln ln则有:1)]0i i µµ--=E[(ln ln5.3(1)该模型样本回归估计式的书写形式为:Y = 11.44213599 + 0.6267829962*X (3.629253) (0.019872)t= 3.152752 31.5409720.944911R =20.943961R = S.E.=9.158900 DW=1.597946 F=994.8326(2)⾸先,⽤Goldfeld-Quandt 法进⾏检验。

计量经济学第五章-异方差

计量经济学第五章-异方差
由于异方差,会使得OLS估计的方差增大, 从而造成预测误差变大,降低预测精度。
可编辑ppt
5
一、参数的OLS估计仍然是线性无偏的,但不 是最小方差的估计量
1、线性性
bˆ1
= xi yi xi 2
= b1
+ xi ui xi 2
一元线性回归模型为例
2、无偏性
E( bˆ1 )=E(
b1
+
xi ui xi 2
在同方差的假定下才被证明是服从 t 分布的。 分母变大,t 值变小,t 检验也就失去意义。
三、降低预测精度
由于存在异方差,参数的OLS估计的方差增大,参数 估计值的变异程度增大,从而造成对 Y 的预测误差变大, 降低预测的精度。
可编辑ppt
7
第二节 异方差的检验
• 1、图解法 • 2、戈德菲尔德—匡特法(双变量模型) • 3、怀特检验(White) • 4、戈里瑟(Glejser)检验 • 5、帕克(Park)检验
• 二、随着收入的增长,人们有更多的备用收入,从而如何支配 他们的收入有更大的选择范围。因此,在做储蓄对收入的回归 时,很可能发现,由于人们对其储蓄行为有更多的选择,与收 入俱增。
• 三、个体户收入随时间变化。
• 四、异方差还会因为异常值的出现而产生。一个超越正常值范 围的观测值或称异常值是指和其它观测值相比相差很多(非常 小或非常大)的观测值。
)= b1+
xi E(ui xi 2
)
=
b1
3、方差
该形式不具有最小方差
Var( bˆ1 ) =
i 2
xi 2
在同方差时,
xi2 Xi2 xi 2
该形式具有最小方差
Var(

计量经济学第5章 异方差

计量经济学第5章 异方差

10
~2 e i
~2 e i
X 同方差 递增异方差
X
~2 e i
~2 e i
X 递减异方差 复杂型异方差
X
11
• (二)戈德菲尔德-夸特(Goldfeld-Quandt) 检验
• 此检验方法以F检验为基础,适合于样本容量较大, 异方差为单调递增或单调递减的情况。 • 原假设为:H0:ui是同方差,即σ12=σ22=…=σn2 • 备择假设为: H1:ui是递增(或递减)异方差, 即σi2随X递增(或递减)(i=1,2,…,n) • 检验过程如下: • 1、将解释变量观测值Xi按大小的顺序排列,被解 释变量观测值Yi保持原来与解释变量的对应关系。
14
• 4、选择统计量 • 若是检验递增方差,
nc ESS2 /( k 1) ESS2 nc nc 2 F ~ F( k 1, k 1) nc 2 2 ESS1 /( k 1) ESS1 2
• 若是检验递减方差,
nc ESS1 /( k 1) ESS1 nc nc 2 F ~ F( k 1, k 1) nc 2 2 ESS2 /( k 1) ESS2 2
12
• 2、按照上述顺序排列的观测值,把位于中间的c 个删去,删去的数目c是Goldfeld-Quandt通过试 验的方法确定的。对于n≥30时,删去的中心观测 数目为整个样本数目的四分之一最合适(比如 n=30,c=8;n=60,c=16),将剩下的(n-c)个观测值 划分为大小相等的两个子样本,每个子样本的容 量均为(n-c)/2,其中一个子样本是相应的观测值 Xi较大的部分,另一个子样本是相应的观测值Xi 较小的部分。
18
• (四)帕克(Park)检验与戈里瑟(Gleiser)检验 • 帕克检验与戈里瑟检验的基本思想是:以ei2或|ei| 为被解释变量,以原模型的某一解释变量Xj为解释 变量,建立如下方程: 2 • ei f ( X ji ) i 或 | ei | f ( X ji ) i • 选择关于变量Xj的不同的函数形式,对方程进行估 计并进行显著性检验。如果存在某一种函数形式, 使得方程显著成立,则说明原模型存在异方差性。

计量经济学教案(5)

计量经济学教案(5)

但不具有有效性和渐近有效性。而且 ˆ 的分布将受到影响。
Var( ˆ ) = E [( ˆ - ) ( ˆ - )' ] = E [(X 'X )-1 X ' u u' X (X 'X)-1 ]
= (X ' X)-1 X ' E (u u' ) X (X ' X )-1 = 2 (X 'X )-1 X ' X (X ' X )-1 不等于 (X ' X )-1,所以异方差条件下 ˆ 是非有效估计量。
5. 克服异方差的方法 克服异方差的矩阵描述。设模型为
Y=X+u
6
其中 E(u) = 0,Var(u) = E(u u') = 2 。 已知, 与 k 未知。因为 I,违反了假定条件,所 以应该对模型进行适当修正。
因为 是一个 T 阶正定矩阵,所以必存在一个非退化 TT 阶矩阵 M 使下式成立。
⑤判别规则是
若 T R 2 2 (5), 接受 H0(ut 具有同方差)
若 T R 2 > 2 (5), 拒绝 H0(ut 具有异方差) 附录:White 检验的 EViwes 操作。 在回归式窗口中点击 View 键选 Residual Tests/White Heteroskedasticity 功能。检验式存在有无 交叉项两种选择。 (2) Goldfeld-Quandt 检验
图 5.7 菲律宾的季度数据
图 5.8 剔出 2 次趋势后的残差序列
3. 异方差的后果 下面以简单线性回归模型为例讨论异方差对参数估计的响。对模型
yt = 0 + 1 xt + ut
3
当 Var(ut) = t 2,为异方差时(t 2 是一个随时间或序数变化的量),回归参数估计量仍具有无偏性 和一致性。以 ˆ1 为例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
● G-Q检验以F检验为基础,适用于样本容量较大、 异方差递增或递减的情况。
●基本思想:将样本分为两部分,然后分别对两个样 本进行回归,并计算两个子样的残差平方和所构成的 比,以此为统计量来判断是否存在异方差。
(一) 检验的前提条件 1、要求检验使用的为大样本容量。 2、除了同方差假定不成立外,其它假定均满足。
Yi 1 2 X 2i 3 X3i ui
假如略去 X3i ,而采用
Yi 1 2 X 2i ui*
(*)
当被略去的 与X3i 有呈X同2i 方向或反方向变化的趋势
时, 随 X的3i 有规X2律i 变化会体现在(*)式的 中。
ui*
(二)模型的设定误差 模型的设定主要包括变量的选择和模型数学形式的
解释变量:资本K、劳动L、技术A,
那么:每个企业所处的外部环境对产出量的影响被
包含在随机误差项中。
每个企业所处的外部环境对产出量的影响程度不 同,造成了随机误差项的异方差性。
这时,随机误差项的方差并不随某一个解释变量 观测值的变化而呈规律性变化,呈现复杂型。
二、产生异方差的原因
(一)模型中省略了某些重要的解释变量 假设正确的计量模型是:
同方差假定是OLS估计方差最小的前提条件,所以 随机误差项是异方差时,将不能再保证最小二乘估 计的方差最小。
二、对参数显著性检验的影响 由于异方差的影响,使得无法正确估计参数的标
准误差,导致参数估计的t统计量值不能正确确定,所 以,如果仍用t统计量值进行参数的显著性检验将失去 意义。
三、对预测的影响
通常认为,截面数据较时间序列数据更容易产 生异方差。这是因为同一时点不同对象的差异, 一般说来会大于同一对象不同时间的差异。不过, 在时间序列数据发生较大变化的情况下,也可能 出现比截面数据更严重的异方差。。
第二节 异方差性的后果
一、对参数估计统计特性的影响 (一)参数估计的无偏性仍然成立
参数估计的无偏性仅依赖于基本假定中的零均值假 定(即 )E。(ui )所 以0 异方差的存在对无偏性的成立没 有影响。 (二)参数估计的方差不再是最小的
F*
e22i e12i
/[ n /[ n
c 2 c 2
k] k]
e22i e12i
~
F
(
n
2
2 i
2
f
(Xiቤተ መጻሕፍቲ ባይዱ)
(三)异方差的类型
同方差性假定:i2 = 常数 f(Xi) 异方差时: i2 = f(Xi)
异方差一般可归结为三种类型: (1)单调递增型: i2随X的增大而增大 (2)单调递减型: i2随X的增大而减小 (3)复 杂 型: i2与X的变化呈复杂形式
实际经济问题中的异方差性
确定。模型中略去了重要解释变量常常导致异方差, 实际就是模型设定问题。除此而外,模型的函数形 式不正确,如把变量间本来为非线性的关系设定为 线性,也可能导致异方差。
(三)测量误差的变化
样本数据的观测误差有可能随研究范围的扩大而增 加,或随时间的推移逐步积累,也可能随着观测技术 的提高而逐步减小。
(四)截面数据中总体各单位的差异
尽管参数的OLS估计量仍然无偏,并且基于此的预 测也是无偏的,但是由于参数估计量不是有效的,从 而对Y的预测也将不是有效的。
第三节 异方差性的检验
检验思路: 由于异方差性就是相对于不同的解释变量观测值,
随机误差项具有不同的方差。那么: 检验异方差性,也就是检验随机误差项的方差与
解释变量观测值之间的相关性及其相关的“形式”。
方差描述的是随机变量取值的(与其均值的)离散 程度。因为被解释变量Y与随机误差项u有相同的方 差,所以利用分析Y与X的相关图形,可以初略地看 到Y的离散程度与X之间是否有相关关系。
看是否存在明显的散点扩大、缩小或复杂型趋势 (即不在一个固定的带型域中)
(二)残差图形分析
二、Goldfeld-Quanadt检验
得到的两个部分的残差平方为 和 。e12i e22i 为e12前i 一部分样本回归产生的残差平方和, e22i
为后一部分样本回归产生的残差平方和 。它们的 自由度均为[(n-c)/2]-k,k为参数的个数。
在原假设成立的条件下,因 和e12i 自由度e2均2i 为 [(n-c)/2]-k, 分布,可导出2 :
(二)检验的具体做法
1、排序
将解释变量的取值按从小到大排序。
2、数据分组
将排列在中间的约1/4的观察值删除掉,记 为c,再将剩余的分为两个部分,每部分观察 值的个数为(n-c)/2。
3、提出假设。即 :
H0
:
2 i
2,i
1, 2,L
, n;
H1
:
2 1
2 2
L
2 n
4、构造F统计量
分别对上述两个部分的观察值求回归模型,由此
(二)异方差性的含义
设模型为
Yi 1 2 X2i 3 X3i L k X ki ui
i 1, 2,L , n
如果对于模型中随机误差项 ui有:
Var
(ui
)
2 i
,
i 1, 2, 3,L , n.
则称具有异方差性。进一步,把异方差看成是由于某 个解释变量的变化而引起的,则
Var(ui )
计量经济学
第五章 异方差性
第一节 异方差性的概念
一、异方差性的实质
(一)同方差性的含义
同方差性:对所有的i(i=1,2,…,n)有
Var(ui ) 2
因为方差是度量被解释变量Y的观测值围绕回归线
E(Y i) 1 2 X 2i 3 X 3i k X ki
的分散程度,因此同方差性指的是所有观测值的分 散程度相同。
例 :截面资料下研究居民家庭的储蓄行为
Yi=0+1Xi+i
Yi:第i个家庭的储蓄额 Xi:第i个家庭的可支配收入 高收入家庭:储蓄的差异较大 低收入家庭:储蓄则更有规律性,差异较小
i的方差呈现单调递增型变化
例 以某一行业的企业为样本建立企业生产函数模型
Yi
A K L e 1 2 3 i i ii
被解释变量:产出量Y
问题在于用什么来表示随机误差项的方差
首先采用 OLS 法估计模型,以求得随机误差项的 估计量(注意,该估计量是不严格的),我们称之为“近 似估计量”,用e~i 表示。于是有
Var(i ) E(i2 ) e~i2
e~i yi ( yi )0ls
一、图形法
(一)相关图形分析----用X-Y的散点图进行判断
相关文档
最新文档