集成运放基本运算电路的分析与设计
集成运算放大器的基本运算电路
ui2 u
u i3
u
0
R1
R2
R3
2.加减运算电路
ui1
R1
Rf
ui2
R2
N
-∞
ui3
R 3
P
+
R
ui4
4
R'
当ui1、ui2短路时 当Ui1、Ui2、Ui3、Ui4共同作用时
若又满足Rf =R1=R2=R3=R4时则
利用叠加定理求uo与ui1、ui2、 ui3各ui4之间的关系
uo
当ui3、ui4短路时
(ui1 ui2 ui3 )
Uo (ui1 ui2 ui3 )
上式中比例系数为-1,实现了加法运算。
2)同相求和运算电路
R'
ui1 i1
R 1
ui2 i2
R2
ui3 i3
R 3
i f
Rf
N
-
u-
∞
P u+ +
R1//R2//R3=R′//Rf
根据 “虚断”概念
uo
i1+i2+i3=0
ui1 u
2.一般单限比较器
图4-22所示的电路是一般单限比较器. UREF为外加参考电压。 集成运放的反相输入端接信号ui,同相输入端接参考电压UREF。
由于Aod→∞,所以当U﹣<U+时,ui<UREF时,受电源电压的 限制,uo只能为正极限值UOM,即UOH=﹣UOM; 反之,当U﹣>U+时,uo为负极限值,即UOL=﹣UOM。 其传输入特性如图4-22(b)实线所示。
I1
U i1 R1
因虚地, u﹢=u﹣=
,
I2
Ui2 R2
实验五 集成运放的基本应用——信号运算电路
一、实验目的:
集成运放的基本应用——信号运算电路
1、熟悉用集成运算放大器构成基本运算电路的方法; 2、学习设计比例放大,加法、减法运算等电路; 3、掌握电流、电压转换电路的设计、调试方法; 4、学习双电源的连接方法。
二、实验原理:
集成运算放大器具有增益范围大,通用性强,灵活性大,体积小,寿命长,耗电省,使 用方便等特点, 因此应用非常广泛, 由运算放大器构成的数学运算电路是运放线性应用电路 之一。 1、反相比例运算 在理想条件下,电路的闭环增益为:
图 5-5 基本微分运算电路
三、实验内容:
1、按图 5-6 安装运放调零电路,在输入端接地时调节 W 使 uO=0。
2
Hale Waihona Puke 图 5-6 调零电路 2.反相比例放大器 实验电路如图5-7所示
图5-7 反相比例放大电路 按表5-1内容实验并测量记录 表5-1 直流输入电压Vi(mV) 理论估算(mV) 输出电压Vo 实 际 值(mV) 误差 3.反相求和放大电路 实验电路如图5-8所示 100 300 500 600 1000 3000
四、预习要求:
1、了解F741运算放大器的性能参数,计算各运算电路输出电压UO的数值。 2、当用示波器观察积分输入、输出信号时,会发现波形不稳定,怎样才能使波形稳定 下来。
五、思考题:
1、分析基本运算电路输出电压的误差产生的原因,如何减小误差。 2、在分析加法、减法、微分、积分运算电路时,所依据地基本概念是什么?基尔霍夫 电流定律(KCL)是否得到应用?如何导出输入与输出之间的关系?
Auf
Rf Rf UO ,U O US US R1 R1
上式可见 R f R1 为比例系数,若当 R f R1 时,则 U S U O ,故电路即变成了反相 器。 R2 R f / / R1 用来减小输入偏置电流引起的误差。
模电课件集成运放基本电路
R f 8 R f 20
R2
R3
加减运算电路旳设计环节 R1 24k 先根据函数关系画出电路,R2然 后30计k算参数
解(1) 画出电路 (2) 计算电阻
平衡电阻
R3 12k R 80k
Rf
R’ // R1 // R2 =Rf // R3
uo
Rf R1
ui1
Rf R2
ui 2
Rf R3
ui 3
(由2虚)断因:为i叠 加i点为0虚地,i输i1 入ii信2 号ii3之间i f
满u足i1 线u0性 叠u加i2 定 0u理 ,互ui不3 影0u响。u0 uo
R1
R2
R3
Rf
uo 由由u虚R虚Rf 短地uu:i:1 u0i2 ui3
ui3 ui2
ii3 ii2
R3 R2
Rf
若 R1 = R2 = R3 = R
换作用
1反相微分器 平衡电阻R’=Rf
iC
C
duC dt
由虚断:i i 0 iC i i f i f
iC
u uo Rf
C d ui
dt
由“虚
地u” 0
u
uo
iC
R
f
C
iiCi
ui
dui t
RuC
dt
u
u R
if ii+
Rf
uo
2实际应用旳微分器Zf
uRωi ↑限i→Zi制11/输uω入Ci电↓- →流i,C ↑降→低高高频u频噪o 噪声声uo Cf相位补u 偿i,+ 克制自激振荡
由虚短: u u
uo ui2
R1 R f RRf R2 R R1
实验四 集成运放组成的基本运算电路
实验四 集成运放组成的基本运算电路一. 实验目的1.掌握集成运算放大器的正确使用方法。
2.了解集成运算放大器在信号放大和模拟运算方面的应用。
二. 实验设备实验箱 1个实验电路板 1个数字万用表 1个三. 简述运算放大器是具有两个输入端和一个输出端的高增益、高输入阻抗的多级直接耦合电压放大器。
只要在集成运放的外部配以适当的电阻和电容等器件就可构成比例、加减、积分、微分等模拟运算电路。
在这些应用电路中,引入了深度负反馈,集成运放工作在线性放大区,属于运算放大器的线性应用范畴,因此分析时可将集成运放视为理想运放,运用虚断和虚短的原则。
虚断:即认为流入运放两个净输入端的电流近似为零。
虚短:即认为运放两个净输入端的电位近似相等(u +≈ u -)。
从而可方便地得出输入与输出之间的运算表达式。
使用集成运算放大器时,首先应根据运放的型号查阅参数表,了解其性能、指标等,然后根据管脚图连接外部接线(包括电源、调零电路、消振电路、外接反馈电阻等等)。
四. 设计实验要求1. 设计由双列直插通用集成运放μA741构成的基本运算电路,要求实现:反相比例运算,反相加法运算,同相比例运算,电压跟随器,差动运算(减法运算)等5种运算。
每一运算电路需要设计两种典型的输入信号。
2. 自己设计选择电路参数和放大倍数,画出电路图并标出各电阻的阻值(μA741的最大输出电流小于10mA ,因此阻值选取不能小于1KΩ)。
3. 自拟实验步骤。
4. 电源电压一律取12V ±。
本实验用直流信号源,自己选择输入信号源的取值,已知信号源(5i u V ≤)。
5. 设计举例:反相比例运算电路的设计反相比例放大器的运算功能为:1R R u u A F i o uf -==; 设,10-=uf A 负反馈电阻Ω=K R F 100;可以计算出110R K =Ω,平衡电阻100//109.1R K '=≈Ω。
max =9o u V,max max 90.910o i uf u u V A ∴≤==,即输入信号的设计值小于0.9V ±。
实验13 集成运放组成的基本运算电路
实验13 集成运放组成的基本运算电路一、实验目的:1.掌握集成运放组成的比例、加法和积分等基本运算电路的功能。
2.了解集成运算放大器在实际应用时应考虑的一些问题。
3.掌握在放大电路中引入负反馈的方法。
二、实验内容1.实现两个信号的反相加法运算。
2.实现同相比例运算。
3.用减法器实现两信号的减法运算。
4.实现积分运算。
5.用积分电路将方波转换为三角波。
三、实验准备1.复习教材中有关集成运放的线性应用部分。
2.拟定实验任务所要求的各个运算电路,列出各电路的运算表达式。
3.拟定每项实验任务的测试步骤,选定输入测试信号υS 的类型(直流或交流)、幅度和频率范围。
4.拟定实验中所需仪器和元件。
5.在图9.30所示积分运算电路中,当选择υI =0.2V 时,若用示波器观察υO (t )的变化轨迹,并假定扫速开关置于“1s/div ”,Y 轴灵敏度开关置于“2V/div ”,光点一开始位于屏幕左上角,当开关S 2由闭合转为打开后,电容即被充电。
试分析并画出υO 随时间变化的轨迹。
四、实验原理与说明由集成运放、电阻和电容等器件可构成比例、加减、积分、微分等模拟运算电路。
在这些应用中,须确保集成运放工作在线性放大区,分析时可将其视为理想器件,从而得出输入输出间的运算表达式。
下面介绍几种常用的运算电路:1.反相加法运算电路如图9.27所示,其输入与输出之间的函数关系为:)(2211I f I fO v R R v R R v +-=图9.27 反相加法运算电路 通过该电路可实现信号υI1和υI2的反相加法运算。
为了消除运放输入偏置电流及其漂移造成的运算误差,须在运放同相端接入平衡电阻R 3,其阻值应与运放反相端的外接等效电阻相等,即要求R 3= R l ∥R 2∥R f 。
实验时应注意:(1)为了提高运算精度,首先应对输出直流电位进行调零,即保证在零输入时运放输出为零。
(2)输入信号采用交流或直流均可,但在选取信号的频率和幅度时,应考虑运放的频率响应和输出幅度的限制。
集成运放基本运算电路实验报告
实验七 集成运放基本运算电路一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽 f BW =∞ 失调与漂移均为零等。
理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式U O =A ud (U +-U -)由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短”。
(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
基本运算电路1.12n fRR R R in i i i ++++ΛΛ321= i f于是有V=RRf- (V i1 +V i2 +V i3 +……+V in)如果各电阻的阻值不同,则可作为比例加法器,则有⎥⎦⎤⎢⎣⎡+++-=innfifif VRRVRRVRRVΛΛ22112、减法器是指输出信号为两个输入信号之差的放大器。
用数学关系表示时,可写为:y = x1- x2下图为减法器的基本结构图。
由于 VA= VBffAAi iRVVRVVi=-=-=0112ffiB RRRVV+=12(已知R3= Rf)所以()2110iif VVRRV-=3⎰=xdty这里反馈网络的一个部分用电容来代替电=II4算的结果。
集成运算放大电路全篇
Y0 Y1 Y2 Y3 B
注:式中Aod为差模开环放大倍数。
二、 集成运放中的电流源电 路
4.2.1 基本电流源电路
一、镜像电流源
+VCC
IR
B IC0
T0
R 2IB
A
IB0
IB1
IC1 T1
UBE0= UBE1, β0=β1=β, IC0=IC1=IC= βIB , IC1为输出电流, IR为基准电流。
基准电流表达式:
IR
用
uP
集成运放组成方框图:
输入级
uN
中间级
输出级 uO
偏置电路
1) 输入级 又称前置级,常为双输入高性能差分放大电路(高Ri 、大Ad、 大KCMR、静态电流小)。输入级的好坏直接影响着集成运放的大多数性能 参数。
2) 中间级 主放大器,使集成运放具有较强的放大能力,多采用共射 (或共源)放大电路。放大管经常采用复合管,以恒流源做集电极负载。
R`3
C`1 R`3
2.1k
2.1k
R`5 240k
C`1
R`4 25k
R`5 240k
- +
R7 100k
-∞ A3
(以下电路同上,仅C1、C2 值不同,电路从略)
图5.6 十五段优质均衡器
(2) 当R4的滑动触头移到最左边时,其电路如图8.7(a)所示。
C1
R3
R3
C2 R5
R4 R5
-∞
R6
B点的电流方程为:
IR
IB2
IC
IC2
1 2
IC2
2
2
2 2
2
I
C
2
IC2
(1
实验九 运算放大器的基本运算电路
实验九运算放大器的基本运算电路(一)一、实验目的1、了解运算放大器的基本使用方法2、应用集成运放构成基本的运算电路,测定它们的运算关系3、学会使用线性组件u A741二、实验电路运算放大器有三种连接方式:反相、同相、和差动输入,本实验主要做比例运算。
三、实验内容及步骤首先将元件在模拟实验机上连接好电路,经检查无误后,方可接通电源(建议为±12V)。
1、调零:在实验仪上连成图9-1所示电路,接通电源后,调节零电位器R W,使输出V O=0,运放调零后,在后面的实验中均不用调零了。
图9-12、反相比例运算:电路如图9-2所示:根据电路参数计算A=V0 /V i=?按给定的V i值计算和测量对应的V0值,把结果记入表9-1中图9-2V i0.3V 0.5V 0.7V 1.0V 1.1V 1.2V 理论值V0实测值V0放大倍数 A3、同相比例运算:电路图如下:图9-3根据电路参数,按给定的V i值和测量出对应不同V i值的V O值,把计算结果和实测数据记入表9-2中表9-2V i0.3V 0.5V 0.7V 1.0V 1.1V 1.2V 理论值V0实测值V0放大倍数 A四、实验设备:1、实验板2、示波器3、信号发生器4、毫伏表5、数字万用表五、实验报告1、整理实验报告,填写表格。
2、分析各运算关系实验十 运算放大器的基本运算电路(二)一、实验目的掌握加法运算,减法运算的基本工作原理及测试方法二、实验内容1、加法运算电路图如下:图10-1V i1V i2首先将元件在模拟实验机上连接好电路,经检查无误后,方可接通电源(建议为±12V )。
检测几组不同的V i1和V i2的值,对应的输出电源V O 值,验证: 1212V ()f f O i i R R V V R R =−+,312////f R R R R =将计算结果及测试的值填入表10-1中 表10-1输入信号V i1 0V 0.3V 0.5V 0.7V 0.6V 0.5V 输入信号V i2 0.3V 0.2V 0.3V 0.4V 0.4V 0.5V 理论值V 0实测值V 0 2减法运算:电路图如图10-2所示:图10-2V i1V按上图在实验机连接好电路,经检查无误后方可接通电源,然后在输入端给入几组不同的V i2和V i2的值,测量出对应的输出V O 的值,验证:2112V f f O i i R R V V R R =− 21R R = 4R f R =表10-2输入信号V i1 1.0V 0.7V 0.6V 0.5V 0.3V 0.2V 输入信号V i2 1.2V 1.0V 0.8V 0.6V 0.5V 0.4V 理论值V0实测值V0三、实验设备:1、实验板2、示波器3、信号发生器4、毫伏表5、数字万用表四、实验报告1、整理实验报告,填写表格。
集成运算放大器(压控电流源)运用电路及详细解析
8.2 模拟运算电路
8.2.1 比例运算电路
1、反相输入比例运算电路
根据运放工作在线性区的两条
分析依据可知:i1 if , u u 0
而
i1
ui u R1
ui R1
if
u uo RF
uo RF
u1 u1 ui1
u2 u2 ui2
u i1
ui2
u1
u2
R1
R1 2R2
(u o1
uo2 )
故:
u o1
u o2
1
2R2 R1
(ui1
ui2 )
第二级是由运放 A3 构成的差动放大电路,其输出电压为:
uo
R4 R3
(uo2
xi
+
xd 基本放大电路A
xo
- xf
反馈网络F
负反馈放大电路的原理框图
xd xi x f xo Axd x f Fxo
若xi、xf和xd三者同相,则xd> xi ,即反馈信号起了削弱净 输入信号的作用,引入的是负反馈。
反馈放大电路的放大倍数为:
Af
xo xi
xo xd x f
R3
Δ
∞
- +
+
uo
u o u i2 u i1
由此可见,输出电压与两个输入电压 之 差成正比,实现了减法运算。该电路又称 为 差动输入运算电路或差动放大电路。
例:求图示电路中uo与ui1、ui2的关系。
R
集成运放的线性运算电路实验报告
实验一 集成运放的线性运算电路实验报告一、实验目的1.掌握运放运算电路的测量分析方法。
2.巩固集成运放几种典型运算电路的用法,掌握电路元、器件选择技巧。
二、实验仪器与设备1.模拟电路实验箱:包括本实验所需元器件; 2.双踪示波器1台; 3.万用电表1台。
三、实验原理1.反相求和运算电路图1-1为典型的反相求和运算电路,输出U o 与输入U I 有如下关系U O =−(R F R 1U I1+R F R 2U I2+R FR 3U I3)若设R 1=R 2=R 3=R F ,上式可简化为U O =−(U I1+U I2+U I3)图1-1 反相求和运算电路2.差分比例运算电路图1-2为差分比例运算电路,输出U o 与输入U I 有如下关系U O =−R FR(U I1−U I ′) 电路的输入电阻为R i ≈2R图1-2 差分比例运算电路四、实验内容与步骤1.反相求和运算电路实验(1)按照图1-1连接电路;(2)调节实验箱上的可调电阻器,在0~1.5V范围内分别为U I1、U I2、U I3选择一组给定值;(3)测量输入电压U I1、U I2、U I3和输出电压U o,将测量结果填入下表中;2.差动比例运算电路实验(1)按图1-2连接电路电路,接通电源;(2)按下表在输入端加上直流电压,测量对应的输出电压,填入表中,并与计算值比四、预习要求1.复习第1单元有关内容;2.下载或绘制实验记录表;3.预习双踪示波器的使用方法五、实验报告要求1.填写实验表格;2.进行实验小结;3.上传实验报告。
运放三种输入方式的基本运算电路及其设计方法【范本模板】
熟悉运放三种输入方式的基本运算电路及其设计方法ﻫ2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系。
3、了解积分、微分电路的工作原理和输出与输入的函数关系.ﻫﻫ学习重点:应用虚短和虚断的概念分析运算电路。
ﻫﻫ学习难点:实际运算放大器的误差分析ﻫﻫ集成运放的线性工作区域前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放.ﻫ当集成运放工作在线性区时,作为一个线性放大元件ﻫﻫ v o=A vo v id=Avo(v+-v-)ﻫﻫ通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证vo不超出线性范围。
ﻫ对于工作在线性区的理想运放有如下特点:ﻫ∵理想运放Avo=∞,则 v+-v—=v o/ Avo=0 v+=v—ﻫ∵理想运放R i=∞ i+=i—=0ﻫﻫ这恰好就是深度负反馈下的虚短概念。
ﻫﻫ已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i=2MΩ。
则v+—v—=?,i+=?,i-=?ﻫﻫ可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计。
这说明在工程应用上,把实际运放当成理想运放来分析是合理的 .返回第二节基本运算电路比例运算电路是一种最基本、最简单的运算电路,如图8。
1所示.后面几种运算电路都可在比例电路的基础上发展起来演变得到。
v o∝v i:v o=k v i(比例系数k即反馈电路增益 A vF,vo=A vF v i)输入信号的接法有三种:ﻫﻫ反相输入(电压并联负反馈)见图8.2ﻫﻫ同相输入(电压串联负反馈)见图8.3ﻫ差动输入(前两种方式的组合)ﻫ讨论:ﻫ1)各种比例电路的共同之处是:无一例外地引入了电压负反馈。
2)分析时都可利用"虚短”和”虚断”的结论: iI=0、vN=vp .见图8.4ﻫ3)A vF的正负号决定于输入v i接至何处:ﻫ接反相端:A vF<0ﻫ接同相端:A vF>0,见图8。
集成运放基本运算电路
( R 1 // R ' ) v i2 ] R f
R 2 ( R 1 // R R ' ) v i1 R 2 ( R 1 // R ' ) v i2 ] R f R
R 1 R 1 ( R 2 // R ' ) R 2 R 2 ( R 1 // R ' )
12.4 电压和电流转换电路
12.4.1 电流-电压变换器 12.4.2 电压-电流变换器
12.4.1 电流-电压变换器
图12.10是电流-电压变换器。
由图可知:vO = -iSRf
可见输出电压与输入 电流成比例,输出端的负 载电流:
图12.10电流-电压变换电路
iO
= vO RL
-iSRf RL
R
vo
( Rp R1
Rp Rn
v i1
Rp R2
v i2 )( R
Rf R
Rf
( v i1 R1
v i2 ) R2
Rf Rf
)
当 式中
RRpp RvRon1
vRRRRi1f21n//,// vRRRi22f
// R' 时,
12.1.3 双端输入求和电路
双端输入也称差动输入,双端输入求和运 算电路如图12.03所示。其输出电压表达式的推 导方法与同相输入运算电路相似。
图12.04 数据放大器原理图
解:vs1和vs2为 差模输入信号,为此vo1和vo2也是 差模信号,R1的中点为交流零电位。对A3是双端 输入放大电路。
所以
vo1
(1
R2 R1 /
2
)vS1
vo 2
(1
R2 R1 /
2
)vS2
《电工电子》教学课件03集成运算放大器构成的运算电路的设计
(一)输入级:一般是由BJT、JFET或MOSFET组成 的高性能差分放大电路,它必须对共模信号有很强的 抑制力,而且采用双端输入双端输出的形式。
(二)电压放大级: 提供高的电压增益,以保证运
放的运算精度。中间级的电路形式多为差分电路和带 有源负载的高增益放大器。
图 (b)为集成运算放大器的电压传输特性曲线。集 成运算放大器的电压传输特性是指开环时,输出电 压与差模输入电压之间的关系。在线性区uo Aod (uP uN。) 由于Aod高达几十万倍,所以集成运放工作在线性 区时的最大输入电压Up-Un的数值仅为几十~一 百多μV。当其大于此值时,集成运放的输出不是, +Uom就是-Uom,即集成运放工作在非线性区。
(三)输出级:一般是由电压跟随器或互补电压跟随 器所组成,以降低输出电阻,提高带负载能力。
(四)偏置电路:提供稳定的几乎不随温度而变化的 偏置电流,以稳定工作点。
3.1.2 集成运算放大器的符号和电压传输特性
(a)
(b)
图 (a) 为运算放大器的符号。 运算放大器的符号中有 三个引线端,两个输入端,一个输出端。一个称为同相 输入端,即该端输入信号变化的极性与输出端相同,用 符号‘+’表示;另一个称为反相输入端,即该端输入信 号变化的极性与输出端相反,用符号“-”表示。输出端 在输入端的另一侧,在符号边框内标有‘+’号。大多数 型号的集成运放均为两组电源供电。
和电容元件位置互换,便得到图所示的微微分,即实现 了微分运算。
vO
iR R
iC R
RC
dvC dt
RC
dvi dt
3.2.4 微分电路的作用 微分电路的应用是很广泛的,在线性系统中,除
实验3.8 集成运算放大器基本运算电路
113实验3.8 集成运算放大器基本运算电路一、实验目的(1)掌握由集成运算放大器组成的比例、加法、减法和积分等模拟运算电路功能。
(2)熟悉运算放大器在模拟运算中的应用。
二、实验设备及材料函数信号发生器、双踪示波器、交流毫伏表、数字万用表、直流稳压电源、实验电路板。
三、实验原理集成运算放大器在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。
1、反相比例运算电路反相比例运算电路如图3.8.1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为:i 1f o U R RU -= (3-8-1)为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ´=R 1||R f 。
实验中采用10 k Ω和100 k Ω两个电阻并联。
2、同相比例运算电路图3.8.2是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1f o )1(U R RU += (3-8-2)当R 1→∞时,U o =U i ,即为电压跟随器。
3、反相加法电路反相加法电路电路如图3.8.3所示,输出电压与输入电压之间的关系为)+(=B 2f A 1f o U R RU R R U - (3-8-3)R ´ = R 1 || R 2 || R f4、同相加法电路同相加法电路电路如图3.8.4所示,输出电压与输入电压之间的关系为:)+++(+=B211A 2123f 3o U R R R U R R R R R R U(3-8-4)图3.8.3 反相加法运算电路图3.8.2 同相比例运算电路图3.8.1 反相比例运算电路1145、减法运算电路(差动放大器)减法运算电路如图3.8.5所示,输出电压与输入电压之间的关系为:f f o A B 1121 ()()R R R U U U R R R R '=+'+-+当R 1 = R 2,R ´ = R f 时,图3.8.5电路为差动放大器,输出电压为:)(=A B 1f o U U R RU - (3-8-5)6、积分运算电路反相积分电路如图3.8.6所示,其中R f是为限制低频增益、减小失调电压的影响而增加的。
集成运放组成的基本运算电路实验报告
集成运放组成的基本运算电路实验报告【集成运放组成的基本运算电路实验报告】摘要:本实验采用集成运放组成的基本运算电路,通过实际搭建电路和数据测量,验证运算放大器的基本特性和运算电路的功能。
实验结果表明,基本运算电路能够实现加法、减法、放大、求反等基本运算功能,并具有稳定性和线性性。
1. 引言运算放大器是一种具有高增益、高输入阻抗和低输出阻抗的放大器,常用于运算电路和信号处理。
本实验采用TL081型集成运放,通过搭建基本运算电路,验证其基本特性和功能。
2. 实验仪器与材料2.1 实验仪器- 示波器- 信号发生器- 直流电源- 电阻箱- 万用表2.2 实验材料- TL081集成运放- 电阻、电容3. 实验过程3.1 实验电路搭建根据实验要求,搭建如下基本运算电路:- 加法电路- 减法电路- 放大电路- 反相电路3.2 电压测量使用万用表测量电路中各节点的电压值,记录在实验数据表格中。
3.3 实验数据处理根据测得的电压值,计算放大倍数、增益、输入输出电压关系等,绘制相应的实验曲线和图表。
4. 实验结果与分析根据实验数据处理的结果,得到以下实验结果和分析:4.1 加法电路通过测量加法电路中各节点的电压,计算得到输入电压与输出电压的关系,实验结果显示加法电路能够实现两个输入电压的相加功能,并对输入电压进行放大。
4.2 减法电路减法电路采用了反相输入,通过测量各节点电压,计算得到输入电压与输出电压的关系,实验结果表明减法电路能够实现两个输入电压的相减功能,并对输入电压进行放大。
4.3 放大电路通过测量放大电路中各节点的电压,计算得到输入电压与输出电压的关系,实验结果显示放大电路能够对输入电压进行放大,并具有一定的放大倍数。
4.4 反相电路反相电路采用了反相输入,通过测量各节点电压,计算得到输入电压与输出电压的关系,实验结果表明反相电路能够实现输入电压的反向输出,并对输入电压进行放大。
5. 结论与总结通过实际搭建基本运算电路并进行数据测量,本实验验证了集成运放的基本特性和运算电路的功能。
集成运算放大电路实验报告
集成运算放大电路实验报告浙大电工电子学实验报告实验十二集成运算放大器及应用(一)模拟信号运算电路课程名称:指导老师:实验名称:集成运算放大器及应用(一)实验报告一、实验目的1.了解集成运算放大器的基本使用方法和三种输入方式。
2.掌握集成运算放大器构成的比例、加法、减法、积分等运算电路。
二、主要仪器设备1.MDZ-2型模拟电子技术实验箱2.实验板及元器件3.直流稳压电源4.万用表三、实验内容在实验中,各实验电路的输入电压均为直流电压,并要求大小和极性可调。
因此在实验箱中安放了电位器,并与由集成运算放大器构成的电压跟随其联结,如图12-7所示。
当在电位器两端分别加+5V和-5V电源电压时,调节电位器就可在集成运算放大器构成的跟随器的输出端得到稳定而可调的正、负直流电压,此电压即作为各实验电路的输入电压。
图12-7 1.同相输入比例运算图12-1按图12-1接线,输入端加直流电压信号Ui,适当改变Ui,分别测量相应的Uo值,记入表12-1中,并2.加法运算图12-2按图12-2电路接线,适当调节输入直流信号Ui1和Ui2的大小和极性,册书Uo,计入表12-2。
表12-23.减法运算图12-4按图12-4电路完成减法运算,并将结果记入表12-4。
表12-44.积分运算图12-5按图12-5电路连接(注意:电路中的电容C是有极性的电解电容,当Ui为负值时,Uo为正值,电容C的正极应接至输出端;如Ui为正值时,则接法相反)。
将Ui预先调到-0.5V,开关S合上(可用导线短接)时,电容短接,保证电容器五初始电压,Uo=0。
当开关S断开时开始计时,每隔10秒钟读一次Uo,记入表12-5,直到Uo不继续明显增大为止。
表12-5(Ui=-0.5V)四、实验总结1.画出各实验电路图并整理相应的实验数据及结果。
实验电路图已在上文中画出,下面处理实验数据。
(1).同相输入比例运算作Ui-Uo图如下:(2).加法运算作Ui1-Ui2-Uo图如下:(3).减法运算作Ui1-Ui2-Uo图如下:(4).积分运算作T-Uo图如下:2.总结集成运放构成的各种运算电路的功能。
集成运放的基本运算电路实验报告
集成运放的基本运算电路实验报告实验报告:集成运放的基本运算电路实验目的:1. 了解集成运放的基本原理和性质;2. 学习基本运算电路的设计和实现方法;3. 实验验证运算放大器的基本运算电路,包括反相放大器、非反相放大器、求和放大器和差分放大器。
实验器材:1. 集成运放(可以使用LM741等常见型号);2. 电阻(包括不同阻值的固定电阻和可变电阻);3. 电源(正负双电源,供应电压根据集成运放的需求确定);4. 示波器;5. 信号源。
实验步骤:1. 反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
2. 非反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
3. 求和放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到不同信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
4. 差分放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口分别连接到两个信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
实验结果:1. 反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
2. 非反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
3. 求和放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
4. 差分放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
实验分析:1. 通过对实验结果的观察和分析,可以验证集成运放的基本运算电路的原理和性质。
2. 在实验中可以调整电阻的数值来改变放大倍数或增益,验证运算放大器的增益特性。
集成运放的电路分析
六、电路性能指标测试
运算放大器静态调试完成后就可对各功能电路的性能指标进行测试。 1. 方程组电路测试。 在vi1和vi2端分别加直流信号,vi1 = -0.2V, vi2 = -0.4V,分别测出vy、vx的值。 2. 信号转换电路测试。 连接vi1和vi2信号转换电路后,令vi1=1.5V, 测出信号转换电路的输出,计算其增益。 3. 信号转换电路与方程组电路测试。 将信号转换电路的输出作为方程组电路vi2的输入,令vi1=1.5SinωtV (f=1kHz),用示波 器测量vy、vx的波形。计算与给定指标 -vy = vx = 10SinωtV(f=1KHz)的误差。 4. 精密全波整流电路测试。 将精密全波整流电路的输入分别和方程组电路输出vy、vx相接,用示波器测量整流输 出的波形。计算与给定指标vom=10V的误差。用示波器X-Y方式,测量精密全波整流电路的 电压传输特性。
法运算电路的设计可以用图 3.1 所示的一个集成运放来实 vi2
A
vo
现。由图可得
R2
R3
图 3.1 基本差动放大器
vo
=
⎜⎛1 + ⎝
RF R1
⎟⎞ ⎠
R3 R3 + R2
vi2
−
RF R1
vi1
(3-4)
当R2=R1,R3=RF时,则
vo
=
RF R1
(vi2
− vi1 )
也可用图 3.2 所示的两个集成运放来实现。
(3 -11)
图 3.7 分别是单电源运放构成交流反相和同相放大器的偏置方式。图中C1、C2、C3为 交流耦合隔直电容,其大小可根据交流放大器的下限频率fL来确定,一般取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
实验名称集成运放基本运算电路的分析与设计课程名称模电实验
院系部:控计专业班级:
学生姓名:学号:
同组人:实验台号:
指导老师:成绩:
实验日期:
华北电力大学
一、实验目的和要求
1.掌握使用集成运算放大器构成反相输入比例运算电路、同相输入比例运算电路、反相输入求和运算电路、减法运算电路的方法。
2.进一步熟悉该基本运算电路的输出与输入之间的关系。
二、实验设备
1.模拟实验箱
2.数字万用表
3.运算放大器LM324
4.10K、20K、100K的电阻若干
5.模拟实验箱上有滑动变阻器可供同学使用
三、实验原理
实际运放具有高增益、低漂移、高输出阻抗、低输出阻抗、可靠性高的特点,可视为理想器件。
运放的理想参数:
1.开环电压增益A vd=∞
2.输入电阻R id=∞,R ic=∞
3.输出电阻R o =0
4.开环带宽BW= ∞
5.共模抑制比KCMR =∞
6.失调电压、电流V io =0、I io=0
根据分析时理想运放的条件,得出两个重要结论:
虚短路:V+=V-虚开路:I i=0
下图为反相比例运算放大器与同相比例运算放大器。
四、实验方法与步骤:
1.反向输入比例运算
按实验原理中所示电路接线,接通电源。
从实验箱的直流信号源引入输入信号U i,测量对应的输出信号U O的值,算出A u,将实验值与理论值相比较,分析误差产生的原因。
2.同向输入比例运算
参照反相输入比例运算的电路,设计比例系数为6的同相比例运算电路,设计出相应的电路图及表格,得到四组数据。
并将测量值与设计要求进行比较。
输入电压不能过大,要保证运放工作在线性区。
3.反向输入比例求和运算
按实验原理中所示电路接线,接通电源。
从实验箱的直流信号源引入输入信号U i,测量对应的输出信号U O的值,算出A u,将实验值与理论值相比较,分析误差产生的原因。
4.减法运算
参照反相输入求和运算的电路,设计比例系数为5的减法运算电路,设计出减法运算的电路图及相应的表格,得到四组数据。
然后将测量值与设计要求进行比较。
输入电压不能过大从而保证运放工作在线性区。
五、实验结果与数据处理
反向输入比例运算
U i(V) 0.5 1.0 -0.5 -1.0 U o(V) -2.476 -5.035 2.521 5.050 A u实验值-4.96 -5.031 -5.11 -5.07 A u计算值-5 -5 -5 -5
同向输入比例运算
自行设计的电路图
自行设计的表格
U i (V) 0.5 1.0 -0.5
-1.0 U o (V) 3.042 6.060 -3.030 -6.092 A u 实验值 6.073 6.061 -6.031 -6.43 A u 计算值 6 6 6 6 反向输入求和运算 减法运算
自行设计电路图
自行设计表格
U i1(V) 0.5 -0.5 0.5 -0.5 U i2(V) 1 1 -1 -1 U o 实验值 -7.585 -2.465 2.480 7.635 U o 计算值
-7.5
-2.5
2.5
7.5
六、思考题
第一题:可以是任意值。
第二题:
七、原始材料
反向输入比例运算
U i1(V) 0.5 -0.5 0.5 -0.5 U i2(V) 1 1 -1 -1 U o 实验值 2.503 7.511 -7.513 -2.510 U o 计算值 2.5
7.5
-7.5
-2.5
同向输入比例运算
反相输入求和运算
减法运算
手写数据记录。