空间域和频率域结合的图像增强技术及实现(1)
一种基于频率域和空间域相结合的图像增强方法
一
种 基 于频 率域 和 空 间域 相 结 合 的 图像增 强方 法
张 威 ,孙 玉秋 ,赵 天 玉 ( 长江大学信息 与数 学学 院, 湖北 荆州 4 3 4 0 2 3 )
[ 摘 要 ] 图像 增 强 是 数 字 图像 的 预 处理 ,对 图像 整 体 或 局 部 特 征 能 有 效 地 改 善 。 讨 论 了直 方 图均 衡 化 、拉
普拉 斯变 换等 。频率 域法 以修改 图像 的傅里 叶变换 为基础 ,属于 间接增强 方法 ,常用 的有各 种高通 滤波 和低通 滤波 。下面 ,笔者 针对 噪声 图像 提 出一种 在频率 域用 高斯低 通滤 波去 噪 ,在 空间域用 直方 图均衡
化 和拉普 拉斯 变换处 理 图像 的方 法 。
y u q i u s u n @1 6 3 . c o mo
第1 O卷 第 1 9期
张 威 等 :一 种 基 于 频 率 域 和 空 间域 相 结 合 的 图像 增 强 方 法
2 图 像 锐 化
图像 锐 化就 是补 偿 图像 的轮廓 ,增 强 图像 的边缘及 灰 度跳 变 的部分 ,使 图像变 得清 晰 。图像锐 化也
( 2 )
输入 图像 的各灰 度级 经过 式 ( 2 )的映射 就得 到输 出图像 的各灰度 级 S 。
[ 收稿 日期 ] 2 0 1 2—1 2—1 2 [ 基 金 项 目] 国家 自 然 科 学 基金 资 助 项 目 ( 6 0 5 7 2 0 4 8 ) 。 [ 作者简介]张威 ( 1 9 8 7 一 ) ,男 ,硕士生 ,现主要从事数字图像处理方面的研究工作。 [ 通 讯 作者 ] 孙 玉 秋 ( 1 9 6 8 一 ) ,女 ,硕 士 ,教 授 ,现 主 要 从 事 数 字 图 像 处 理 、模 式 识 别 与 目 标 检 测 方 面 的 教 学 与 研 究 工 作 ;E — ma i l
第8章_图像增强
32
一、空间域图像增强(29)
对角线方向边缘增强示意图
33
一、空间域图像增强(30)
单方向一阶微分算子图像增强效果
34
一、空间域图像增强(31)
Roberts交叉微分算子
g x, y f x 1, y 1 f x, y f x 1, y f x, y 1
f
G x x
f
f
G
y
y
27
一、空间域图像增强(24)
一阶微分算子
单方向微分算子
(1)水平方向微分算子
Dlevel
1 2 1
0 0 0
1 2 1
g ( x, y ) [ f x 1, y 1 f x 1, y 1] 2[ f x 1, y f x 1, y ]
遥感数字图像处理
第8章
图像增强
背景知识
图像增强是通过一定手段对原图像进行变换或附加一些信息
,有选择地突出图像中感兴趣的特征或者抑制图像中某些不
需要的特征,使图像与视觉响应特性相匹配,从而加强图像
判读和识别效果,以满足某些特殊分析的需要。
目的:改善图像的视觉效果,帮助我们更好地发现或识别图
像中的某些特征。
作用:调整两幅图像的色调差异,使图像重叠区域的色调过渡柔和,改
善图像融合和图像镶嵌效果。
14
一、空间域图像增强(12)
直方图匹配的思想:
原图像中的任意一个灰度值ai 都可
以在参考图像上找到一个与之对应
的灰度值bi ,使得原图的灰度概率
空间域图像增强
定义一个二阶微分的离散公式,然后构造基于此式的滤波器。
添加标题
各向同性滤波器
添加标题
03
滤波器的响应与滤波器作用的图像突变的方向无关。
添加标题
04
是旋转不变的,即将原图旋转后的滤波结果与先滤波再旋转的结果一样。
添加标题
1、基于二阶微分的图像增强 拉普拉斯算子
二元图像函数 拉普拉斯变换定义为
1、基于二阶微分的图像增强 拉普拉斯算子
差值图像的标定:
每个像素值加255,然后除以2。 求差值图像的最小值Min,最大值Max
2、图像平均处理
01
带有噪声的图像:
02
K幅噪声图像取平均:
03
注意:图像配准
01
图像平均处理
02
星系图:NGC3314
03
8
04
64
05
16
06
128
A
图像平均处理
均值、方差
B
”
空间滤波基础(邻域处理)
4
5
6
6
6
1
4
6
6
2
3
1
3
6
4
6
6
1
2
3
4
5
6
5
4
5
6
2
14
灰度直方图 1.所有的空间信息全部丢失。 2.每一灰度级的像素个数可直接得到。
h
0
3
1
2
2
4
3
4
4
1
5
1
6
4
7
1
8
2
9
3
P
0
0.12
第3章 空间域图像增强1——点、直方图处理
(a) (b) (c) (d)
图3.8 图像灰度切割
数字图像处理
色彩直方图
• 色彩直方图是高维直方图的特例,它统计色彩的出现频 率,即色彩的概率分布信息。 • 一般不直接在RGB色彩空间中统计,而是在将亮度分离 出来后,对代表色彩部分的信息进行统计,如在HSI空 间的HS子空间、YUV空间的UV子空间,以及其它反映 人类视觉特点的彩色空间表示中进行。 • 下图是统计肤色分布情况的例子。
j 0 j 0 k k
nj n
0 rk 1, k 0,1,...,l 1
• 均衡化后各像素的灰度值可直接由原图像的直方图算 出。
数字图像处理
直方图均衡化的计算步骤及实例
• 设64×64的灰度图像,共8个灰度级,其灰度 级分布见下表,现要求对其进行均衡化处理。
原始直方图数据
rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7 nk 790 1023 850 656 329 nk / n 0.19 0.25 0.21 0.16 0.08 rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7
– 依此类推可计算得:s2=0.65;s3=0.81;s4=0.89; s5=0.95;s6=0.98;s7=1。
• 对sk 进行舍入处理。
– 由于原图像的灰度级只有8级,因此上述各需用 1/7为量化单位进行舍入运算,得到如下结果: s0舍入=1/7 s1舍入=3/7 s2舍入=5/7 s3舍入=6/7 s4舍入=6/7 s5舍入=1 s6舍入=1 s7舍入=1
基于频率域与空间域的图像放大方法的研究
实验结果:
图 2. Silent 图像(破损)
图 3. Silent 图像(修补后)
图 6. Hall 破损
图 7. Hall 修补
通过图像修补的算法,利用了周围原始的信息,使得丢失的块通过判断每一 个块所经过的边缘而具体 3. 图像修补与放大相结合 算法: 1)将图像使用原先的算法进行双线性插值,以8*8块为单位,使用边缘检测
四、提出新的方法
1. 基于分类的边缘检测的双线性插值算法 提出理由:分析可知,由于双线性插值,原本尖锐的边缘变得平坦了,图像 边缘的宽度也增加了,从而使图像变得模糊不清。图像边缘产生模糊的原因是由 于经典插值算法的平滑功能,使边缘像素和邻近像素的值大小接近。 为了消除模糊,提高图像的质量。我们的算法先把模板图像分成3 个区: (1)平坦区域; (2)边缘检测后,提取的边缘点组成的边缘区域; (3)位于边缘区域和平坦区域之间,产生模糊效应的像素点组成的过渡带区 域。 对于过渡带区域,分析像素点自身空间梯度信息和相关特征,利用类与类之 间具有阶越性特性,采用扩大边缘像素和邻近像素的梯度差值,进而对过渡带像 素进行模糊消除修正处理。这样提高了插值的鲁棒性,抑制了由于噪声等原因形 成的“假”边沿和边缘模糊,使图像变得清晰。
2.
基于块的修补算法
初步设想: 1)先找出8*8的块外面一圈差分最大的两个点(边缘点),计算差分的时候 同时考虑水平差分Dy和垂直差分Dx,计算出Dx/Dy 2)用5*3的矩阵框中找到与边缘点亮度最接近的4个点,分别比较这4个点与 边缘点亮度最接近的4个点与边缘点组成的直线与斜率与Dx/Dy的差距, 找出差距 最小的斜率,这样可以匹配出边缘线的方向。 尝试、提高与改进得到的算法: 1)对于丢失的某个8*8的块,先找出它的外面一圈差分最大的5个点(目前 暂定为5个),如果这5点中有某些点差分值小于50(阈值),则将这些点删去。 如果这5个点的差分值都小于50,则至少还是会保留一个差分值最大的点。 2)对于第1步中所得的边缘点(最多5个),分别在它们各自5*3的框中寻找 与它们最匹配的点。对每个边缘点分别找到5个匹配点,然后分别计算这5个匹配 点和它们所对应的边缘点的斜率,然后将这些斜率与5个边缘点的Dx/Dy分别比 较,找到最接近的。 3)由第2步最多可以得到5条斜率,再由其对应的5个边缘点,则可得到5条 边。 4)用这5条边对8*8的丢失块进行分块,插帧时只会用相同块内的点进行修 补。 5)插帧时具体采用的方法是:对于某个待修补的点,依据5个斜率,则最多 可以得到10个点(这10个点都位于8*8的外面一层,可用于插帧),对于这10个 点,删去与待修补点不处于同一块的点,然后用剩余的处于同一块的点对待修补 点进行几何插帧。 6)对于用以上5步没能修补的点,会作记录,对这些点用其周围紧挨的点进 行修补(这种点一般比较少)。
数字图像处理之频率域图像增强
图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS
图像增强的实现方法
图像增强的实现方法图像增强是指通过一系列处理方法,改善或提高原始图像的视觉质量,使其更适合特定应用需求。
图像增强技术在计算机视觉、图像处理、模式识别等领域中具有广泛应用,能够帮助我们从原始图像中提取更多有用信息,强调图像的特定特征,改善人眼对图像的感知效果。
本文将介绍图像增强的实现方法,并详细阐述其中的几种常用技术。
1. 空域增强方法空域增强方法是最常用的图像增强方法之一。
其基本思想是直接对图像的像素值进行处理。
常见的空域增强方法包括直方图均衡化、图像锐化和滤波技术等。
直方图均衡化是一种常用的直方图拉伸方法,通过调整图像像素的灰度分布来增强对比度。
具体操作是先计算图像的直方图,然后根据直方图构建一个累积分布函数(CDF),最后利用CDF对每个像素值进行重新映射,以达到增强图像对比度的目的。
图像锐化是通过增强图像的高频分量来提高图像的细节信息。
常见的图像锐化方法有拉普拉斯锐化和边缘增强等。
拉普拉斯锐化方法一般通过对原始图像进行卷积操作,得到图像的拉普拉斯增强图像,进而将其与原始图像进行加权叠加,以增强图像的细节和边缘信息。
滤波技术是通过对图像进行滤波操作,来提取或增强图像中的某些信息。
常用的滤波方法有平滑滤波和锐化滤波等。
平滑滤波技术主要用于图像去噪,通过将每个像素的值与其周围邻域像素的值进行平均或加权平均,减小噪声对图像的影响。
锐化滤波技术则用于增强图像的边缘和细节信息,常见的锐化滤波器有Sobel算子和Laplacian算子等。
2. 频域增强方法频域增强方法是通过对图像的频谱进行处理来实现的。
它基于傅里叶变换的原理,可以将图像从空域转化到频域,然后对频域数据进行增强处理后,再通过逆傅里叶变换将图像还原回空域。
频域增强方法常见的技术有傅里叶变换、滤波器设计和小波变换等。
傅里叶变换将图像从空域转化到频域,将图像的空间域信息转化为频率域信息,可以方便地观察和处理图像的频谱分布。
通过对图像的傅里叶变换结果进行滤波操作,可以实现图像的频域增强。
频域+空间域结合法
频域+空间域结合法
频域和空间域结合法是一种在信号处理和图像处理领域中常用的技术。
频域表示信号的频率特性,而空间域表示信号的空间分布特性。
结合这两种域可以更全面地分析和处理信号和图像。
在信号处理中,频域分析可以将信号分解成不同频率的成分,而空间域分析可以描述信号在时间或空间上的变化。
因此,结合频域和空间域可以更准确地理解信号的特性,从而进行更有效的信号处理和分析。
在图像处理中,频域分析可以通过傅里叶变换将图像转换到频域,从而可以进行频率滤波和频域增强等操作。
而空间域分析可以描述图像的像素分布和空间位置关系。
因此,结合频域和空间域可以实现更多样化的图像处理操作,包括去噪、增强、压缩等。
总的来说,频域和空间域结合法可以帮助我们更全面地理解和处理信号和图像,在不同领域中有着广泛的应用。
这种方法的优势在于可以综合考虑信号或图像的频率特性和空间特性,从而得到更全面、准确的分析和处理结果。
当然,在具体应用中需要根据问题的特点和要求来选择合适的方法和技术。
图像增强原理
图像增强原理图像增强是数字图像处理中的一项重要技术,它通过对图像进行各种处理,改善图像的质量,使图像更适合于后续的分析和应用。
图像增强的原理是通过增强图像的对比度、亮度、锐度等特征,以提高图像的视觉效果和信息表达能力。
在本文中,我们将介绍图像增强的原理及常见的增强方法。
图像增强的原理主要包括两个方面,空间域增强和频域增强。
空间域增强是指直接对图像像素进行操作,包括灰度变换、直方图均衡化、滤波等方法;频域增强是指将图像转换到频域进行处理,包括傅里叶变换、滤波器设计等方法。
在空间域增强中,最常见的方法之一是灰度变换。
灰度变换通过对图像的灰度级进行变换,可以改变图像的对比度和亮度。
常见的灰度变换函数包括线性变换、对数变换、幂次变换等。
线性变换可以通过拉伸或压缩图像的灰度范围来增强对比度,对数变换可以扩展图像的暗部细节,幂次变换可以调整图像的亮度分布。
这些方法都是通过对图像的像素值进行重新映射来实现增强的效果。
另一个常见的空间域增强方法是直方图均衡化。
直方图均衡化是一种通过重新分配图像灰度级来增强对比度的方法。
它通过对图像的灰度直方图进行变换,将原始的灰度级分布变换为均匀分布,从而增强图像的对比度。
直方图均衡化在很多图像处理领域都有广泛的应用,特别是在医学影像、遥感图像等领域。
在频域增强中,傅里叶变换是一种重要的方法。
傅里叶变换可以将图像从空间域转换到频率域,通过对频率域进行滤波来实现图像增强。
频域滤波可以通过去除图像中的噪声、增强图像的边缘等方式来改善图像的质量。
常见的频域滤波方法包括低通滤波、高通滤波、带通滤波等。
低通滤波可以去除图像中的高频噪声,高通滤波可以增强图像的边缘细节,带通滤波可以选择性地增强或抑制特定频率成分。
除了上述方法外,图像增强还可以通过图像增强技术来实现。
图像增强技术是一种通过对图像进行分析和处理来实现增强效果的方法。
常见的图像增强技术包括锐化、平滑、边缘增强等。
锐化可以增强图像的细节和边缘,平滑可以去除图像中的噪声,边缘增强可以突出图像中的边缘信息。
图像增强实验报告
图像增强实验报告篇一:图像处理实验报告——图像增强实验报告学生姓名:刘德涛学号:2010051060021指导老师:彭真明日期:2013年3月31日一、实验室名称:光电楼329、老计算机楼309机房二、实验项目名称:图像增强三、实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。
图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。
空间域的增强主要有:灰度变换和图像的空间滤波。
1.灰度变换灰度变换主要有线性拉伸、非线性拉伸等。
灰度图像的线性拉伸是将输入图像的灰度值的动态范围按线性关系公式拉伸到指定范围或整个动态范围。
令原图像f(x,y)的灰度变化范围为[a,b],线性变换后图像g(x,y)的范围为[a',b'],线性拉伸的公式为:b'?a'g(x,y)?a?[f(x,y)?a] b?a灰度图像的非线性拉伸采用的数学函数是非线性的。
非线性拉伸不是对图像的灰度值进行扩展,而是有选择地对某一灰度范围进行扩展,其他范围的灰度值则可能被压缩。
常用的非线性变换:对数变换和指数变换。
对数变换的一般形式:g(x,y)?a?ln[f(x,y)?1] blnc指数变换的一般形式:g(x,y)?bc[f(x,y)?a]?1(a,b,c用于调整曲线的位置和形状的参数。
)2.图像的空间滤波图像的空间滤波主要有图像的空域平滑和锐化。
图像的平滑是一种消除噪声的重要手段。
图像平滑的低频分量进行增强,同时抑制高频噪声,空域中主要的方法有领域平均、中值滤波、多帧相加平均等方法。
图像锐化能使图像的边缘、轮廓处的灰度具有突变特性。
图像的锐化主要有微分运算的锐化,包括梯度法和拉普拉斯法算子。
四、实验目的:1.熟悉和掌握利用Matlab工具进行数字图像的读、写、显示等数字图像处理基本步骤。
第3章 空间域图像增强(第1讲)
Mg d
照明不足; c 成像传感器动态范围小; O 图像获取过程中透镜光圈设置错误; „ “压缩两端的背景的动态范围,扩展中 段的目标的动态范围”
c f ( x, y ) a d c g ( x, y ) [ f ( x, y ) a ] c ba M g d [ f ( x, y ) b ] d M f b 0 f ( x, y ) a a f ( x, y ) b b f ( x, y ) M f
s cr
幂次变换示例(1) ——伽马校正
阴极射线管(CRT)设备的电压—亮度响应曲线,是一个 指数变化范围为1.8~2.5 的幂函数,取γ=2.5。 因γ>1,没有进行γ校正的输出图像比输入图像暗 进行γ校正s = r1/2.5 = r0.4,得到近似等于输入的输出。 不同设备,γ取值不同。
(2)直方图的作用
四种典型灰度图像的直方图特征: (a)暗图像;(b)亮图像;(c)低对比度图像;(d)高对比度图像
3 直方图的用途
直方图的计算
对数字图像,必须引入离散形式。在离散形 式下,用 rk 代表离散灰度级,用 pr( rk) 代替 rk pr( r) ,用频数近似代替概率值,即
nk Pr (rk ) 0 rk 1 n k 0, 1, 2,, l 1
傅立叶频谱
a. 原始傅里叶频谱
b. 对数变换后频谱图
s=log(1+r) c=1
3.2.3 幂次变换 基本变换公式为
右图 c=1 根据拉伸或压缩的 需要,选择不同的 γ和c值。 图像获取、打印和 显示的各种装置是 按幂次规律响应的。 幂次等式中的指数 是伽玛值,用于修 正幂次相应现象的 过程称为伽玛校正。
空间域和频域结合的图像增强技术及实现
空间域和频域结合的图像增强技术及实现
徐炜君;刘国忠
【期刊名称】《中国测试》
【年(卷),期】2009(035)004
【摘要】图像增强是数字图像的预处理,对图像整体或局部特征能有效地改善.为了实现对数字图像的增强处理,采用时域直方图均衡和频域高频加强滤波相结合的方法对图像进行了增强处理.利用图像中变化剧烈的信息只与高频成分有关这一原理,结合MATLAB设计实现了高频加强滤波器并对图像进行了增强处理,在此基础上使用时域直方图均衡技术再对图像进行处理.试验结果表明,两种技术的结合可以使图像的细部特征更加明显,图像更加锐化,其图像增强效果要好于单独采用其中任意一种技术的处理结果.
【总页数】3页(P52-54)
【作者】徐炜君;刘国忠
【作者单位】大庆石油学院应用技术学院,河北,秦皇岛,066004;北京信息科技大学,北京,100192
【正文语种】中文
【中图分类】TP274+.2:TP751
【相关文献】
1.基于空间域与频域的遥感图像增强算法 [J], 王璠
2.空间域与频域结合的FCM红外热像分割方法 [J], 谢静;徐长航;陈国明;王玉
3.基于频域的计算机图像增强技术分析 [J], 张小红;张建生;彭林华
4.基于频域的图像增强技术的改进算法 [J], 袁小平; 张侠; 张毅; 崔棋纹; 闫泽宇
5.基于空间域与频域的遥感图像增强算法 [J], 王璠
因版权原因,仅展示原文概要,查看原文内容请购买。
频率域图像增强处理PPT
∑ ∑ f (m, n)h( x m, y n)
1. 取函数h(m,n)关于原点的镜像,得到h(-m,-n) 2. 对某个(x,y),使h(-m,-n)移动相应的距离,得到h(x-m,y-n) 3. 对积函数f(m,n)h(x-m,y-n)在(m,n)的取值范围内求和 4. 位移是整数增量,对所有的(x,y)重复上面的过程,直到两个函数:f(m,n)和 h(x-m,y-n)不再有重叠的部分。 傅立叶变换是空域和频域的桥梁,关于两个域滤波的傅立叶变换对:
冲激(脉冲)函数及筛选属性:
冲激函数的傅立叶变换:
1 F (u , v) = MN
筛选属性:
∑∑ δ ( x, y)e j 2π (ux / M +vy / N ) =
x =0 y =0
M
N
1 MN
∑∑ f ( x, y) Aδ ( x x , y y ) = Af ( x , y )
x=0 y =0 M N 0 0 0 0
信息与物理工程学院 中南大学
2. Butterworth低通滤波器(BLPF)
通常在H(u, v)=0.5时的D(u, v)=D0规定为截止频率(见第一个公式)。当阶数为1 时没有“振铃”现象,为2时较轻微,大于2时较严重。
变化着的频率是最基本的感觉之一,我们四周无时不被变化着 色彩的光、变化着音调的声音等在周期变化的现象包围着。
f ( x, y ) h( x, y ) F (u , v) H (u , v); f ( x, y )h( x, y ) F (u , v) H (u , v)
变化着的频率是最基本的感觉之一,我们四周无时不被变化着 色彩的光、变化着音调的声音等在周期变化的现象包围着。
信息与物理工程学院 中南大学
空间域和频率域结合的图像增强技术及实现(1)
南京理工大学紫金学院毕业设计(论文)开题报告
学生姓名:杨程学号:090402159
专业:光电信息工程
设计(论文)题目:空间域和频率域结合的图像增强技术
及实现
指导教师:曹芳
2012年12月20日
开题报告填写要求
1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。
此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;
2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;
3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册);
4.有关年月日等日期的填写,应当按照国标GB/T 7408—2005《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。
如“2007年3月15日”或“2007-03-15”。
毕业设计(论文)开题报告
图1 理想低通滤波器应用实例(2) Butterworth 低通滤波器
图2 高斯低通滤波器应用实例梯形低通滤波器
3)
图3 理想高通滤波器巴特沃斯高通滤波器
阶巴特沃斯高通滤波器的传递函数定义如下:
图5 高斯高通滤波器应用实例。
第四讲频率域图像增强 65页PPT文档
高斯函数在空域和频域的对应关系式:
H(u)u2/22
h(x)2 Ae 222x2
1D高斯低 通滤波器
H(u)Ae(u2v2)/22
h (x)2 Ae 2 2 1 2(x2y2)
2D高斯低 通滤波器
结论:1)H (u) 有宽的轮廓,则h(x)有窄的轮廓,反之亦然。 2)频率域滤波器越窄,滤出的低频成分越多,图 像被模糊,在空域则滤波器越宽,模板越大。
G (u , v)=H (u , v) X F (u , v)
例二、显示重要特征的傅里叶谱
注:原始图像中有约±450的强 边缘和两个白色的氧化物 突 起。
注:傅里叶频谱显示了±450的强 边缘,在垂直轴偏左的部分有 垂直成分(对应两个氧化物 突 起)。
频域滤波的基本步骤:
1)用 (-1)x+y 乘以输入图像进行中心变换; 2)计算1)处理后图像的DFT,即 F (u , v); 3)用滤波器函数 H (u , v)乘以 F (u , v);即
G (u , v)=H (u , v) x F (u , v) 4) 求 G (u , v)的IDFT; 5) 得到4)的IDFT的实部; 6)用 (-1)x+y 乘以 5)的结果。
频域滤波的基本步骤
DFT
滤波器 H (u , v)
IDFT
F (u , v)
H (u , v) F (u , v)
前处理
2D低通滤波器
2D高通滤波器
滤波器原 点为0, 因此几乎 没有平滑 的灰度级 细节
陷波滤波器对图像的影响 ( 陷波滤波器将原点设置为0 平均灰度为0,因而需要标定)
高通滤波器对图像的影响 (滤波器函数加上滤波器高度一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京理工大学紫金学院毕业设计(论文)开题报告
学生姓名:杨程学号:090402159
专业:光电信息工程
设计(论文)题目:空间域和频率域结合的图像增强技术
及实现
指导教师:曹芳
2012年12月20日
开题报告填写要求
1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。
此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;
2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;
3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册);
4.有关年月日等日期的填写,应当按照国标GB/T 7408—2005《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。
如“2007年3月15日”或“2007-03-15”。
毕业设计(论文)开题报告
图1 理想低通滤波器应用实例(2) Butterworth 低通滤波器
图2 高斯低通滤波器应用实例梯形低通滤波器
3)
图3 理想高通滤波器巴特沃斯高通滤波器
阶巴特沃斯高通滤波器的传递函数定义如下:
图5 高斯高通滤波器应用实例。