四年级奥数,举一反三,行程问题(一)

合集下载

四年级举一反三第29周-行程问题(一)

四年级举一反三第29周-行程问题(一)
15÷(5-4)=15(千米)
15x(5-1)=60(千米)
答:东、西两村相距60千米。
1. 甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟 走90米。甲到达B地后立即返回A地,在离B地3.2千米处与乙相 遇。A、B两地间的距离是多少千米?
3200×2÷(250-90)×90=3600(米) 3600÷1000+3.2=6.8(千米)
32x2÷(56-48)=8 (56+48)x8=832(千米)
答:东、西两地相距832千米。
1. 小玲每分行100米,小平每分行80米,两人同时从学校和少 年宫相向而行,并在离中点120米处相遇,学校到少年宫有多 少米?
120x2÷(100-80)=12(分) (100+80)x12=2160(米)
(32×4-8×2)÷56=2(小时)
3. 学校运来一批树苗,五(1)班的40个同学都去参加植树活动, 如果每人植3棵,全班同学能植这批树苗的一半还多20棵。如果 这批树苗全部给五(1)班的同学去植,平均每人植多少棵树?
(3×40-20)×2÷40=5(棵)
甲、乙二人上去8时同时从东村骑车到西村去,甲每小时比乙快 6千米。中午12时甲到西村后立即返回东村,在距西村15千米 处遇到乙。求东、西两村相距多少千米?

西
甲车行的
乙车行的
【思路导航】两车在距中点32千米处相遇,由于甲车的速度大于乙车的速度,所以相 遇时,甲车应行了全程的一半多32千米,乙车行了全程的一半少32千米,因此,两车 相遇时,甲车比乙车共多行了32x2=64(千米)。两车同时出发,又相遇了,两车所 行的时间是一样的,为什么甲车会比乙车多行64千米?因为甲车每小时比乙车多行 56-48=8(千米)。64÷8=8所以两车各行了8小时,求东、西的路程只要用(56+48) x8即可。

小学奥数往返行程问题

小学奥数往返行程问题

小学奥数往返行程问题小学奥数往返行程问题典型例题1甲、乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行42千米,第二辆汽车每小时行38千米,第一辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?举一反三11、甲、乙两地之间的距离是360千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行40千米,第二辆汽车每小时行50千米,第二辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?2、A、B两城之间的距离是880千米,甲车和乙车同时从A城开往B城,甲车每小时行60千米,乙车车每小时行50千米,甲车车到达B城立即返回,两辆车从开出到相遇共用了多少小时?3、东、西两城之间的.距离是600千米,客车和货车同时从东城开往西城,客车每小时行65千米,货车车每小时行55千米,客车车到达西城立即返回,客车从开出到与货车相遇共用了多少小时?典型例题2甲、乙两人同时从东村骑车到西村去,经过4.5小时甲到达西村后立即返回东村,在距离西村15千米处遇到乙。

已知甲每小时比乙快6千米,求东西两村相距多少千米?举一反三21、小黄和小林同时从学校去电影院,小黄每分钟比小林多走20米,30分钟后,小黄刚到电影院立即返回,在距离电影院350米处遇到小林,小黄每分钟走多少米?2、甲、乙两辆汽车同时从南站开往北站,甲车每小时比乙车多行12千米,甲车行驶4个半小时到达北站后,没有停留,立即从原路返回,在距离北站30千米的地方和乙车相遇。

求两站之间的距离。

3、甲、乙两辆汽车同时从东站开往西站,甲车每小时比乙车多行14千米。

甲车行驶5小时到达西站后,立即按原路返回,在离西站42千米处于乙车相遇。

求东西两站之间的距离。

典型例题3A、B两地相距21千米,上午8时甲、乙两车分别从A、B两地出发,相向而行,甲到达B地后立即返回,乙到达A地后也立即返回,上午10时他们第二次相遇,此时甲走的路程比乙多9千米。

甲共行了多少千米?甲每小时行多少千米?举一反三31、A、B两地相距21千米,上午9时整,甲、乙两人分别从A、B两地出发,相向而行,甲到达B地后立即返回,乙到达A地后立即返回,上午11时他们第二次相遇。

四年级奥数举一反三第二十九周 行程问题(一)-最新推荐

四年级奥数举一反三第二十九周 行程问题(一)-最新推荐

第二十九周行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。

根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。

四年级奥数举一反三第二十九周 行程问题(一)-精华版

四年级奥数举一反三第二十九周 行程问题(一)-精华版

第二十九周行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。

根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。

四年级奥数举一反三第二十九周 行程问题(一)-最新精品

四年级奥数举一反三第二十九周 行程问题(一)-最新精品

第二十九周行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。

根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。

行程问题举一反三

行程问题举一反三

行程问题(一)例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?练习二1,甲乙两队学生从相隔18千米的两地同时出发相向而行。

一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米。

两队相遇时,骑自行车的同学共行多少千米?2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。

一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。

这样一直飞下去,燕子飞了多少千米,两车才能相遇?3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。

一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?练习三1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。

小学四年级奥数题:钟面行程问题

小学四年级奥数题:钟面行程问题

这篇关于《⼩学四年级奥数题:钟⾯⾏程问题》,是特地为⼤家整理的,希望对⼤家有所帮助!
典型例题1
从时钟指向4点开始,再经过多少分钟时针正好与分针重合?
举⼀反三1
1、从时针指向3点开始,再经过多少分钟时针正好与分针重合?
2、12时整,时针与分针重合,下⼀次时针与分针重合是⼏时⼏分?
3、⼩明在9点与10点之间开始解⼀道题。

当时时针与分针正好成⼀条直线,解完题后两针正好第⼀次重合。

⼩明解这道题共⽤了多少时间?
典型例题2
在7点多8点不到的时候,时针与分针相差10⼩格,应是什么时间?
举⼀反三2
1、在6点多7点不到的时候,时针与分针相差12⼩格,应是什么时刻?
2、在9点多10点不到的时候,时针与分针相差5⼩格,应是什么时刻?
3、8点到9点时针与分针夹⾓为60°时,应是什么时刻?
典型例题3
钟⾯上3时过⼏分,时针与分针离"3"的距离相等,并且在"3"的两旁?
举⼀反三3
1、钟⾯上4时过⼏分,时针与分针离"4"的距离相等,并且在"4"的两旁?
2、12点过多少分时,时针与分针离"12"的距离相等,并且在"12"的两旁?
3、有⼀天课间休息时,⼩明看了⼀下墙上的挂钟,时间是9点多,他发现时针和分针正好处在铅垂线对称位置。

请问:此时是⼏点⼏分?。

四年级奥数,举一反三,(行程问题一)

四年级奥数,举一反三,(行程问题一)

亲爱的学子们,在浩瀚的知识海洋里航行,自信是船,勤奋是帆,毅力是风,专题讲解【行程问题一】一、【知识要点】我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

►每小时(或每分钟等)行的路程,叫做速度;►行了几小时(或几分钟等),叫做时间。

►一共行了多长的路,叫做路程;速度×时间=路程路程÷速度=时间路程÷时间=速度二、【典型例题讲解】例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

四年级奥数举一反三第二十九周 行程问题(一)-优质资料

四年级奥数举一反三第二十九周 行程问题(一)-优质资料

第二十九周行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。

根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。

举一反三四年级行程问题

举一反三四年级行程问题

第二讲行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?练习二1,甲乙两队学生从相隔18千米的两地同时出发相向而行。

一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米。

两队相遇时,骑自行车的同学共行多少千米?2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。

一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。

一般行程问题

一般行程问题

小学四年级奥数第十单元行程问题第1讲一般行程问题1典型例题1早晨,张老师从家骑自行车以每小时15千米的速度去上班,用0.4小时到达学校。

中午下班,因逆风,张老师骑自行车以每小时12千米的速度沿原路回家,需多少小时到家?举一反三11、小明从家去学校,每分钟走80米,用了12分钟;中午放学沿原路回家,每分钟走100米,多少分钟到家?2、汽车从甲地到乙地平均每小时行50千米,6小时到达;原路返回时每小时比去时快10千米,返回时用了几个小时?3、货车从A城到B城,去时每小时行50千米,4小时到达;沿原路返回时比去时多用了1小时,返回时每小时比去时慢多少千米?典型例题2一辆汽车以每小时40千米的速度从甲地到乙地,出发1.5小时后,超过中点8千米。

照这样的速度,这辆汽车还要行驶多长时间才能到达乙地?举一反三21、一辆汽车以每小时50千米的速度从A地到B地,出发1.2小时后,超过中点6千米。

照这样的速度,这辆汽车还要行驶多长时间才能达到B地?2、一辆摩托车从甲地开往乙地,出发1.8小时,行了72千米,距离中点还有8千米。

照这样的速度,这辆汽车还要行驶多长时间才能到达乙地?3、一辆汽车以每小时40千米的速度从东站开往西站,1.5小时后,剩下的路程比全程的一半少6千米。

照这样的速度,这辆汽车从东站到西站共需多长时间?典型例题3小明上学时坐车,回家时步行,在路上共用了1.25小时。

如果往返都坐车,全部行程只需30分钟。

如果往返都步行,全部行程需要多少小时?举一反三31、小红上学时坐车,回家步行,在路上一共用了36分钟。

如果往返都坐车,全部行程只需10分钟,如果往返都步行,需要多少分钟?2、张师傅上班坐车,下班步行,在路上共用了1.5小时。

如果往返都步行,在路上一共需要2.5小时。

问张师傅往返都坐车,在路上需要多少分钟?3、李师傅上班骑车,下班步行,在路上共用2小时,已知他骑车的速度是步行的4倍。

问李师傅往返骑车只需多少时间?典型例题4小明每天早晨6:50从家出发,7:20到校,老师要求他明天提前6分钟到校,如果明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。

四年级 举一反三第二十九周 行程问题(一)

四年级 举一反三第二十九周 行程问题(一)

第二十九周行程问题(一)(人教网分享)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。

根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。

举一反三四年级行程问题完整版

举一反三四年级行程问题完整版

举一反三四年级行程问题Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第二讲行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?练习二1,甲乙两队学生从相隔18千米的两地同时出发相向而行。

一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米。

两队相遇时,骑自行车的同学共行多少千米?2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。

举一反三小学四年级行程问题

举一反三小学四年级行程问题

精心整理第二讲行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的程=果。

例1千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?练习二1,甲乙两队学生从相隔18千米的两地同时出发相向而行。

一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。

甲队每小时行5千米,乙队每38例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?分析与解答:这是一道相背问题。

所谓相背问题是指两个运动的物体作背向运动的问题。

在相背问题中,相遇问题的基本数量关系仍然成立,根据题意,甲乙两人共行的路程应该是54-18=36千米,而两人每小时共行7+5=12千米。

要求几小时能行完例4:甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。

几小时后甲可以追上乙?练习四1,甲乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米。

几小时后甲可追上乙?例51,2,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。

一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。

行程应用题举一反三:第5讲 流水行程问题1

行程应用题举一反三:第5讲 流水行程问题1
举一反三2
1、A、B两港间的水路长286千米,一只船从A港开往B港,顺水11小时到达,从B港返回A港,逆水13小时到达,求船在静水中的速度和水流速度。
2、甲、乙两港间的水路长432千米,一只船从上游甲港开往下游乙港需要8小时,从乙港返回甲港,需要24小时到达,求船速度是多少?
3、两个码头相距352千米,一只船顺流而下,行完全程需要11小时,逆流而上,行完全程需要16小时,求这条河水流速度。
行程应用题举一反三:第5讲流水行程问题1
典型例题1
一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行。已知轮船在净水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B地的1.5倍,求水流速度。
举一反三1
1、一艘汽艇在两个码头间航向,顺水而行需8小时,逆水而行多用4小时,水流熟读为每小时4千米。求这艘汽艇的静水速度是多少?
典Hale Waihona Puke 例题9甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花5小时,现在有一机帆船,静水中速度是每小时12千米,这机帆船往返于两港需要多少小时?
举一反三9
1、A、B两地相距360千米,一轮船往返两地共需42小时,顺流航行比逆流航行少用6小时,后来一只机帆船静水速度是每小时12.5千米,机帆船往返两地要多少小时?
举一反三5
1、一只船在顺水时行9米用了10秒钟,在同样的水流中,逆水行7米,也用了10秒钟。问在静水中,这只船型100米,要用多少秒?
2、水流速度是每小时15千米,现在有船顺水而行,8小时行了320千米。若逆水行320千米需几小时?
3、有只大木船在河中航行,逆流而上5小时行5千米,顺流而下5小时行25千米。如果在静水中,行5小时可行多少千米?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3、甲每小时行7千米,
乙每小时行5千米,两人 于相隔18千米的两地同时 相背而行,几小时后两人 相隔54千米?
分析 :
这是一道相背问题。所谓相背问题是指两个 运动的物体作背向运动的问题。在相背问题 中,相遇问题的基本数量关系仍然成立,根 据题意,甲乙两人共行的路程应该是 54-18=36千米, 而两人每小时共行7+5=12千米。 要求几小时能行完36千米,就是求36千米里 面有几个12千米。所以, 36÷12=3小时。
小明以每分钟50米的速度从学校步行回家,
12分钟后小强从学校出发骑自行车去追小明,
结果在距学校1000米处追上小明,求小强骑
自行车的速度。
500 400÷50=8(分) 答:小强骑自行车的速度 1000÷8=125(米)是每分钟125米。
专题简析:
例4、甲乙两人分别从相距
24千米的两地同时向东而 行,甲骑自行车每小时行 13千米,乙步行每小时走5 千米。几小时后甲可以追 上乙?
分析:
这是一道追及问题。根据题意,甲追上乙时, 比乙多行了24千米(路程差)。甲骑自行车 每小时行13千米,乙步行每小时走5千米, 甲每小时比乙多行: 13-5=8千米(速度差), 即甲每小时可以追上乙8千米,所以要求追 上乙所用的时间,就是求24千米里面有几个 8千米。因此, 24÷8=3小时甲可以追上乙。
3,小华和小亮的家相距380米,两人同时从家中出 发,在同一条笔直的路上行走,小华每分钟走 65米, 小亮每分钟走55米。3分钟后两人相距多少米?
例5 、甲、乙两沿运动场的跑道
跑步,甲每分钟跑290米,乙每 分钟跑270米,跑道一圈长400米。 如果两人同时从起跑线上同方向 跑,那么甲经过多长时间才能第 一次追上乙?
行程问题(一)
学习目标
理解并掌握速度的概念、写作、读 作。 掌握并能熟练运用简单行程问题中 的三个公式。
速度× 时间=路程 路程÷速度=时间 路程÷时间=速度
►每小时(或每分钟等)行的路程,叫做速度; ► 行了几小时(或几分钟等),叫做时间。 ►一共行了多长的路,叫做路程;
速度×时间=路程
练 习 一
1,甲乙两艘轮船分别从A、B两港同时出发相向而行, 甲船每小时行驶18千米,乙船每小时行驶15千米,经 过6小时两船在途中相遇。两地间的水路长多少千米? 2,一辆汽车和一辆摩托车同时分别从相距900千米的 甲、乙两地出发,汽车每小时行40千米,摩托车每小 时行50千米。8小时后两车相距多少千米? 3,甲乙两车分别从相距480千米的A、B两城同时出 发,相向而行,已知甲车从A城到B城需6小时,乙车 从B城到A城需12小时。两车出发后多少小时相遇?
例2 、王欣和陆亮两人同时从相距
2000米的两地相向而行,王欣每分 钟行110米,陆亮每分钟行90米。如 果一只狗与王欣同时同向而行,每 分钟行500米,遇到陆亮后,立即回 头向王欣跑去;遇到王欣后再回头 向陆亮跑去。这样不断来回,直到 王欣和陆亮相遇为止,狗共行了多 少米?
分析与解答 :
要求狗共行了多少米,一般要知道狗的速度 和狗所行的时间。根据题意可知,狗的速度 是每分钟行500米,关键是要求出狗所行的时 间,根据题意可知:狗与主人是同时行走的, 狗不断来回所行的时间就是王欣和陆亮同时 出发到两人相遇的时间,即 2000÷(110+90)=10分钟。 所以狗共行了:500×10=5000米。
练 习 三
1,甲车每小时行6千米,乙车每小时行5千米,两车 于相隔10千米的两地同时相背而行,几小时后两人相 隔65千米?
2,甲每小时行9千米,乙每小时行7千米,甲从南庄 向南行,同时乙从北庄向北行。经过3小时后,两人 相隔60千米。南北两庄相距多少千米? 3,东西两镇相距20千米,甲、乙两人分别从两镇同 时出发相背而行,甲每小时的路程是乙的2倍,3小时 后两人相距56千米。两人的速度各是多少?
分析 :
这是一道封闭线路上的追及问题。甲 和乙同时同地起跑,方向一致。因此, 当甲第一次追上乙时,比乙多跑了一 圈,也就是甲与乙的路程差是400米。 根据“路程差÷速度差=追及时间” 即可求出甲追上乙所需的时间: 400÷(290-270)=20分钟。
练 习 二
1,甲乙两队学生从相隔18千米的两地同时出发相向而行。一个 同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。 甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行 车的同学共行多少千米? 2,A、B两地相距400千米,甲、乙两车同时从两地相对开出, 甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时 50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲 车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇? 3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每 小时行60千米,乙队每小时行50千米。一个人骑摩托车以每小时 行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托 车行驶了多少千米?
例1 、甲乙两人分别从相 距20千米的两地同时出发 相向而行,甲每小时走6 千米,乙每小时走4千米。 两人几小时后相遇?
分析 :
这是一道相遇问题。所谓相遇问题就是指两 个运动物体以不同的地点作为出发地作相向 运动的问题。根据题意,出发时甲乙两人相 距20千米,以后两人的距离每小时缩短: 6+4=10千米, 这也是两人的速度和。所以,求两人几小时 相遇,就是求20千米里面有几个10千米。因 此,两人: 20÷(6+4)=2小时后相遇。
练 习 四
1,甲乙两人同时从相距36千米的A、B两城同向而行, 乙在前甲在后,甲每小时行15千米,乙每小时行6千 米。几小时后甲可追上乙?
2,解放军某部从营地出发,以每小时6千米的速度 向目的地前进,8小时后部队有急事,派通讯员骑摩 托车以每小时54千米的速度前去联络。多长时间后, 通讯员能赶上队伍?
研究路程、速度、时间这三者之间关系的问 题称为行程问题。行程问题主要包括相遇问 题、相背问题和追及问题。这一周我们来学 习一些常用的、基本的行程问题。 解答行程问题时,要理清路程、速度和时间 之间的关系,紧扣基本数关系 “路程=速度×时间”来思考,对具体问 题要作仔细分析,弄清出发地点、时间和运 动结果。
相关文档
最新文档