证明直角三角形斜边上的中线等于斜边的一半

证明直角三角形斜边上的中线等于斜边的一半
证明直角三角形斜边上的中线等于斜边的一半

.

用证明全等三角形的方法证明(直角三角形不为等腰三角形)直角三角形斜边上的中线等于斜边的一半

在三角形ABC中,∠A=90°,AD为BC边上的中线,做AB、AC的中点E、F,连接ED、DF,

因为BE=EA,BD=DC,

所以ED∥AC,

又因为,∠A=90°,

所以∠BED=90°,

∠BED=∠AED=90°,BE=AE,ED=ED(三角形全等:边角边)

所以,△BED≌△AED,

所以BD=AD,

同理AD=CD(△ADF≌△CDF),

所以AD=CD,

所以AD=BD=CD,

所以直角三角形斜边上的中线等于斜边的一半,

..

2直角三角形(一)

第一章 三角形的证明 2.直角三角形(一) 【学习目标】 (1)掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法,并能应用定理解决与直角三角形有关的问题。 (2)结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立. 【学习过程】 一.认真思考(课堂互动) 1.复习引入 问题1.直角三角形的两锐角有怎样的关系?为什么? 问题2.如果一个三角形有两个锐角互余,那么这个三角形是直角三角形吗? 结论:1. 2. 教材中曾利用数方格和割补图形的方法得到了勾股定理.如果利用公理及由其推导出的定理,能够证明勾股定理吗? 请同学们打开课本P18,阅读“读一读”,了解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法. 2.探究直角三角形勾股定理及其逆定理 (一)勾股定理及其逆定理的证明. 勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方. 已知:如图,在△ABC 中,∠C =90°,BC =a ,AC =b ,AB =c . 求证:a 2+b 2=c 2. 证明: 反过来,如果在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论.你能证明此结论吗? 师生共同来完成. 已知:如图:在△ABC 中,AB 2+AC 2=BC 2 求证:△ABC 是直角三角形. (分析:要从边的关系,推出∠A =90°是不容易的,如果能借助于△ABC 与一个直角三角形全等,而得到∠A 与对应角(构造的三角形的直角)相等,可证.) 证明: 勾股逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. (二).互逆命题和互逆定理. 观察下面各组命题,它们的条件和结论之间有怎样的关系? (1)直角三角形两锐角互余; 如果一个三角形有两个锐角互余,那么这个三角形是直角三角形 (2)在直角三角形中,两直角边的平方和等于斜边的平方. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. (3)两直线平行,内错角相等; 内错角相等,两直线平行 C A B C A B

专题训练:直角三角形斜边上中线

《直角三角形斜边上的中线等于斜边的一半》 专题训练 直角三角形斜边上中线的性质是直角三角形的一个重要性质,同时也是常考的知识点.它为证明线段相等、角相等、线段的倍分等问题提供了很好的思路和理论依据。 一、直角三角形斜边上中线的性质 性质:直角三角形斜边上的中线等于斜边的一半. 定理的证明 证明:直角三角形斜边上的中线等于斜边的一半. 二、性质的证明 1、证明线段相等 例1、如图4,在△ABC中,∠BAC=90°,延长BA到D 点,使,点E、F分别为边BC、AC的中点。

(1)求证:DF=BE; (2)过点A作AG∥BC,交DF于G。求证:AG=DG。 2、证明角相等 例2、已知,如图5,在△ABC中,∠BAC>90°,BD、CE分别为AC、AB上的高,F为BC的中点,求证:∠FED=∠FDE。

例3、已知:如图6,在△ABC中,AD是高,CE是中线。DC=BE,DG⊥CE,G为垂足。 求证:(1)G是CE的中点;(2)∠B=2∠BCE。

3、证明线段的倍分及和差关系 例4、如图7,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连AE。求证:(1)∠AEC=∠C;(2)求证:BD=2AC。

例5、如图8,在梯形ABCD中,AB∥CD,∠A+∠B=90°,E、F分别是AB、CD的中点。求证:。 4、证明线段垂直 例6、如图9,在四边形ABCD中,AC⊥BC,BD⊥AD,且AC=BD,M、N分别是AB、DC边上的中点。 求证:MN⊥DC。 5、证明特殊的几何图形

例7、如图10,将Rt△ACB沿直角边AC所在直线翻折180°得到Rt△ACE,点D与点F分别是斜边AB、AE 的中点,连CD、CF,则四边形ADCF为菱形.请给予证明. 强化训练 1、如图,在锐角三角形ABC中,AD⊥BC于D,E、 F、G分别是AC、AB、BC的中点。 求证:四边形OEFG是等腰梯形。

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

证明(二)之直角三角形

第三课时:直角三角形的证明 [知识要点] 1、勾股定理:直角三角形两直角边的平方和等于斜边的平方,即2 2 2 b a c +=(c 为斜边). 2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 有关系:2 22c b a =+,那么这 个三角形是直角 三角形,且c 边所对的角为直角. 3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 4、“HL ”公理作用:判定两个直角三形全等. [典型例题] 例1 如图,在Rt △DBC 中,∠C=900,∠A=300,BD 是∠ABC 的平分线,AD=20,求BC 的长。 例2 如图所示,在ABC ?中,AD 是它的角平分线,且BD=CD ,DE ,DF 分别垂直于AB 、 AC ,垂足为 E 、 F .求证:EB=FC . 例3 如图,在等腰直角三角形ABC 中,90=∠C o,D 是斜边AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 并交CD 的延长线于F ,CH ⊥AB 于H ,交AE 于G .求证: A B C E F D A B D C

[经典练习] 1、满足下述条件的三角形中,不是直角三角形的是( ). A 、三内角之比为1:2:3 B.三边之比为 C 、三边长为41,40,9 D. ,8 2、不能判定两个直角三角形全等的方法是( ) A .两个直角边对应相等. B .斜边和一锐角对应相等 C .斜边和一条直角边对应相等 D .面积相等 3、如图1所示,ABC ?中AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于O ,AO 的延长线交 BC 于F ,则图中全等直角三角形的对数为( ) A .3对 B .4对 C .5对 D .6对 4、如图2所示,在ABC ?中,MD 垂直平分AB 于M ,交BC 于D ,N E 垂直平分AC 于N ,交BC 于E , 若θ=∠BAC ,则∠DAE 等于( ) A .2θ B .180 o-2 θ C .-θ290o D .-θ2180o o 5,、如图5, Rt △ABC 中,AC=6cm,BC=8cm,将此三角形折叠,使直角边AC 落在斜边AB 上,点C 与点D 重合, 折痕为AE,则BE 的长为( )。 6、如图7,直线L 过正方形ABCD 的顶点B,点A 、C 到直线L 的距离分别是1和2,则正方形的边长是 。 图5 图6 7、点A 、E 、F 、C 在一条直线上,AE=CF ,过点E 、F 分别作DE ⊥AC ,BF ⊥AC ,若AB=CD 。 (1)求证:BD 平分EF A B C E F D 图1 A B C 图2 A D C E D L A C B M N B A C E F G

直角三角形斜边中线练习(尖)

直角三角形斜边中线练习【尖】 一.选择题(共8小题) 1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为() A.16cm B.18cm C.20cm D.22cm 2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是() A.点E B.点F C.点G D.点H 3.如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是() A.10 B.2√5 C.8 D.2√7

4.如图,在△ABC中,∠ACB=90°,D在BC上,E是AB的中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于() A.30°B.40°C.50°D.60° 5.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF 的中点,那么CH的长是() A.2.5 B.√5C.3 2 √2D.2 6.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为() A.0.5km B.0.6km C.0.9km D.1.2km 7.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.5

8.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是() A.21 B.18 C.13 D.15 二.填空题(共2小题) 9.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于度. 10.如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是; 若将△ABP的PA边长改为2√2,另两边长度不变,则点P到原点的最大距离变为.

数学人教版八年级下册直角三角形斜边上的中线等于斜边的一半

《直角三角形斜边上的中线等于斜边的一半》教学设计 广州市第四中学邓丽丽 一、教学内容与内容分析 1、教学内容:直角三角形斜边上的中线等于斜边的一半性质的形成和应用。 2、内容分析: 来源于人教版八年级数学下册19.2.1矩形一节,由矩形的对角线性质“矩形的对角线相等”我们得到了直角三角形的一个重要性质:“直角三角形斜边上的中线等于斜边的一半”。 本课主要内容是一、为什么说“直角三角形斜边上的中线等于斜边的一半”;二、“直角三角形斜边上的中线等于斜边的一半”的应用(包括应用于生活实际问题、应用于几何计算与证明)。利用倍长中线法,利用对称的性质构造全等三角形,以及构造中位线法证明直角三角形斜边上的中线等于斜边的一半,总结中点辅助线模型,为中考常见题型中的中点问题的解决提供了基础和方法。 二、教学目标与目标分析 1、教学目标 (1)知识与技能目标:能掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用,能利用添辅助线证明有关中点的几何问题; (2)过程与方法目标:通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感悟化归思想; (3)情感与态度目标:通过提供丰富的,有吸引力的探索活动和现实生活中的问题,让学生领悟数学源于生活用于生活,鼓励学生大胆思考,勇于探索,从中获得成功的体验,激发学生的学习兴趣。 三、教学重点与教学难点: 教学重点:直角三角形斜边上的中线性质定理的证明与应用。 教学难点:直角三角形斜边上的中线性质定理的证明与应用。 3、突出重点、突破难点的方法与策略: ☆突出重点的方法: 通过设置情境问题,引导学生思考、探究和讨论,在学生的自主探究过程中突出重点☆突破难点的方法: 通过教师的启发引导,充分运用多媒体教学手段,开展小组讨论、探讨交流、归纳总结来突出主线,层层深入,逐一突破难点。 四、教学方法: 根据本节课的教学内容、教学目标以及学生的认知特点和实际水平,教学上本节课采用“情景引入——探索新知——应用新知”的教学方法,并将学生分成几个小组,实行以个人自主探究、小组合作交流为主,教师适当引导为辅的教学模式。 ☆教师的教法:突出学习方法的引导,注重思维习惯的培养,为学生搭建参与和交流的平台,及时对学生个人和小组的学习进行评价; ☆学生的学法:突出探究与发现,思考与归纳,在自主探究、自主思考、合作交流中,掌握本节课的知识、方法和数学思想。 五、教学过程: Part1:复习引入 取一张直角三角形纸片,按下列步骤折叠:

直角三角形斜边上的中线(人教版)(含答案)

直角三角形斜边上的中线(人教版) 试卷简介:本套试卷继续训练直角三角形的性质:直角三角形两锐角互余,斜边长大于任意一条直角边长,30°所对的直角边等于斜边的一半,同时加上斜边中线等于斜边的一半,检测同学们见到什么想什么,以及有序梳理条件、对条件进行搭配和组合的能力. 一、单选题(共10道,每道10分) 1.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,点P是BD的中点. 若AD=6,则CP的长为( ) A.3 B.4 C.5 D.6 答案:A 解题思路: ∵∠ACB=90°,∠ABC=60°, ∴∠A=30°, ∵BD平分∠ABC, ∴∠CBD=∠ABD=30°, ∴∠ABD=∠A ∴BD=AD=6, ∵点P是BD的中点, ∴ 故选A. 试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半 2.如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点, 连接DE,则△CDE的周长为( )

A.10 B.13 C.14 D.18 答案:C 解题思路: ∵AB=AC,AD平分∠BAC, ∴AD⊥BC,. 又∵点E为AC的中点,AB=AC=10, ∴, ∴△CDE的周长为:DE+CE+CD= 14. 故选C. 试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半 3.如图,在Rt△ABC中,DC是斜边AB上的中线,EF过点C且平行于AB.若∠BCF=35°,则∠ACD 的度数是( ) A.35° B.45° C.55° D.65° 答案:C 解题思路: ∵EF∥AB,∠BCF=35° ∴∠B=∠BCF=35° ∵DC是斜边AB上的中线 ∴BD=CD

直角三角形的定理及规律(新)

直角三角形的定理及知识要点 一、补充定理 直角三角形的定理 1、直角三角形两锐角互余。 2、直角三角形斜边上的中线等于斜边的一半。 3、勾股定理:直角三角形两直角边的平方和等于斜边的平方。 30角所对的直角边等于斜边的一半。 4、直角三角形中0 直角三角形的逆定理 1、两锐角互余的三角形是直角三角形。 2、一条边上的中线等于这边的一半的三角形是直角三角形。 3、勾股定理的逆定理:两边的平方和等于第三边的平方的三角形是直角三角形。 30。 4、直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边的对角为0 等腰三角形的定理 1、三角形中等边对等角。 2、三线合一:等腰三角形底边的中线、底边的高、顶角的平分线三线合为一线。 60。 3、等边三角形三内角都是0 逆定理 1、三角形中等角对等边。 等边三角形的判定 60的三角形是等边三角形。 1、有两个角等于0 2、三个角相等的三角形是等边三角形。 60的等腰三角形是等边三角形。 3、有一个角是0

二、常见的图形及规律 1、Rt△ABC中,若∠A=30°, ∠C=90°, 则 BC:AC:AB=2。 2、Rt△ABC中,若∠A=45°, ∠C=90°, 则 BC:AC:AB= 三、常见的勾股数 (一)3、4、5序列 6.8.10 5 12 13 三、最短路线问题 1、在圆柱体(底面半径为r,高为h)中,从A到B的最短路线为AB 2、在长方体(长为a,宽为b,高为h)中, (1)当a=h时,A到D的最短路线为AD=

(2)当a ≠ h 时,若a>h ,则A 到D 的最短路线为 AD = 若a

三角形的证明练习题

1.等腰三角形 一、主要知识点 1、证明三角形全等的判定方法(SSS,SAS,ASA,AAS,证直角三角形全等除上述外还有HL)及全等三角形的性 质是对应边相等,对应角相等。 2、等腰三角形的有关知识点。 等边对等角;等角对等边;等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。(三线合一) 3、等边三角形的有关知识点。 判定:有一个角等于60°的等腰三角形是等边三角形; 三条边都相等的三角形是等边三角形; 三个角都是60°的三角形是等边三角形; 有两个叫是60°的三角形是等边三角形。 性质:等边三角形的三边相等,三个角都是60°。 4、反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从 而证明命题的结论一定成立。这种证明方法称为反证法 2.直角三角形 一、主要知识点 1、直角三角形的有关知识。 直角三角形两条直角边的平方和等于斜边的平方; 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形; 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 在直角三角形中,斜边上的中线等于斜边的一半。 2、互逆命题、互逆定理 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题. 如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理. 3.线段的垂直平分线 4.角平分线 一、主要知识点 1、线段的垂直平分线。 线段垂直平分线上的点到这条线段两个端点的距离相等; 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。 2、角平分线。 角平分线上的点到这个角的两边的距离相等。 在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。 三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。 3、逆命题、互逆命题的概念及反证法 如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。

“直角三角形斜边上的中线”的性质及其应用

“直角三角形斜边上的中线”的性质及其应用 “直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明. 一、有直角、有中点,利用垂直平分线性质 【例1】如图,BD 、CE 是△ABC 的两条高,M 是BC 的中点,N 是DE 的中点.求证:MN 垂直平分DE . 二、有直角、无中点,取中点,连线出中线 【例2】如图,在Rt △ABC 中,∠C=90°,AD ∥BC ,∠CBE=2 1∠ABE ,求证:DE=2AB . 三、有中点、无直角,造直角 【例3】如图,梯形ABCD 中,AB ∥CD ,M 、N 是AB 、CD 的中点,∠ADC+∠BCD=270°, 求证:MN= 2 1(AB -CD ).

四、逆用性质解题 【例4】如图,延长矩形ABCD 的边CB 至E ,使CE=CA ,P 是AE 的中点.求证:BP ⊥DP . 【习题练习】 1、如图,△ABC 中,AB=AC ,∠ABD=∠CBD ,BD ⊥DE 于D ,DE 交BC 于E ,求证:CD=21BE . 2、如图,△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 是BC 的中点,求证:AB=2DM . 3、如图,在四边形ABCD 中,∠DAB=∠DCB=90°,点M 、N 分别是BD 、AC 的中点.确定MN 、AC 的位置关系.

直角三角形斜边上中线性质的应用 一、直角三角形斜边上中线的性质 1、性质:直角三角形斜边上的中线等于斜边的一半.如图,在Rt △BAC 中,∠BAC=90°,D 为BC 的中点,则BC 2 1AD =. 2、性质的拓展: 如图:因为D 为BC 中点, 所以BC 2 1DC BD = =, 所以AD=BD=DC=BC 21, 所以∠1=∠2,∠3=∠4, 因此∠ADB=2∠1=2∠2, ∠ADC=2∠3=2∠4. 因而可得如下几个结论: ①直角三角形斜边上的中线将直角三角形分成两个等腰三角形; ②分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍. 二、性质的应用 1、2 1倍关系求值 例1、如图,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= . 2、证明线段相等 例2、如图,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB 2 1AD =,点E 、F 分别为边BC 、AC 的中点.(1)求证:DF=BE ;(2)过点A 作AG ∥BC ,交DF 于G .求证:AG=DG .

《直角三角形斜边上的中线等于斜边的一半》的专题训练

直角三角形的性质习题 1、如图,在锐角三角形ABC中,AD⊥BC于D,E、F、G分别是AC、AB、BC的中点。 求证:四边形OEFG是等腰梯形。 B G D C 2、如图所示,BD、CE是三角形ABC的两条高,M、N分别是BC、DE的中点 求证:MN⊥DE C 3、已知梯形ABCD中,∠B+∠C=90o,EF是两底中点的连线,试说明AB-AD=2EF B F C 4、如图,四边形ABCD中,∠DAB=∠DCB=90o,点M、N分别是BD、AC的中点。MN、

AC的位置关系如何?证明你的猜想。 D A B 5、过矩形ABCD对对角线AC的中点O作EF⊥AC分别交AB、DC于E、F,点G为AE 的中点,若∠AOG=30o 求证:3OG=DC F A 6、如图所示;过矩形ABCD的顶点A作一直线,交BC的延长线于点E,F是AE的中点,连接FC、FD。求证:∠FDA=∠FCB A B

1:已知,Rt △ABC 中,∠ACB=90°,AB=8cm ,D 为AB 中点,DE ⊥AC 于E , ∠A=30°,求BC ,CD 和DE 的长 2:已知:△ABC 中,AB=AC=BC (△ABC 为等边三角形)D 为BC 边上的中点, DE ⊥AC 于E.求证:AC CE 4 1 . 3:已知:如图AD ∥BC ,且BD ⊥CD ,BD=CD ,AC=BC. 求证:AB=BO. 4.△ABC 中,∠BAC=2∠B ,AB=2AC ,AE 平分∠CAB 。求证:AE=2CE 。 5.已知,Rt △ABC 中,∠ACB=90°,CD ⊥AB ,CE 为AB 边上的中线,且∠BCD=3∠DCA 。 求证:DE=DC 。 6.如图:AB=AC ,AD ⊥BC 于D ,AF=FD ,AE ∥BC 且交BF 的延长线于E ,若AD=9,BC=12,求

直角三角形的判定定理“HL”

1 / 2 第2课时 直角三角形的判定定理“HL ” (参考用时:30分钟 ) 1. 如图所示,∠C=∠D=90°,添加一个条件,可使用“HL ”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件: ①∠ABC=∠ABD;②AC=AD; ③BC=BD;④∠BAC=∠BAD. 适合的有( B ) (A)1个 (B)2个 (C)3个 (D)4个 2. 如图,△ABC 中,AB=AC,BD ⊥AC 于D,CE ⊥AB 于E,BD 和CE 交于O,AO 的延长线交BC 于F,则图中全等的直角三角形有( D ) (A)3对 (B)4对 (C)5对 (D)6对 3. 如图,在△ABC 中,∠BAC=90°,AB=AC,AE 是经过A 点的一条直线,且B,C 在AE 的两侧,BD ⊥AE 于D,CE ⊥AE 于E,CE=2,BD=6,则DE 的长为( D ) (A)2 (B)3 (C)5 (D)4 4.已知:如图,AE ⊥BC,DF ⊥BC,垂足分别为 E,F,AE=DF,AB=DC,则△ ABE ≌△ DCF (HL). 第4题图 5.如图,MN ∥PQ,AB ⊥PQ,点A,D,B,C 分别在直线MN 与PQ 上,点E 在AB 上,AD+BC=7, AD=EB,DE=EC,则AB= 7 . 第5题图 6. 如图,在△ABC 和△DCB 中,∠A=∠D=90°,AC=BD,AC 与BD 相交于点 O. (1)求证:△ABC ≌△DCB; (2)△OBC 是何种三角形?证明你的结论. (1)证明:在△ABC 和△DCB 中,∠A=∠D=90°, AC=BD,BC=CB.所以Rt △ABC ≌Rt △DCB(HL). (2)解:△OBC 是等腰三角形. 因为Rt △ABC ≌Rt △DCB,所以∠ACB=∠DBC, 所以OB=OC,所以△OBC 是等腰三角形. 7. 如图,已知Rt △ABC 中,∠ ACB=90°,CA=CB,D 是AC 上一点,E 在BC 的延长线上,且AE=BD,BD 的延长线与AE 交于点F.试通过观察、测量、猜想等方法来探索BF 与AE 有何特殊的位置关系,并说明你猜想的正确性 . 解:猜想:BF ⊥AE. 理由:因为∠ACB=90°,所以∠ACE=∠BCD=90°. 又BC=AC,BD=AE,所以△BDC ≌△AEC(HL). 所以∠CBD=∠CAE. 又因为∠CAE+∠E=90°,所以∠EBF+∠E=90°. 所以∠BFE=90°,即BF ⊥AE. 8.(1)如图1,点A,E,F,C 在一条直线 上,AE=CF,过点E,F 分别作DE ⊥AC,BF ⊥AC,若AB=CD,试证明BD 平分线段EF; (2)若将图1变为图2,其余条件不变时,上述结论是否仍然成立?请说明理由 . (1)证明:因为DE ⊥AC,BF ⊥AC, 所以∠DEC=∠BFA=90°. 因为AE=CF, 所以 AE+EF=CF+EF,

直角三角形斜边中线练习教学文案

直角三角形斜边中线 1、已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为() A.5 B.6 C.7 D.8 2.如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;②CD= 1 2 AE;③∠CDA=45°;④ AC AB AM =定值.其中正确的有() A.1个B.2个C.3个D.4个 3.如图,BE和AD是△ABC的高,F是AB的中点,则图中的三角形一定是等腰三角形的有() A.2个B.3个C.4个D.5个 4如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC,垂足为E,若BC=4,CD=25,则BE 的长为() A.25 B.35 C. 22 D. 22 (第2题) (第3题) (第4题) 二.填空题 1、若一个直角三角形斜边上的中线与斜边上的高所夹的锐角为34°,那么这个直角三角形的较小的内角是度. 2.如图:已知在△ABC中,∠C=25°,点D在边BC上,且∠DAC=90°,AB= 1 2 DC.求∠BAC的度数__________.3.如图所示,在?ABCD中,AD=2AB,M是AD的中点,CE⊥AB于E,∠CEM=40°,则∠DME是________. 4如图,在四边形ABCD中,AB=5,AD=AC=12,∠BAD=∠BCD=90°,M、N分别是对角线BD、AC的中点,则MN=_________. (第2题) (第3题) (第4题) 三.解答题 1如图所示,BD、CE是三角形ABC的两条高,M、N分别是BC、DE的中点 求证:MN⊥DE 变式:已知:如图△ABC中,∠ACB=90°,D是AC上任意一点,DE⊥AB于E,M,N分别是BD,CE的中点,求证:MN⊥CE. N E D C B A

几何证明-直角三角形

直角三角形全等的判定与直角三角形的性质 【知识精要】 直角三角形全等的判定 1、如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为H.L ) 2、三角形全等的判定方法:S.S.S, S.A.S, A.S.A, A.A.S, 在直角三角形中仍可用 直角三角形的性质 1、直角三角形的两个锐角互余 2、在直角三角形中,斜边上的中线等于斜边的一半 3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 4、在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。 直角三角形中常用的辅助线 1、斜边的中线 2、斜边的高 3、等腰三角形底边中线或地边上的高构造直角三角形。 【精解名题】 例1、有两条高相等的锐角三角形是等腰三角形。 例2、如图,在△ABC 中,AE 平分∠BAC ,DE 垂直平分BC 于点D ,EF ⊥AC ,交AC 的延长线于点F 。求证:AB=AC+2CF. 提示:联结EB 、EC ,作EG ⊥AB 于点G 。 例3、如图,在正方形ABCD 中,E 为AD 的中点,F 是BA 延长线上的一点,AF=2 1AB 。 求证:(1)DF=BE (2)DF ⊥BE

例4、如图,在锐角△ABC中,∠ABC=2∠C,AD⊥BC于点D,E为AC中点,ED的延长线交AB的延长线于点F . 求证:BF=BD 例5、如图,在Rt△ABC中,∠ACB=90°,点D、E在AB上,AD=AC,BE=BC。 求证:∠DCE=45° 例6、如图,已知AB=AC,∠A=120°,MN垂直平分AB,交BC于点M,求证:CM=2BM 提示:联结AM 例7、如图,在△ABC中,AB=AC,∠BAC=90°,AD//BC,BD=BC。求证:∠DCA=∠DBC

直角三角形的射影定理

A A ′ M N N A A ′ B ′ M 直角三角形的射影定理 教学目标 (一) 知识与技能 1.能应用相似三角形的性质解决相关的几何问题; 2.通过对射影定理的探究,使学生经历探索数学问题的过程,逐步形成探究问题的意识,发展探究问题的能力. (二)过程与方法 借助相似三角形的判定定理及性质定理,推导出射影定理. 教学重点 射影定理的证明. 教学难点 建立三角形以外的和三角形有关的元素与三角形相似比之间的关系. 教学过程设计 一 复习引入 在前面的学习中,大家已经知道了射影,请作出点A 及线段AB 在直线MN 上 的射影. 如图,⊿ABC 是直角三角形,CD 为斜边AB 上的高. 则 AC 、CD 在斜边AD 二 新知探究 如图,⊿ABC 是直角三角形,CD 为斜边AB 上的高.提出问题: 1.在这个图形中,有哪几组相似三角形? 2.结合相似三角形对应边成比例的性质,寻找每组三角形中的线段长度关系: ⊿ACD 与⊿CBD 中,CD 2= , ⊿BDC 与⊿BCA 中,BC 2 = , ⊿CDA 与⊿BCA 中,AC 2= . 这三个关系式形式完全一样,可结合射影定义及图像,观察三个关系式的特点记忆。 射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项. 三 例题分析 例1 如图,圆O 上一点C 在直 径AB 上的射影为D .AD=2,DB=8,求 CD 、AC 和BC 的长. B A D C A D O B C B

例2 如图,⊿ABC 中,顶点C 在AB 边上的射影为D ,且CD 2 =AD ·BD .求 证:⊿ABC 是直角三角形. (该例题表明,射影定理的逆定理也是成立的.在这个命题的证明中,可能对如何建立条件与结论之间的关系有些困难.可从如下两方面来思考:①“射影”总是与“垂直”相伴,由此可以与“直角三角形”相联系; ②我们往往将等式CD 2=AD ·BD 变形为DB CD CD AD ,这个比例式启发我们应当通过“相似三角形”来推出“直角三角形” .明确了上述思路就容易得出本例的证明了.) 四 课堂练习 1.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =6, DB =5,则AD 的长为________. 2.如图,矩形ABCD 中,E 是BC 上的点,AE ⊥DE ,BE =4, EC =1,则AB 的长为________. 3. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CD = 6,AD ∶DB =2∶3,则AC =________. 4.如图所示,圆O 上一点C 在直径AB 上的射影为D ,CD =4,BD =8,则圆O 的半径等于________.

直角三角形全等的证明及三角形全等提高题

7.如图,在△ABC中,已知D是BC中点,DE⊥AB,DF⊥AC,垂足分别是E、F,DE=DF. 求证:AB=AC 8.已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.你能说明BE与DF相等吗? 9.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,∠A=30°.求证:BD=1 4 AB C D F 1 2 A B

10.如图,在△ABC 中,AB =AC ,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于E . (1)若BC 在DE 的同侧(如图①)且AD =CE ,说明:BA ⊥A C . (2)若BC 在DE 的两侧(如图②)其他条件不变,问AB 与AC 仍垂直吗?若是请予证明,若不是请说明理由. 1已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且角B+角D=180度,求证:AE=AD+BE A B D C E 1 2 2已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。求证:AF=CE 。 3已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 F E A C D B A E D C B

4如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。① AB=AC ② BD=CD ③ BE=CF 7、已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B 8、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 9. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。求证:BF ⊥AC 。 10. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。求证:△ABC ≌△A’B’C’。 A B C D E F O A B C D E F A B C D A' B' C' D' 1 2 3 4

直角三角形的射影定理教案

第一讲 相似三角形的判定及有关性质 3.4 直角三角形的射影定理 备课组:高二数学组 主备人:柴海斌 持案人: 授课班级: 授课时间: 教学目标 知识与技能:掌握直角三角形中成比例的线段的性质,并能初步用它解决“直角三角形斜边上的高”图形中的计算和证明问题. 方法与过程: 通过问题设计,层层跟进,引导学生探索和发现射影定理。 情感与价值观:培养特殊化研究问题的方法和方程、转化思想。 教学重难点 重点:直角三角形的射影定理的证明及应用; 教学过程 二、教学引入 点和线段的正射影简称为射影 (让学生复习并挖掘下图中的基本性质.) 已知:如图,∠ACB=90°,CD ⊥AB 于D. (1)图中有几条线段? (答:6条,分别记为AB=c,AC=b,BC=a,CD=h,AD=m,BD=n.) (2)图中有几个锐角?数量有何关系? (3)图中有几对相似三角形?可写出几组比例式? 由图中ΔACD ∽ΔCBD ∽ΔABC ,可分别写出三组比例式: CD AD BD CD CB AC == (ΔACD ∽ΔCDB);AC CD BC BD AB CB == (ΔCBD ∽ΔABC); CA DA BC CD AB AC == (ΔACD ∽ΔABC). (4)观察第(3)题的结果,有几个带有比例中项的比例式?如何用一句话概括叙述这几个比例 中项的表达式? 只有三个比例中项的表达式,CD AD BD CD =,BC BD AB CB =,CA DA AB AC = (5)由上可得到哪些等积式? CD 2=AD ·BD ,BC 2=BD ·BA ,AC 2=AD ·AB (二)直角三角形的射影定理 直角三角形斜边上的高是两直角边在斜边上的射影的比例中项;两直角边分别是它们在斜边上的射影与斜边的比例中项。 请同学们自己写出已知条件并证明。 已知:在RT △ABC 中,∠ABC=90。 ,CD ⊥AB 于D 。 求证:CD 2=AD*BD BC 2=BD*AB AC 2=AD*AB 证明:在RT △ABC 中,因为∠ABC=90。 CD ⊥AB ∠B+∠DCB=90o , ∠ACD+∠DCB=90o A B A B

2016届中考复习数学真题汇编20:直角三角形与勾股定理(含命题、定理和证明)(含答案) - 学生版

一、选择题 1. (2015浙江台州,8,4分)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能 ...是() A.8cm B.C.5.5cm D.1cm 2.(2015山东省德州市,8,3分)下列命题中,真命题的个数是 ①若-1

直角三角形的证明

第一章 三角形的证明 第二节 直角三角形(二) 模块一 预习反馈 一、学习准备 1、一般三角形全等判定方法有: 。 2、直角三角形的判定:①有一个角是_____的三角形叫做直角三角形。 ②有两个角互余的三角形是_____三角形。 ③如果三角形两边的平方___等于第三边的______,那么这个三角形是____三角形。 3、阅读教材:第2节《直角三角形》 二、教材精读 4、已知:如图,△ABC 和△A’B’C’中∠C=∠C’=90°,且AB=A’B’,BC=B’C’, 求证:△ABC ≌△A’B’C’ 证明:Rt △ABC 和Rt △A’B’C’中, AC 2=___________ , A’C’2=____________2,(勾股定理) ∵AB=A’B’,BC=B’C’,’ ∴AC 2=______ ∴AC=_______ ∴△ABC ≌A’B’C’( ) 归纳:斜边和一条___________对应相等的两个______三角形全等。(“斜边、直 角边”或“__”) 推理格式:在Rt △ABC 和Rt △A’B’C’中,∠C=∠C’=90° ∵ AB=A’B’ BC=B’C’ ∴△ABC ____A’B’C’(HL) 实践练习: 如图,∠B =∠E = 90°,AC = DF ,BF = EC 。求证:BA = ED 。 模块二 合作探究 5、在Rt △ABC 中,∠C = 90°,且DE ⊥AB ,CD = ED ,求证:AD 是∠BAC 的角平分线。 E A C B A D E

21E F A B C 6、如图,∠ACB = ∠ADB = 90°,AC = AD ,E 是AB 上的一点,求证:CE = DE 。 7、用三角尺可以作角平线,如图,在已知∠AOB 的两边上分别取点M 、N ,使OM=ON ,再过点M 作OA 的垂线,过点N 作OB 的垂线,两垂线交于点P ,那么射线OP 就是∠AOB 的平分线。 证明: 模块三 形成提升 1、如图,Rt △ABC 和Rt △DEF ,∠C =∠F =90°。 (1)若∠A =∠D ,BC =EF ,则Rt △ABC ≌Rt △DEF 的依据是__________. (2)若∠A =∠D ,AC =DF ,则Rt △ABC ≌Rt △DEF 的依据是__________. (3)若AC =DF ,CB =F E ,则Rt △ABC ≌Rt △DEF 的依据是__________. 2、如图,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,BD = CD 。 求证:EB = FC 。 模块四 小结反思 一、本课知识: 1、斜边和一条___________对应相等的两个______三角形全等。(“斜边、直角边”或“__”) C B A D E

相关文档
最新文档