matlab平面连杆结构分析(机械原理课程设计)
基于MATLAB的平面四连杆机构运动学分析
![基于MATLAB的平面四连杆机构运动学分析](https://img.taocdn.com/s3/m/0b847390aeaad1f346933fd0.png)
一、课程设计内容及要求:1.对连杆机构运动工作原理及运动参数有一定理解2.掌握MATLAB基本命令3.了解MATLAB编程的基本知识,并能编写简单M文件4.了解MATLAB图形界面设计的基本知识5.课程设计说明书:应阐述整个课程设计内容,要突出重点和特色,图文并茂,文字通畅。
应有目录、摘要及关键词、正文、参考文献等内容,字数一般不少于6000字。
二、主要参考资料有关复杂刀具参数计算及结构设计、机械制造工艺与设备的手册与图册。
三、课程设计进度安排指导教师(签名):时间:教研室主任(签名):时间:院长(签名):时间:目录1平面连杆机构的运动分析 (1)1.1机构运动分析的任务、目的和方法 (1)1.2机构的工作原理 (1)1.3机构的数学模型的建立 (1)1.3.1建立机构的闭环矢量位置方程 (1)1.3.2求解方法 (2)2 基于MATLAB程序设计 (4)2.1程序流程图 (4)2.2 M文件编写 (6)2.3程序运行结果输出 (7)3基于MATLAB图形界面设计 (11)3.1界面设计 (11)3.2代码设计 (12)4 小结 (17)参考文献 (18)1 平面连杆机构的运动分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
matlab平面连杆结构分析(机械原理课程设计)
![matlab平面连杆结构分析(机械原理课程设计)](https://img.taocdn.com/s3/m/7345655acd7931b765ce0508763231126edb77d6.png)
优化参数:连杆 长度、角度、质 量等
优化结果:得到 最优的连杆结构 设计
感谢观看
汇报人:
平面连杆结构的应用范围
机械工程:用于设计、分析和优化机械设 备
生物医学:用于设计、分析和优化假肢、 康复设备等
航空航天:用于设计、分析和优化飞机、 火箭等航天器
机器人技术:用于设计、分析和优化机器 人关节、机械臂等
汽车工业:用于设计、分析和优化汽车底 盘、悬挂系统等
建筑工程:用于设计、分析和优化建筑结 构、桥梁等
03
平面连杆结构的运动学分析
平面连杆结构的运动学方程
平面连杆结构的运动学方程是描述连杆系统运动状态的数学模型 运动学方程包括位移方程、速度方程和加速度方程 运动学方程的建立需要知道连杆系统的几何参数和运动参数 运动学方程的求解可以通过数值积分方法或解析方法进行
平面连杆结构的运动学特性
运动学方程:描述连杆结构的运动状态 运动学参数:包括位移、速度、加速度等 运动学约束:限制连杆结构的运动范围 运动学仿真:通过计算机模拟连杆结构的运动过程
平面连杆结构的形状优化
优化目标:提 高连杆结构的 稳定性和刚度
优化方法:有 限元分析、拓
扑优化等
优化参数:连 杆的长度、宽
度、厚度等
优化效果:提 高连杆结构的 承载能力和使
用寿命
平面连杆结构的拓扑优化
拓扑优化:通过改变材料的分布和形状, 约束条件:结构的刚度、强度、稳定
以实现最优的结构性能
性等性能要求
目标函数:最小化重量或体积,同时 满足给定的性能要求
优化方法:遗传算法、粒子群算法、 模拟退火算法等
设计变量:材料的分布和形状
应用领域:汽车、航空航天、机械制 造等
机械设计matlab课程设计
![机械设计matlab课程设计](https://img.taocdn.com/s3/m/337a8255773231126edb6f1aff00bed5b8f37340.png)
机械设计matlab课程设计一、课程目标知识目标:1. 理解并掌握机械设计中常用的MATLAB命令和功能;2. 学会运用MATLAB进行机械系统建模、仿真和优化;3. 掌握运用MATLAB解决机械设计中的实际问题的方法和步骤。
技能目标:1. 能够运用MATLAB进行数据分析和处理,提高数据处理能力;2. 能够熟练使用MATLAB进行机械设计绘图,提高绘图技能;3. 能够独立完成机械设计相关MATLAB程序编写和调试,提升编程能力。
情感态度价值观目标:1. 培养学生对机械设计MATLAB课程的学习兴趣,激发学习热情;2. 培养学生严谨的科学态度,强调实际操作与理论知识的相结合;3. 增强学生的团队协作意识,培养合作解决问题的能力。
课程性质:本课程为实践性较强的学科,结合机械设计与MATLAB软件应用,注重培养学生的实际操作能力和解决问题的能力。
学生特点:学生具备一定的机械设计基础知识,对MATLAB软件有一定了解,但实际操作能力有待提高。
教学要求:结合课程性质和学生特点,采用任务驱动、案例教学等方法,使学生在实践中掌握知识,提高技能,培养情感态度价值观。
通过分解课程目标为具体学习成果,为教学设计和评估提供明确依据。
二、教学内容1. MATLAB基础命令与操作:介绍MATLAB的基本命令、数据类型、矩阵运算等,为学生后续学习打下基础。
(对应教材第一章)2. MATLAB绘图与可视化:讲解MATLAB绘图功能,如二维、三维图形绘制,让学生能够将机械设计结果可视化。
(对应教材第二章)3. 机械系统建模与仿真:结合教材第三章内容,教授学生如何使用MATLAB 进行机械系统的建模、仿真和结果分析。
4. 机械设计优化方法:介绍教材第四章内容,使学生掌握运用MATLAB进行机械设计优化的基本方法。
5. MATLAB在机械设计中的应用案例:分析教材第五章案例,让学生了解MATLAB在机械设计领域的实际应用。
6. 实践操作与项目实战:组织学生进行实践操作,结合教材内容开展项目实战,巩固所学知识,提高实际操作能力。
基于matlab的连杆机构设计
![基于matlab的连杆机构设计](https://img.taocdn.com/s3/m/476809ac79563c1ec4da717f.png)
基于matlab的连杆机构设计————————————————————————————————作者: ————————————————————————————————日期:目录1平面连杆机构的运动分析 (1)1.2 机构的工作原理 (1)1.3机构的数学模型的建立 (1)1.3.1建立机构的闭环矢量位置方程...................................................11.3.2求解方法.....................................................................22基于MATLAB程序设计 (4)2.1 程序流程图 (4)2.2 M文件编写 (6)2.3程序运行结果输出 (7)3 基于MATLAB图形界面设计 (11)3.1界面设计……………………………………………………………………………………………113.2代码设计……………………………………………………………………………………………124 小结 (17)参考文献 (18)1平面连杆机构的运动分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
基于matlab的平面连杆机构优化设计
![基于matlab的平面连杆机构优化设计](https://img.taocdn.com/s3/m/0e79aa1976232f60ddccda38376baf1ffc4fe309.png)
基于matlab的平面连杆机构优化设计
基于Matlab的平面连杆机构优化设计是指利用Matlab软件平台,对平面连杆机构进行优化设计的过程。
平面连杆机构是一种常见的机械传动机构,广泛应用于各种机械系统中,如机械手、凸轮机构等。
优化设计是指通过数学建模、计算和分析,寻求满足一定性能要求的最优设计方案。
在基于Matlab的平面连杆机构优化设计中,通常需要建立机构的数学模型,包括几何模型和运动学模型。
几何模型描述机构的几何形状和尺寸,而运动学模型则描述机构的位置、速度和加速度等运动参数。
然后,利用Matlab 进行数值计算和分析,以确定最优的设计参数。
具体来说,基于Matlab的平面连杆机构优化设计可以分为以下几个步骤:1.建立数学模型:根据实际问题,建立平面连杆机构的几何模型和运动学模
型,将实际问题转化为数学问题。
2.定义优化目标:根据设计要求,定义优化目标函数,如最小化某个性能参
数、最大程度满足某个约束条件等。
3.确定设计变量:选择影响优化目标的主要参数作为设计变量,如连杆长度、
角度等。
4.约束条件:根据实际应用需求和机构运动特性,定义约束条件,如角度范
围、位移范围等。
5.求解优化问题:利用Matlab的优化工具箱进行数值计算,求解优化问题,
得到最优设计方案。
6.结果分析和验证:对优化结果进行分析和验证,确保最优设计方案的有效
性和可行性。
总之,基于Matlab的平面连杆机构优化设计是一种通过数学建模和数值计算来寻求最优设计方案的方法。
它可以帮助设计师快速找到满足性能要求的设计方案,提高设计效率和产品质量。
基于MATLAB的平面连杆机构运动分析及动画毕业论文
![基于MATLAB的平面连杆机构运动分析及动画毕业论文](https://img.taocdn.com/s3/m/5276692b6c175f0e7dd13733.png)
基于MATLAB的平面连杆机构运动分析及动画摘要建立了平面机构运动分析的数学模型,利用MATLAB进行了编程并设计了计算交互界面进而求解,为解析法的复杂计算提供了便利的方法,此方法也同样适用于复杂平面机构的运动分析,并为以后机构运动分析的通用软件的设计提供了基础。
建立了平面四杆机构运动分析的数学模型,以MATLAB 程序设计语言为平台,将参数化设计与交互式相结合,设计了平面四杆机构仿真软件,该软件具有方便用户的良好界面,并给出界面设计程序,从而使机构分析更加方便、快捷、直观和形象。
设计者只需输入参数就可得到仿真结果,再将运行结果与设计要求相比较,对怎样修改设计做出决策,它为四杆机构设计提供了一种实用的软件与方法。
以一种平面六连杆为例建立了平面多连杆机构的运动分析数学模型,应用MATLAB 软件进行了优化设计和仿真分析,为机构优化设计提供了一种高效、直观的仿真手段,提高了对平面多连杆机构的分析设计能力。
同时,也为其他机构的仿真设计提供了借鉴。
关键词:解析法,平面连杆机构,MATLAB,运动分析,运动仿真Based on the MATLAB Planar Linkage Mechanism MotionAnalysis and AnimationABSTRACTThis article established the kinematical mathematic model of the planar mechanism ,which is programmed and solved with designing the mutual interface of the calculation by MATLAB.This convenient method is provided for the complicated calculation of the analysis and also applicable to the kinematical analysis of the complex planar mechanism.A mathematical model of motion analysis was established in planar four- linkage ,and emulational software was developed. The software adopted MATLAB as a design language. It combined parametric design with interactive design and had good interfacefor user. Thus,it was faster and more convenient to analyse linkage. The emulational result was obtained as soon as input parameters was imported and the devisers can make decision-making of modification by the comparing emulational result with design demand. It provides an applied software and method for linkage.This paper took a planar six-linkage mechanism as a example to set up the mathematics model of planar multi-linkage mechanisms, and made the optimization design and simulation by the MATLAB software. It gave a efficiently and directly method to optimization design of mechanisms, and improved the ability of analyzing and designing the planar multi-linkage mechanisms. At the same time, it also provides a use for reference to the design and simulation for other mechanisms.KEY WORDS: analysis, planar linkage mechanisms, MATLAB, kinematical analysis, kinematical simulation目录1.1 平面连杆机构的研究意义 (1)1.2 平面连杆机构的研究现状 (1)1.3 MATLAB软件介绍 (2)1.3.1 MATLAB简介 (2)1.3.2 MATLAB软件的特点 (4)1.3.3 用MATLAB处理工程问题优缺点 (5)第2章平面机构运动分析的复数矢量解 (6)第3章平面四杆机构运动分析 (8)3.1 铰链四杆机构曲柄存在条件 (8)3.2 平面四杆机构的位移分析 (9)3.3 平面四杆机构的速度分析 (14)3.4 平面四杆机构的加速度分析 (15)第4章基于MATLAB的平面四杆机构运动分析 (17)4.1 基于MATLAB的平面四杆机构运动参数输入界面 (17)4.2 基于MATLAB的平面四杆机构运动参数计算 (21)4.3 基于MATLAB的平面四杆机构运动分析界面 (24)4.4 基于MATLAB的平面四杆机构运动仿真 (26)4.5 基于MATLAB的平面四杆机构运动参数清空及退出 (30)第5章平面六杆机构运动分析 (32)5.1 构建平面六杆机构数学模型 (32)5.2 平面六杆机构的运动分析 (33)5.2.1 曲柄导杆机构的运动分析 (33)5.2.2 摆动滑块机构的运动分析 (36)第6章基于MATLAB的平面六杆机构运动分析 (39)6.1 基于MATLAB的平面六杆机构运动参数输入界面 (39)6.2 基于MATLAB的平面六杆机构运动参数计算 (45)6.3 基于MATLAB的平面六杆机构运动分析界面 (49)6.4 基于MATLAB的平面六杆机构运动仿真 (52)6.5 基于MATLAB的平面六杆机构运动参数清空及退出 (56)结论 (57)参考文献 (59)第1章前言1.1 平面连杆机构的研究意义机构运动分析是不考虑引起机构运动的外力的影响,而仅从几何角度出发,根据已知的原动件的运动规律(通常假设为匀速运动),确定机构其它构件上各点的位移、速度、加速度,或构件的角位移、角速度、角加速度等运动参数。
机械原理课程教案—平面连杆机构及其分析与设计
![机械原理课程教案—平面连杆机构及其分析与设计](https://img.taocdn.com/s3/m/a60df12ea31614791711cc7931b765ce05087a21.png)
机械原理课程教案一平面连杆机构及其分析与设计一、教学目标及基本要求1掌握平面连杆机构的基本类型,掌握其演化方法。
2,掌握平面连杆机构的运动特性,包括具有整转副和存在曲柄的条件、急回运动、机构的行程、极限位置、运动的连续性等;3.掌握平面连杆机构运动分析的方法,学会将复杂的平面连杆机构的运动分析问题转换为可用计算机解决的问题。
4.掌握连杆机构的传力特性,包括压力角和传动角、死点位置、机械增益等;正确理解自锁的概念,掌握确定自锁条件的方法。
5,了解平面连杆机构设计的基本问题,掌握根据具体设计条件及实际需要,选择合适的机构型式;学会按2~3个刚体位置设计刚体导引机构、按2~3个连架杆对应位置设计函数生成机构及按K值设计四杆机构;对机构分析与设计的现代解析法有清楚的了解。
二、教学内容及学时分配第一节概述(2学时)第二节平面连杆机构的基本特性及运动分析(4.5学时)第三节平面连杆机构的运动学尺寸设计(3.5学时)三、教学内容的重点和难点重点:1.平面四杆机构的基本型式及其演化方法。
2.平面连杆机构的运动特性,包括存在整转副的条件、从动件的急回运动及运动的连续性;平面连杆机构的传力特性,包括压力角、传动角、死点位置、机械增益。
3.平面连杆机构运动分析的瞬心法、相对运动图解法和杆组法。
4.按给定2~3个位置设计刚体导引机构,按给定的2~3个对应位置设计函数生成机构,按K值设计四杆机构。
难点:1.平面连杆机构运动分析的相对运动图解法求机构的加速度。
2.按给定连架杆的2~3个对应位置设计函数生成机构。
四、教学内容的深化与拓宽平面连杆机构的优化设计。
五、教学方式与手段及教学过程中应注意的问题充分利用多媒体教学手段,围绕教学基本要求进行教学。
在教学中应注意要求学生对基本概念的掌握,如整转副、摆转副、连杆、连架杆、曲柄、摇杆、滑块、低副运动的可逆性、压力角、传动角、极位夹角、行程速度变化系数、死点、自锁、速度影像、加速度影像、装配模式等;基本理论和方法的应用,如影像法在机构的速度分析和加速度分析中的应用、连杆机构设计的刚化一反转法等。
机械原理4-23MATLAB平面连杆机构动力学分析
![机械原理4-23MATLAB平面连杆机构动力学分析](https://img.taocdn.com/s3/m/10e1bd42336c1eb91a375d97.png)
基于MATLAB/Solidworks COSMOSMotion的平面连杆机构动力学分析07208517王锡霖4-23在图示的正弦机构中,已知l AB =100 mm,h1=120 mm,h2 =80 mm,W1 =10 rad/s(常数),滑块2和构件3的重量分别为G2 =40 N和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。
试用解析法求机构在Φ1=60°、150°、220°位置时各运动副反力和需加于。
构件1上的平衡力偶Mb分别对三个构件进行受力分析如图:构件3受力图构件2受力图构件1受力图(1)滑块2:V S2 =L AB W1 ①a s2 = L AB W12②构件3:S=L AB sinΦ1 ③V3=L AB W1 COSΦ1 ④a3=-L AB W12 sinΦ1 ⑤(2)确定惯性力:F12=m2as2=(G2/g)LABW12 ⑥F13=m3a3=(G3/g)LABW12sinΦ1 ⑦(3)各构件的平衡方程:构件3:∑Fy=0,FR23 =Fr-F13∑Fx=0,FR4’=FR4∑MS3 =0,FR4=FR23LAcosΦ1/h2构件2:∑Fx=0,FR12x=F12cosΦ1∑Fy=0,FR12y=FR32-F12sinΦ1构件1:∑Fx=0,FR41x=FR12x∑Fy=0,FR41y=FR12y∑MA =0,Mb=FR32LABcosΦ1总共有八个方程,八个未知数。
归纳出一元八次方程矩阵:1 0 0 0 0 0 0 0 FR23 Fr-F130 1 -1 0 0 0 0 0 FR4’ 0-LAB COSΦ1/h20 1 0 0 0 0 0 FR40 0 0 1 0 0 0 0 FR12x = F12cosΦ1-1 0 0 0 1 0 0 0 FR12y -F12sinΦ10 0 0 -1 0 1 0 0 FR41x 00 0 0 0 -1 0 1 0 FR41y 0-LABCOSΦ1 0 0 0 0 0 0 1 Mb 0 AX=B进而可得:X=A\B。
[整理]Matlab课程作业—按给定轨迹设计平面连杆机构.
![[整理]Matlab课程作业—按给定轨迹设计平面连杆机构.](https://img.taocdn.com/s3/m/012a346eb52acfc788ebc959.png)
题目:按给定轨迹设计平面连杆机构A j A j 1j j 1A Ax Ay min max 12A A =30mm =20mm []=, []=180ϕϕϕγδγδγ=--︒︒︒-︒试设计一曲柄摇杆机构,再现给定轨迹上的个点。
给定轨迹点坐标及与此对应主动曲柄O 相对第一位置O 的转角,如表1所列, 固定铰接点O 的坐标O ,O ,许用传动角[]=40,即[]=40[]=140。
解:(1) 位移分析在右手直角坐标系中,角位移以逆时针方向为正,顺时针方向为负。
设给定机构尺寸及第j 个位置的转角j ϕ。
图1 铰链四杆机构由图1所示四边形A B O ABO 得 12031203 cos cos cos cos sin sin sin sin j j j j j jl l l l l l l l ϕθαψϕθαψ+=+⎧⎪⎨+=+⎪⎩,消去j θ后得,cos sin 0j j j j E F G ψψ++=将三角函数变换公式2221tan (/2)2tan(/2)cos , sin =1tan (/2)1tan (/2)j j j j j ψψψψψψ-=++代入上式,得到关于tan(/2)j ψ的一元二次方程式,解得j j jψ式中22223201013cos cos sin sin 2j j j j j j j E F l l E l l F l l G l αϕαϕ++-=-=-=,,则33sin =arctancos j j j j jF l E l ψθψ++对于连杆上点P ,有 1414cos cos()sin sin()jx Ax j j jy Ay j j P O l l P O l l ϕθβϕθβ=+++⎧⎪⎨=+++⎪⎩(2) 设计变量对平面铰链四杆机构,其连杆上某点最多能精确再现预定轨迹上的9个点,1j 121314ϕϕϕϕ结合表1中值,可知、和应为设计变量。
A B A B A AB B O O O O 、、、和AP的长度01234l l l l l 、、、和,以及1αβϕ、和均未知,也为设计变量。
机械原理matlab课程设计
![机械原理matlab课程设计](https://img.taocdn.com/s3/m/1868b3e2f021dd36a32d7375a417866fb84ac0fb.png)
机械原理matlab课程设计一、教学目标本课程的学习目标主要包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握机械原理的基本概念、理论和方法;技能目标要求学生能够运用MATLAB软件进行机械系统仿真和分析;情感态度价值观目标要求学生培养创新意识、团队合作精神和自主学习能力。
通过本课程的学习,学生将能够:1.描述和解释机械原理的基本概念和理论。
2.使用MATLAB软件进行机械系统仿真和分析。
3.提出问题、解决问题并开展创新设计。
4.能够进行团队合作,共同完成项目任务。
二、教学内容教学内容将根据课程目标进行选择和,确保内容的科学性和系统性。
教学大纲将明确教学内容的安排和进度,指出教材的章节和列举内容。
主要内容包括:1.机械原理的基本概念和理论,包括力学、动力学、运动学等方面。
2.MATLAB软件的基本操作和功能,包括矩阵运算、绘图、编程等。
3.机械系统仿真的方法和技巧,包括模型建立、参数调整、结果分析等。
4.机械系统设计案例分析,包括机器人的运动控制、机构的优化设计等。
三、教学方法为了激发学生的学习兴趣和主动性,将采用多种教学方法。
包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过教师的讲解和演示,向学生传授基本概念和理论知识。
2.讨论法:学生进行小组讨论,促进学生之间的交流和思维碰撞。
3.案例分析法:通过分析实际案例,引导学生运用所学知识解决实际问题。
4.实验法:安排实验课程,让学生亲自动手进行实验操作和数据分析。
四、教学资源为了支持教学内容和教学方法的实施,将选择和准备适当的教学资源。
包括教材、参考书、多媒体资料和实验设备等。
1.教材:选择权威、实用的教材,作为学生学习的主要参考资料。
2.参考书:推荐一些相关的参考书籍,供学生深入学习和拓展知识。
3.多媒体资料:制作精美的PPT、教学视频等多媒体资料,增强课堂教学的趣味性和效果。
4.实验设备:准备必要的实验设备,让学生能够进行实际操作和验证。
基于matlab的平面四连杆机构设计以及该机构的运动分析参考模板
![基于matlab的平面四连杆机构设计以及该机构的运动分析参考模板](https://img.taocdn.com/s3/m/5b8b10e8a32d7375a517808c.png)
基于matlab的平面四连杆机构设计以及该机构的运动仿真分析摘要四连杆机构因其结构方便灵活,能够传递动力并实现多种运动形式而被广泛应用于各个领域,因此对其进行运动分析具有重要的意义。
传统的分析方法主要应用几何综合法和解析综合法,几何综合法简单直观,但是精确度较低;解析法精确度较高,但是计算工作量大。
随着计算机辅助数值解法的发展,特别是MATLAB软件的引入,解析法已经得到了广泛的应用。
对于四连杆的运动分析,若应用MATLAB 则需要大量的编程,因此我们引入proe软件,我们不仅可以在此软件中建立实物图,而且还可以对其进行运动仿真并对其运动分析。
在设计四连杆时,我们利用解析综合法建立数学模型,再根据数学模型在MATLAB中编程可以求得其他杆件的长度。
针对范例中所求得的各连杆的长度,我们在proe软件中画出其三维图(如图4)并在proe软件中进行仿真分析得出CB,的角加速度的变化,从而得到CB,两接触处所受到的力是成周期性变化的,可以看出CB,两点处的疲劳断裂,我们提B,两点处极易疲劳断裂,针对C出了在设计四连杆中的一些建议。
关键字:解析法 MATLAB 软件 proe 软件 运动仿真建立用解析法设计平面四杆机构模型对于问题中所给出的连架杆AB 的三个位置与连架杆CD 的三个位置相对应,即三组对应位置为:332211,,,,,ψϕψϕψϕ,其中他们对应的值分别为: 52,45,82,90,112,135,为了便于写代数式,可作出AB 与CD 对应的关系,其图如下:图—2 AB 与CD 三个位置对应的关系通过上图我们可以通过建立平面直角坐标系并利用解析法来求解,其直角坐标系图如下:φααi θi φi图—3 平面机构直角坐标系通过建立直角坐标系OXY ,如上图所示,其中0α与0φ为AB 杆与CD 杆的初始角,各杆件的长度分别用矢量d c b a ,,,,表示,将各矢量分别在X 轴与Y 轴上投影的方程为⎩⎨⎧=++=+)sin(*)sin(*)sin(*)cos(*)cos(*)cos(*φθαφθαc b a c d b a在上述的方程中我们可以消除θ,从而可以得到α与φ之间的关系如下:)cos(2)cos(2)cos(2)(2222αφαφab ac cd b d c a +-=+-++ (1) 为便于化简以及matlab 编程我们可以令:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-++=c d H a d H ac b d c a H 32222212 (2) 通过将(2)式代入(1)式中则可以化简得到如下等式: )cos()cos()cos(321αφαφH H H +-=+ (3)我们可以通过(3)式将两连架杆对应的位置带入(3)式中,我们可以得到如下方程:⎪⎩⎪⎨⎧+-=++-=++-=+)cos()cos()cos()cos()cos()cos()cos()cos()cos(333332123222211311121ϕψϕψϕψϕψϕψϕψH H H H H H H H H (4) 联立(4)方程组我们可以求得321,,H H H ,再根据(2)中的条件以及所给定的机架d 的长度,我们可以求出其它杆件的长度为:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++===1222322acH d c a b H d c H d a (5)四连杆设计范例:在日常生活中,我们经常看到消防门总能自动关上,其实它是利用四连杆机构与弹簧组成的。
平面连杆机构运动分析&动态静力分析及机械运动方程求解的Matlab语言m文件使用说明及算例
![平面连杆机构运动分析&动态静力分析及机械运动方程求解的Matlab语言m文件使用说明及算例](https://img.taocdn.com/s3/m/fd648b8c02d276a200292e61.png)
构件上点的运动分析函数文件(m文件)格式:function [ 输出参数] = 函数名(输入参数)p_crank.m function [p_Nx,p_Ny]=p_crank(Ax,Ay,theta,phi,l1)v_crank.m function [v_Nx,v_Ny]=v_crank(l1,v_Ax,v_Ay,omiga,theta,phi)a_crank.m function [a_Nx,a_Ny]=a_crank(l1,a_Ax,a_Ay,alpha,omiga,theta,phi)函数中的符号说明函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )p_RRR.m function [cx,cy,theta2,theta3]=p_RRR(bx,by,dx,dy,l2,l3,m)v_RRR.m function [vcx,vcy,omiga2,omiga3]=v_RRR(vbx,vby,vdx,vdy,cx,cy,bx,by,dx,dy)a_RRR.m function [acx,acy,alpha2,alpha3]=a_RRR(abx,aby,adx,ady,cx,cy,bx,by,dx,dy,omiga2,omiga3)函数中的符号说明m =1 m = -1RRR Ⅱ级杆组运动分析函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )p_RRP.m function [cx,cy,sr,theta2]=p_RRP(bx,by,px,py,theta3,l2,m)v_RRP.m function [vcx,vcy,vr,omiga2]=v_RRP(bx,by,cx,cy,vbx,vby,vpx,vpy,theta2,theta3,l2,sr,omiga3) a_RRP.m function [acx,acy,ar,alpha2]=a_RRP(bx,by,cx,cy,px,py,abx,aby,apx,apy,theta3,vr,omiga2,omiga3,alpha3)函数中的符号说明1 1∠BCP < 90︒,∠BC 'P > 90︒,m =1RRP Ⅱ级杆组运动分析函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )p_RPR.m function [dx,dy,sr,theta3]=p_RPR(bx,by,cx,cy,e,l3,m)v_RPR.m function [vdx,vdy,omiga3,vr]=v_RPR(bx,by,cx,cy,dx,dy,vcx,vcy,vbx,vby,theta3) a_RPR.m function [adx,ady,alpha3,ar]=a_RPR(bx,by,cx,cy,dx,dy,acx,acy,abx,aby,vr,omiga3,theta3)RPR Ⅱ级杆组运动分析实线位置,m =1 虚线位置,m = -1函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )F_RRR.m function [R12x,R12y,R23x,R23y,R34x,R34y]=F_RRR(bxy,cxy,dxy,s2,s3,m2,m3,Js2,Js3,M2,M3,F2,F3,as2,as3,alpha2,alpha3)RRR Ⅱ级杆组力分析R 23xF 2R F 3xR 23函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )F_RRP.m function [R12x,R12y,R23x,R23y,R34x,R34y,lcn]=F_RRP(bxy,cxy,s2,s3,m2,m3,Js2,Js3,M2,M3,F2,F3,theta3,as2,as3,alpha2,alph3)RRP Ⅱ级杆组力分析R 34函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )F_RPR.m function [R12x,R12y,R23x,R23y,R35x,R35y,lcn]=F_RRP(bxy,cxy,dxy,s2,s3,m2,m3,Js2,Js3,M2,M3,F2,F3,R34,theta3,as2,as3,alpha3)RPR Ⅱ级杆组力分析238. 作用有平衡力的构件力分析作用有平衡力的构件力分析函数文件(m文件)格式:function [ 输出参数] = 函数名(输入参数)F_Bar.m function [R01x,R01y,Mb]=F_Bar(axy,bxy,s1,m1,Js1,M1,F1,R12,as1,alpha1)函数中的符号说明9. 平面连杆机构运动分析算例例1图示曲柄摇杆机构,已知l 1=150mm ,l 2=220mm ,l 3=250mm ,l 4=300mm ,曲柄以n 1=100r/min 逆时针匀速转动,分析该机构的运动。
基于matlab的平面四杆机构运动分析_毕业论文
![基于matlab的平面四杆机构运动分析_毕业论文](https://img.taocdn.com/s3/m/539f65697fd5360cba1adb52.png)
……………………. ………………. …………………毕业论文基于MATLAB的平面四杆机构运动分析院部机械与电子工程学院装订线……………….……. …………. …………. ………摘要 (I)Abstract (II)1 绪论 (1)2 平面四杆机构运动分析 (2)2.1 平面四杆机构简介 (2)2.2 平面四杆机构类型分析 (3)2.3 建立平面四杆机构的数学模型 (4)2.3.1 建立平面四杆机构的封闭矢量位置方程式 (4)2.3.2 运用矢量法和矩阵法求解封闭矢量方程式 (5)2.3.3 求解过程涉及的数学、物理计算方法 (6)3 基于MATLAB 的运动分析程序设计 (7)3.1 MATLAB简介 (7)3.2 程序设计流程 (8)3.3 编写程序的M文件 (10)3.3.1编写fun函数 (10)3.3.2编写主程序 (10)3.4 程序运行输出结果 (12)4 基于MATLAB的GUI分析系统设计 (15)4.1 GUI简介 (15)4.2 GUI界面设计 (15)4.3 GUI代码编写 (16)4.3.1 Edit Text代码编写 (16)4.3.2 Pop-up Menu代码编写 (16)4.4 GUI分析系统运行效果 (17)5 结论 (18)参考文献 (20)致谢 (20)附录 (20)附录一主函数程序代码 (20)附录二popupmenu4_Callback函数下程序代码 (23)Abstract (II)1 Introduction (1)2 The analysis of motion for planar four-bar mechanism (2)2.1 Intoduction to the planar four-bar mechanism (2)2.2 Analysis for the types of planar four-bar mechanism (3)2.3 Build the mathematical model of planar four-bar mechanism (4)2.3.1 Build the closed position vector equation for planar four-bar mechanism (4)2.3.2 Apply the vector & matrix method to solve the closed vector equation (4)2.3.3 Mathematical & physical calculation method involved in the solving process (5)3 The program design for the motion analysis based on MATLAB (7)3.1 Introduction to MATLAB (7)3.2 The program design process (7)3.3 Write the M-file for program (9)3.3.1 Write the fun function (9)3.3.2 Write the main function (9)3.4 The output of running the program (11)4 The design of GUI analysis system based on MATLAB (14)4.1 Introducton to GUI (14)4.2 The interface design of GUI (14)4.3 Write the GUI code (15)4.3.1 Write the Edit Text code (15)4.3.2 Write the Pop-up Menu code (15)4.4 The running effect of the GUI analysis system (16)5 Conclusion (19)References (20)Acknowledgement (21)Appendix (22)Appendix I The main function code (22)Appendix II The popupmenu4_Callback function code (25)基于MATLAB的平面四杆机构运动分析摘要:建立以平面四杆机构为研究对象的数学模型,以MATLAB软件为载体,利用MATLAB矩阵数据分析处理功能,设计了平面四杆机构运动分析程序。
(完整版)在MATLAB环境下开发平面连杆机构运动分析系统毕业设计
![(完整版)在MATLAB环境下开发平面连杆机构运动分析系统毕业设计](https://img.taocdn.com/s3/m/4bff5b50c850ad02de80417d.png)
在MATLAB环境下开发平面连杆机构运动分析系统摘要建立了铰链四杆机构运动分析的数学模型 ,以MATLAB程序设计语言为平台 ,将参数化设计与交互式相结合 ,设计了铰链四杆机构分析软件 ,该软件具有方便用户的良好界面 ,并给出界面设计程序 ,从而使机构分析更加方便、快捷、直观和形象.设计者只需输入参数就可得到分析结果 ,再将运行结果与设计要求相比较 ,对怎样修改设计做出决策.它为四杆机构设计提供了一种实用的软件与方法.关键词:平面四杆机构,MATLAB软件,运动分析,分析THE DEVELOPMENT OF SYSTEM FOR ANALYSIS OF MOTION IN PLANE FOUR BAR MECHANISM BASED ONMATLAB SOFTWAREAbstractA mathematical model of motion analysis was established in planefour - linkage , and analytical software was developed. The software adopted Matlab as a design language. It combined parametric design with interactive design and as input parameters was imported and the devisers can make decision - making of modification by the comparing analytical result with design demand. It provides an applied software and method for linkage.Key words:Plane Four Bar Mechanism, MATLAB, Analysis of Motion, Analyze目录1 绪论 (1)2 平面连杆机构的设计分析 (4)2.1平面四连杆机构的运动分析 (4)2.2 机构的数学模型的建立 (4)2.2.1 建立机构的闭环矢量位臵方程 (5)2.2.2 求解方法 (7)3 基于MATLAB程序设计 (8)3.1 程序流程 (8)3.2M文件编写 (8)3.3程序运行结果输出 (12)4 基于MATLAB图形界面设计 (23)4.1界面设计 (23)4.2代码设计 (24)5 结论.......................................................................................... 错误!未定义书签。
第6章 Matlab平面连杆机构的动力学分析
![第6章 Matlab平面连杆机构的动力学分析](https://img.taocdn.com/s3/m/95bb55d3a58da0116c17499b.png)
§6-1 曲柄的动力学仿真模块
由运动学知识可推得:
Re i Re A rcii cos i 2 rcii2 cos i s Im i Im A rcii sin i 2 rcii2 sin i s
§6-1 曲柄的动力学仿真模块
1.曲柄的动力学矩阵表达式 曲柄AB复向量的模 ri 为常数、幅角 i 为变量。 质心到转动副A的距离为 rci ,质量为 mi ,绕质心的转动惯量为 Ji , 作用于质心上的外力为 Fxi 和 Fyi 、 外力矩为M i ,曲柄与机架联接, 转动副A的约束反力为 RxA 和 RyA , 驱动力矩为 M 1 。
由理论力学可得:
RxA RxB Fxi mi Re i s
RyA RyB Fyi mi g mi Im i s
M1 M i RxArci sin i RyArci cos i RxB ri rci sin i RyB ri rci cos i J ii
§6-2 RRR II级杆组的动力学仿真模块
2.RRR II级杆组动力学分析M函数
g=9.8; %重力加速度 ri=1; rj=07; %两杆的长度 rci=0.5;rcj=0.35; %质心到铰链B的距离 %质心到铰链D的距离 mi=3; mj=2.2; %两杆的质量 Ji=0.25;Jj=0.09;%两杆的转动惯量 ReddD=0;ImddD=0; Fxi=0;Fyi=0;Mi=O; %i杆的外力和外力矩 a=zeros(6); a(1,1)=1;a(1,3)=1; a(2,2)=1; a(2,4)=1; a(3,1)=rci*sin(x(1)); a(3,2)=-rci*cos(x(1)); a(3,3)=-(ri-rci)*sin(x(1)); a(3,4)=(ri-rci)*cos(x(1)); a(4,3)=-1; a(4,5)=1; a(5,4)=-1; a(5,6)=1; a(6,3)=(rj-rcj)*sin(x(2)); a(6,4)=-(rj-rcj)*cos(x(2)); a(6,5)=rcj*sin(x(2)); a(6,6)=-rcj*cos(x(2));
matlab平面连杆结构分析(机械原理课程设计)
![matlab平面连杆结构分析(机械原理课程设计)](https://img.taocdn.com/s3/m/86b9472bb90d6c85ec3ac6c7.png)
平面连杆结构分析
机械原理课程设计
小组成员:
已知:rAE=70mm,rAB=40mm,rEF=60mm,rDE=35mm,rCD=75mm,rBC=50mm,原动件以
等角速度 w1=10rad/s 回转。试以图解法求在θ1=50°时 C 点的速度 VC 和加速度
对机构进行位置分析: 由封闭形 ABCDEA 与 AEFA 有:
-x(8)*sin(theta4); 0 x(6)*cos(theta2) -x(7)*cos(theta3)
x(8)*cos(theta4); cos(x(1)) 0 0 x(11)*sin(theta4); sin(x(1)) 0 0 -x(11)*cos(theta4)];
dth=inv(J)*(-1.0*f); lA=lA+dth(1); theta2=theta2+dth(2); theta3=theta3+dth(3); theta4=theta4+dth(4);
1.6796 1.7250 1.7709 1.8174 1.8646 1.9126 1.9616 2.0118 2.0635 2.1169 2.1728 2.2319
输出的 P、矩阵的第二列到第四列分别是θ2 θ3 θ 、4 4 的值,第一列是
AF 杆的长度 r1’。
第二步根据速度方程式编写如下 rrrvel.m 函数:
0.6815 0.6703 0.6592 0.6482 0.6372 0.6263 0.6154 0.6043 0.5930 0.5812 0.5687 0.5551
2.5963 2.6147 2.6339 2.6539 2.6747 2.6965 2.7192 2.7431 2.7683 2.7950 2.8237 2.8549
基于MATLAB的平面四连杆机构运动学分析
![基于MATLAB的平面四连杆机构运动学分析](https://img.taocdn.com/s3/m/2ec0a88443323968011c92ee.png)
一、课程设计容及要求:1.对连杆机构运动工作原理及运动参数有一定理解2.掌握MATLAB基本命令3.了解MATLAB编程的基本知识,并能编写简单M文件4.了解MATLAB图形界面设计的基本知识5.课程设计说明书:应阐述整个课程设计容,要突出重点和特色,图文并茂,文字通畅。
应有目录、摘要及关键词、正文、参考文献等容,字数一般不少于6000字。
二、主要参考资料有关复杂刀具参数计算及结构设计、机械制造工艺与设备的手册与图册。
三、课程设计进度安排指导教师(签名):时间:教研室主任(签名):时间:院长(签名):时间:目录1平面连杆机构的运动分析 (1)1.1 机构运动分析的任务、目的和方法 (1)1.2 机构的工作原理 (1)1.3 机构的数学模型的建立 (1)1.3.1建立机构的闭环矢量位置方程 (1)1.3.2求解方法 (2)2 基于MATLAB程序设计 (4)2.1 程序流程图 (4)2.2 M文件编写 (6)2.3 程序运行结果输出 (7)3 基于MATLAB图形界面设计 (11)3.1界面设计 (11)3.2代码设计 (12)4 小结 (17)参考文献 (18)1平面连杆机构的运动分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
机械原理课程设计用MATLAB做
![机械原理课程设计用MATLAB做](https://img.taocdn.com/s3/m/b31789b2112de2bd960590c69ec3d5bbfd0adad0.png)
机械原理课程设计用MATLAB做一、教学目标本课程旨在通过MATLAB软件的应用,让学生掌握机械原理的基本知识和技能,培养学生的创新意识和实践能力。
知识目标:使学生了解机械原理的基本概念、原理和应用,掌握MATLAB在机械原理分析中的基本使用方法。
技能目标:通过案例分析和实践操作,培养学生运用机械原理知识和MATLAB 软件解决实际问题的能力。
情感态度价值观目标:激发学生对机械原理和MATLAB软件应用的兴趣,培养学生的团队协作精神和自主学习能力。
二、教学内容本课程的教学内容主要包括机械原理的基本概念、机构和机器的设计与分析方法,以及MATLAB在机械原理分析中的应用。
教学大纲安排如下:1.机械原理概述:介绍机械原理的基本概念、研究对象和内容。
2.机构分析:讲解各种机构的工作原理和特性,包括齿轮机构、连杆机构等。
3.机器的设计与分析:介绍机器的设计方法和步骤,以及在不同工作条件下机器的性能分析。
4.MATLAB在机械原理分析中的应用:讲解MATLAB软件的基本使用方法,以及如何利用MATLAB进行机械原理分析和设计。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括讲授法、案例分析法、实验法和讨论法。
1.讲授法:通过讲解机械原理的基本概念和理论知识,使学生掌握基本原理和方法。
2.案例分析法:通过分析实际案例,让学生了解机械原理在工程中的应用,培养学生的实践能力。
3.实验法:让学生动手操作,利用MATLAB软件进行机械原理分析和设计,提高学生的实际操作能力。
4.讨论法:学生进行分组讨论,培养学生的团队协作精神和批判性思维。
四、教学资源为了支持本课程的教学内容和教学方法,我们将准备以下教学资源:1.教材:《机械原理》,提供机械原理的基本知识和理论。
2.参考书:《MATLAB教程》,介绍MATLAB软件的基本使用方法。
3.多媒体资料:包括教学PPT、视频教程等,辅助学生理解和掌握知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
87.1076 84.9113 82.6463 80.3086 77.8931 75.3930 72.7998 70.1019 67.2833 64.3217 61.1835 57.8153
根据第一步得到的数据进行数据输入,运行程序计算各速度值。程序如下: x2=[x1' p(:,2) p(:,3) p(:,4) 10*ones(15,1) 40*ones(15,1) 50*ones(15,1)... 75*ones(15,1) 35*ones(15,1) 70*ones(15,1) p(:,1) 60*ones(15,1)]; q=zeros(4,15); for m=1:15 y2=rrrvel(x2(m,:)); q(:,m)=y2; end q = 1.0e+003 *
x(6)*sin(theta2)-x(7)*sin(theta3)-x(8)*sin(theta4+pi)+x(5) *sin(x(1)+pi); -x(11)*cos(theta4)+lA*cos(x(1))-x(9); -x(11)*sin(theta4)+lA*sin(x(1))]; % while norm(f)>epsilon J=[0 -x(6)*sin(theta2) x(7)*sin(theta3)
r1+r2=r6+r3+r4
r7=r6+r8
即 r2-r3-r4=-r1+r6
-r8+r7=r6
(1)位置方程
r2cosθ2-r3cosθ3-r4cos(θ4+180°)=-r1cos(θ1+180°)+r6
r2sinθ2-r3sinθ3-r4sin(θ4+180°)=-r1sin(θ1+180°)
B=[-x(10)*x(6)*cos(x(2)) x(11)*x(7)*cos(x(3)) -x(12)*x(8)*cos(x(4)) 0;
-x(10)*x(6)*sin(x(2)) -x(11)*x(7)*sin(x(3)) -x(12)*x(8)*sin(x(4)) 0;
0 0 x(15)*x(8)*cos(x(4)) -x(5)*sin(x(1)); 0 0 x(15)*x(8)*sin(x(4)) x(5)*cos(x(1))]; C=[x(6);x(7);x(8);x(16)]; D=[x(9)*x(5)*cos(x(1));x(9)*x(5)*sin(x(1));x(14)*x(5)*cos (x(1))+x(16)*sin(x(1));x(14)*x(5)*sin(x(1))-x(16)*cos(x(1) )]; y=inv(A)*D-inv(A)*B*C;
norm(f); end; y(1)=lA; y(2)=theta2; y(3)=theta3; y(4)=theta4;
再进行数据输入,运行程序进行运算。根据上面分析的θ1 的极限位置取θ1 的范围为 40°~55°并均分成 15 个元素:
x1=linspace(40*pi/180,55*pi/180,15); x=zeros(length(x1),11); for n=1:15 x(n,:)=[x1(:,n) pi/6 8*pi/9 2*pi/3 40 50 75 35 70 75 60]; end p=zeros(length(x1),4); for k=1:15 y= rrrposi(x(k,:)); p(k,:)=y; end >> p
function y=rrrvel(x) % %Input parameters % %x(1)=theta-1 %x(2)=theta-2 %x(3)=theta-3 %x(4)=theta-4 %x(5)=dtheta-1 %x(6)=l1 %x(7)=l2 %x(8)=l3 %x(9)=l4 %x(10)=l6 %x(11)=lA %x(12)=lB % %Outout parameters % %y(1)=V %y(2)=dtheta-2 %y(3)=dtheta-3 %y(4)=dtheta-4 % A=[-x(7)*sin(x(2)) x(8)*sin(x(3)) x(9)*sin(pi+x(4)) 0;
-x(8)*sin(theta4); 0 x(6)*cos(theta2) -x(7)*cos(theta3)
x(8)*cos(theta4); cos(x(1)) 0 0 x(11)*sin(theta4); sin(x(1)) 0 0 -x(11)*cos(theta4)];
dth=inv(J)*(-1.0*f); lA=lA+dth(1); theta2=theta2+dth(2); theta3=theta3+dth(3); theta4=theta4+dth(4);
Columns 1 through 8 -0.0064 -0.0062 -0.0061 -0.0061 -0.0060 -0.0059 -0.0059 -0.0058 0.0085 0.0089 0.0092 0.0096 0.0101 0.0105 0.0109 0.0114 0.0235 0.0237 0.0239 0.0241 0.0244 0.0247 0.0250 0.0255 -1.0578 -1.0897 -1.1226 -1.1568 -1.1926 -1.2302 -1.2704 -1.3137
0.6815 0.6703 0.6592 0.6482 0.6372 0.6263 0.6154 0.6043 0.5930 0.5812 0.5687 0.5551
2.5963 2.6147 2.6339 2.6539 2.6747 2.6965 2.7192 2.7431 2.7683 2.7950 2.8237 2.8549
程序运行得到 q 矩阵,第一行到第三行分别是 a2、a3、a4 的值,第四行是杆 AF 上 滑块运动的速度,即 F 点的速度。
第三步编写加速度计算函数 rrra.m:
function y=rrra(x) % %Input parameters % %x(1)=th1 %x(2)=th2 %x(3)=th3 %x(4)=th4 %x(5)=dth1 %x(6)=dth2 %x(7)=dth3
-r2sinθ2 r3sinθ3 - r4sinθ4
0
a2
r2cosθ2 -r3cosθ3
r4cosθ4
0
a3
0
0
r8sinθ4
cosθ1
a4
0
0
-r8cosθ4
sinθ1
r’7
=-
- w2 r2cosθ2 -w2 r2sinθ2
0 0
w3 r3cosθ3 - w3 r3sinθ3
0 0
-w4r4cosθ4 -w4r4sinθ4
1.6796 1.7250 1.7709 1.8174 1.8646 1.9126 1.9616 2.0118 2.0635 2.1169 2.1728 2.2319
输出的 P、矩阵的第二列到第四列分别是θ2 θ3 θ 、4 4 的值,第一列是
AF 杆的长度 r1’。
第二步根据速度方程式编写如下 rrrvel.m 函数:
0
w3
0
0
r8sinθ4
cosθ1
w4
0
0
-r8cosθ4
sinθ1
r7
r1sin(θ1+180°)
=
-r1cos(θ1+180°)
r7 sinθ1
-r7cosθ1
Vcx= -r1w1sin(θ1+180°)-w2 r2sinθ2 Vcy=rw2cos(θ1+180°)+ w2 r2cosθ2
(3)加速度方程
2010
平面连杆结构分析
机械原理课程设计
小组成员:
已知:rAE=70mm,rAB=40mm,rEF=60mm,rDE=35mm,rCD=75mm,rBC=50mm,原动件以
等角速度 w1=10rad/s 回转。试以图解法求在θ1=50°时 C 点的速度 VC 和加速度
对机构进行位置分析: 由封闭形 ABCDEA 与 AEFA 有:
f=[x(6)*cos(theta2)-x(7)*cos(theta3)-x(8)*cos(pi+theta4)+ x(5)*cos(x(1)+pi)-x(9); x(6)*sin(theta2)-x(7)*sin(theta3)-x(8)*sin(theta4+pi)+ x(5)*sin(x(1)+pi); -x(11)*cos(theta4)+lA*cos(x(1))-x(9); -x(11)*sin(theta4)+lA*sin(x(1))];
Columns 9 through 15 -0.0058 -0.0059 -0.0060 -0.0062 -0.0065 -0.0069 -0.0078 0.0119 0.0125 0.0131 0.0139 0.0148 0.0159 0.0175 0.0259 0.0265 0.0272 0.0281 0.0292 0.0306 0.0327 -1.3610 -1.4136 -1.4734 -1.5431 -1.6273 -1.7337 -1.8767
w4r8cosθ4 w4r8sinθ4
0 0 -w1sinθ1 -w1cosθ1
w2
w1r1cosθ1
w3
w1r1 sinθ1
w4
+ w1 w1r7cosθ1+v sinθ1