随机过程及其应用试卷08、09年
随机过程试题及答案
随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。
通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。
以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。
1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。
(2) 求X(t)的平稳分布。
2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。
令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。
设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。
根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。
(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。
(2) 计算X(t)的平均到达速率。
4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。
所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。
华中师范大学2009年随机过程试题A卷附答案
得分 评阅人
三、计算题:(共 1 题,每题 15 分)
设移民到某地区定居的户数是一泊松过程,平均每周有 2 户定居,即 2 .如果每户的人口数是随机
变量,一户四人的概率为 1 ,一户三人的概率为 1 ,一户二人的概率为 1 ,一户一人的概率为 1 ,并且每
6
3
3
6
户的人口数是相互独立的,求在五周内移民到该地区人口的数学期望与方差。
2
4t
2
2
3 2
(
5
)
= 3
4t 3 页(共 页)
i0
i!
(n i)!
e = (12 ) ((1 2 ) ) n n!
故{Y (t)}服从参数(1 2 ) 的泊松过程。
(2) EZ (t) E[ X1(t) X 2 (t)] EX1(t) EX 2 (t) (1 2 )t,
DZ(t) D[X1(t) X 2 (t)] DX1(t) DX 2 (t) (1 2 )t 由于 EZ(t) DZ(t) ,故 Z (t) 不是泊松过程。
n
=
P {X 2 (t ) X 2 (t) n i, X1(t ) X1(t) i}
i0
n
= P{X 2 (t ) X 2 (t) n i} P{X1 (t ) X1 (t) i} i0
= n e 1 (1 )i e 2 (2 ) ni
从而
x k ( j i) , y k ( j i) .
2
2
由于 x,y 都只能取整数,所以k ( j i) 必须是偶数,又在 k 步中哪 x 步向右,哪 y 步向左是任意的,
(完整word版)随机过程试题带答案
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 Γ 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 (n)n P P = 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑ 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
1.为it(e-1)e λ。
2. 1(sin(t+1)-sin t)2ωω。
3. 1λ4. Γ 5. 212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。
6.(n)nP P =。
随机过程2009试卷
(2009年)随机过程理论试题学号 姓名 成绩一. 填空(40分)1. 设(,,)P ΩF 是随机试验E 的概率空间,()ξω是定义在它上面的一个随机变量,(,,)R P ξB 是()ξω的导出概率空间,则其中P 是定义在 上的概率测度;P ξ是定义在 上的概率测度。
2. 若已知,( )H X H t X ∈∈且0··()t t l i m X t X →=,则在内积空间中等价地有 ;在距离空间中等价地有 .3. 设(), 1,2,,()i i N t ξω=是一独立同分布的随机变量序列,2()~(,)i N ξωμσ,()N t 是服从参数为λ的Poisson 过程,且()N t 与()i ξω相互独立,记随机和()1()()N t i i X t ξω==∑,则()X t 的矩母函数,()X g t θ= ;{()}E X t = ;{()}D X t = .4. 记(), 0w t t ≥是Wiener 过程,则22()t w t 的Ito 微分22(())d t w t = .5. 设, 0,1,2,n X n =是不可约、有限状态空间的Markov 链,且其一步状态转移矩阵的对角元素均大于零,则该Markov 链的状态特性是 .6. 设某汽车站乘客以平均每分钟4人到达的速率来到车站候车,车站以12分钟发放一辆班车运送顾客,为了提高服务质量,将乘客的人均等车时间缩短2分钟,此时车站应该至少 分钟发送一班车.二.(15分) 一袋中有相同5只小球,其中3只红球,2只白球,红球上记数1,白球上记数2,随机试验E :随机地从袋中不放回地连续摸出2只小球,观察所摸到的小球情况。
1. 给出随机试验E 的概率空间(,,)P ΩF .2. 记()ξω为所摸出的小球上所记数字之和,试给出()ξω的概率分布律和分布函数。
三.(10分) 设平稳过程(), (,)X t t ∈-∞+∞,均值为0X m =,相关函数为||(),X R e ττ-= ()t s τ=-1. 问()X t 的均值是否具有各态历经性?为什么?2. 试问()X t 在均方意义下是否连续,可导和可积?四.(10分) 设随机变量(),()ξωηω的联合密度函数为2,(,)0, , 0 x e y f x y x λξηλ-⎨<<⎧=⎩其他试求|{}E y ξη=,|{}E ξη和{}E ξ.五.(15分) 设Markov 链, n 0,1,2,,n X =状态空间{1,2,3,4}Φ=,一步转移概率 01001200331200330010P ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1. 试分析n X 的状态特征(互通性,周期,常返性);2. n X 是否存在极限概率和平稳分布,若不存在请给出理由;若存在请计算其结果。
随机过程试题与答案
随机过程试题与答案《随机过程》试题一、简答题(每小题4分,共16分) 1、φX t =E e jtX2、acos ωt +π3 ,acos ωt ?π4 . (任意两条即可)3、N t 为参数λ的poison 过程,{X n }是独立同分布的随机变量序列,且与N t相互独立,则称Y t = X n N tn=1为复合poison 过程。
4、二重积分 R X s,t dsdt ba b a 存在且有限。
二、(本题10分)解:(1)P N 12 ?N 8 =0 =e ?12. (5分)(2)f T t =3e ?3t t >00t ≤0(10分)三、(本题12分)解:(1){0,3}是正常返的闭集,{1,4}是正常返的闭集,{2}是非常返的。
(4分)(2)对于{0,3}和{1,4}的转移概率矩阵分别为P 1= 0.60.40.40.6 ,P 2= 0.60.40.20.8 (6分)记z 1 =(z 1 1,z 2 1),z 2 =(z 1 2,z 2 2),求解方程组z 1 =z 1 P 1, z 1 1 +z 2 1=1z 2 =z 2 P 2, z 1 2 +z 2 2=1得z 1 = 12,12 , z 2 = 13,23 。
则平稳分布为(10分)π= λ1,λ2,0,λ1,2λ2(12分)四、(本题13分)解:(1)Q = ?λλμ?(λ+μ) 0 0λ 00 μ0 0 ?(λ+μ)λμ?μ (4分)前进方程dP(t)dt =P(t)Q (6分)后退方程dP(t)dt=QP(t) (8分)(2)由πQ =0,π=1, π=(π0,π1,π2,π3) 解得平稳分布为π0=1?λμ1? λμ4,π1=λμ 1?λμ1? λμ4,π2=λμ2 1?λμ1? λμ4,π3=λμ3 1?λμ1? λμ4(13分) 五、(本题13分)解:(1)对任意的t 1,t 2,?,t n ∈R ,Z t 1 Z t 2 ?Z t n = t 12t 22?t n2 2t 12t 2?2t n X Y + ?2?2?2?2因X,Y 是相互独立的正态分布,所以 XY 是正态分布,又线性变换的性质可知Z t 1 ,Z t 2 ,?,Z t n T 服从多元正态分布,故Z t 是正态过程。
随机过程试题及答案
随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
《应用随机过程》A卷及其参考答案
《应用随机过程》A卷及其参考答案《应用随机过程》A卷一、课程简介《应用随机过程》是一门应用数学学科,旨在研究随机现象的变化规律。
通过对这门课程的学习,我们可以掌握随机过程的基本理论和方法,并能够运用这些理论解决实际问题。
本课程共分为两个部分:A 卷和B卷。
二、考试内容1、随机过程的定义、性质和分类2、随机过程的概率分布和数字特征3、常见的随机过程,如泊松过程、马尔可夫过程、随机漫步等4、随机过程的极限理论,如强大数定律、中心极限定理等5、随机过程在各个领域的应用,如金融、生物、物理等三、考试形式1、试题类型:选择题、填空题、简答题、应用题2、分值分配:选择题30分,填空题20分,简答题30分,应用题20分四、考试策略1、理解基本概念:随机过程的概念、性质和分类是考试的重点,需要充分理解并熟练掌握。
2、掌握基本理论:考试中涉及的基本理论较多,需要平时多加学习和巩固。
3、应用实践:掌握基本理论后,需要能够将其应用于实际问题中,因此要多做练习和实际操作。
五、参考答案选择题部分:1、(1)B (2)C (3)A (4)D (5)C2、(1)C (2)B (3)D (4)A (5)C3、(1)D (2)A (3)B (4)C (5)D填空题部分:1、(1)正态分布(2)独立性(3)离散型随机变量2、(1)均匀分布(2)连续型随机变量(3)二项分布3、(1)泊松分布(2)几何分布(3)超几何分布4、(1)马尔可夫过程(2)齐次性(3)有限性5、(1)中心极限定理(2)强大数定律(3)大数定律简答题部分:1、简述随机过程的基本概念及分类。
答:随机过程是指在一定条件下,随时间变化的随机现象的变化规律。
它可以根据不同的分类标准分为连续型和离散型、定值型和随机场、马尔可夫性和非马尔可夫性等。
2、请列举几个常见的随机过程,并简述其应用场景。
答:常见的随机过程有泊松过程、马尔可夫过程、随机漫步等。
泊松过程在物理学、生物学、计算机科学等领域有广泛应用;马尔可夫过程在语音识别、天气预报等领域有应用;随机漫步在金融领域有应用。
2007年《随机过程》课程试卷答案及评分标准
北方工业大学2007-2008学年第一学期研究生随机过程试题参考答案一、(15分)设随机变量X 服从区间[,]a b 上的均匀分布,求(1)X 的特征函数()g t ;(2)利用特征函数计算X 的数学期望及方差。
解:(1)特征函数 ()()()i t X i t x g t E e e d F x +∞-∞==⎰ 1()ibt iatb itx a e e e dx b a i b a t-==--⎰ 8分 (2)由()(0)()k k k g i E X =得011()(0)lim ()2t a b E X g g t i i →+''=== 22222011()(0)lim ()3t a ab b E X g g t i i →++''''=== 从而 222()()()()12b a D X E X EX -=-= 7分 二、(20分)试求随机相位余弦波()cos()X t a t ω=+Θ的均值函数,方差函数和自相关函数。
其中,a ω为常数,Θ服从(0,2)π上的均匀分布。
9分自相关函数为12(,)X R t t6分5分三、(20分)设粒子按平均率为每分钟4个的泊松过程到达某计数器,()N t 表示在[0,)t 内到达计数器的粒子个数,试求(1) 在第3分钟到第5分钟之间到达计数器的粒子个数的概率分布;(2) 在2分钟内至少有2个粒子到达计数器的概率。
解:(1)到达计数器的粒子个数的概率分布为88{(5)(3)}(0,1,)!k e P N N k k k --=== 10分 (2)所求概率为8108{(2)(0)2}1!k k e P N N k -=-≥=-∑ 819e -=- 10分四、(15分)设马氏链的转移矩阵为00.60.40000.30.710001000P ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(1) 求两步转移矩阵;(2) 求出各类的周期,并讨论其常返性。
随机过程试题及答案
随机过程试题及答案一、选择题1. 关于随机过程的描述,错误的是:A. 随机过程是一种由随机变量组成的集合B. 随机过程是一种在时间上有序排列的随机变量序列C. 随机过程可以是离散的,也可以是连续的D. 随机过程是一种确定性的数学模型答案:D2. 以下哪种过程不是随机过程?A. 白噪声过程B. 马尔可夫过程C. 布朗运动D. 正态分布答案:D3. 随机过程的一阶矩描述的是:A. 均值B. 方差C. 偏度D. 峰度答案:A4. 当随机过程的各个时间点上的随机变量是独立同分布时,该随机过程为:A. 马尔可夫过程B. 马尔可夫链C. 平稳随机过程D. 白噪声过程答案:B5. 下列关于马尔可夫过程的说法中,正确的是:A. 当前状态只与上一状态有关,与历史状态无关B. 当前状态只与历史状态有关,与上一状态无关C. 当前状态只与上一状态和历史状态有关D. 当前状态与所有历史状态均无关答案:A二、填空题1. 随机过程中,时域函数常用的表示方法是__________。
答案:概率分布函数或概率密度函数2. 马尔可夫过程的状态转移概率只与__________相关。
答案:当前状态和下一状态3. 随机过程的时间参数称为__________。
答案:时刻或时间点4. 白噪声过程的自相关函数是一个__________函数。
答案:冲激函数5. 平稳随机过程的自相关函数只与__________相关。
答案:时间差三、解答题1. 请简要解释随机过程的概念。
随机过程是一种由随机变量组成的集合,表示一个在时间上有序排列的随机变量序列。
它可以是离散的,也可以是连续的。
随机过程的描述通常包括概率分布函数或概率密度函数,以及相关的统计特征,如均值、方差等。
随机过程可以用于对随机现象进行建模和分析。
2. 请简要说明马尔可夫过程的特点及应用。
马尔可夫过程是一种具有马尔可夫性质的随机过程,即当前状态只与上一状态有关,与历史状态无关。
其状态转移概率只与当前状态和下一状态相关。
随机过程期末试题及答案
随机过程期末试题及答案一、选择题1. 随机过程的定义中,下列哪个是错误的?A. 属于随机现象。
B. 具有随机变量。
C. 具有时间集合。
D. 具有马尔可夫性质。
答案:D2. 下列哪个不是连续时间的随机过程?A. 泊松过程。
B. 布朗运动。
C. 维纳过程。
D. 马尔可夫链。
答案:D3. 关于时间齐次的描述,下列哪个是正确的?A. 随机过程的概率分布不随时间变化。
B. 随机过程的均值不随时间变化。
C. 随机过程的方差不随时间变化。
D. 随机过程的偏度不随时间变化。
答案:A4. 下列哪个是离散时间的随机过程?A. 随机游走。
B. 指数分布过程。
C. 广义强度过程。
D. 随机驱动过程。
答案:A二、填空题1. 马尔可夫链中,状态转移概率与当前状态无关,只与前一个状态有关,这个性质被称为(马尔可夫性质)。
2. 在某一区间内,随机过程的均值是时间的(函数)。
3. 两个随机过程的相互独立性是指它们的(联合概率)等于各自概率的乘积。
4. 利用(随机过程)可以模拟无记忆的随机现象。
三、解答题1. 试述随机过程的定义及其要素。
随机过程是描述随机现象随时间演化的数学模型。
它由两个基本要素组成:时间集合和取值集合。
时间集合是指随机过程所涉及的时间轴,可以是离散的或连续的。
取值集合是指随机过程在每个时间点上可能取到的值的集合,可以是实数集、整数集或其他集合。
2. 什么是时间齐次随机过程?请举例说明。
时间齐次随机过程是指随机过程的概率分布在时间上不变的特性。
即随机过程在任意两个时间点上的特性是相同的。
例如,离散时间的随机游走就是一个时间齐次随机过程。
在随机游走中,每次移动的概率分布不随时间变化,且每次移动的步长独立同分布。
3. 什么是马尔可夫链?它有哪些性质?马尔可夫链是一种离散时间的随机过程,具有马尔可夫性质,即在给定当前状态的情况下,未来的状态只与当前状态有关,与过去的状态无关。
马尔可夫链的性质包括:首先,状态转移概率与当前状态无关,只与前一个状态有关。
西安邮电学院2008-2009年第一学期电子专业《概率论与随机过程》期末考试及答案A卷
(4)因为其一步转移概率矩阵
P
0.9 0.1
0.1 0.9
无零元,所以此链具有遍历性。
………… (12 分)
3.解 因为
说明:用本模板出题,请将插入方式换成改写方式,除填空题、图解及特殊要求外,一般不留答题空间;装订试卷、考生答卷纸不得拆开或在框外留有任何标记,否则按零分计
共 3 页 第 页 总印 1200
t1)
CX
(t1,
t2
)
RX
(t1, t2 )
X
(t1 ) X
(t2
)
RX
(t1,
t2
)
a2 2
cos (t2
t1)
……(10 分)
1
P{Y k} C3k pk (1 p)3k , k 0,1, 2, 3,其中p 1 e3.
…………… (10 分)
说明:用本模板出题,请将插入方式换成改写方式,除填空题、图解及特殊要求外,一般不留答题空间;装订试卷、考生答卷纸不得拆开或在框外留有任何标记,否则按零分计
1.设随机变量 (X ,Y ) 的联合密度函数为
1 f (x, y)
,
x2 y2 1,
0, x2 y2 1.
(1)求 XY ,判定 X和Y 是否是不相关的,为什么?(2) X和Y 是否相互独立,为什么?
4.某保险公司多年的统计资料表明,在索赔户中被盗索赔户占 20%,以 X 表示在随机抽查的 100 个索
线
学号(8 位)
线
共 3 页 第 页 总印 1200
份 (附卷纸
2 页)
200 年 月 日 考试用
西安邮电学院课程考试试题(A 卷)
(2008——2009 学年度第 一 学期)
随机过程及其应用试卷08、09年
随机过程及其应用试卷08、09年2008级硕士生随机过程考试题1、(10分)设有随机过程{ξ(t ),-∞<="">()()112311212(a)=cos cos (b)C =cos cos 1212R t ,t t t t ,t t t ξξξξ试证:2、(10分)随机过程ξ(t )=sin(Ut )其中U 是在[0,2π]上均匀分布的随机变量。
若t ∈T , 而T =[0,∞), 试分析ξ(t )的平稳性。
3、(10分)随机过程()()0=cos +t A t ξωθ;式中:A 、ω0是实常数;θ是具有均匀分布的随机变量:()2(0=20(f πθθπ?≤≤?其他)分析ξ(t )的平稳性。
4、(15分)把两个黑球和两个白球放在两个坛子中,每次从每个坛子中随机的取出一球,然后把被取出的球交换放到坛子里。
设ξ(n )表示n 次交换后第一个坛子里的白球数。
(1)说明ξ(n )构成一个齐次马尔科夫链,并写出状态空间;(2)写出一步、二步转移概率矩阵。
5、(10分)设{ξ(n ),n =0,1,2,…}是一齐次马尔科夫链,其一步转移概率矩阵为0.500.50000.2500.750=000.300.70.250.500.2500.300.300.4P试分析状态类型。
6、(15分)设有两个通信信道,每个信道的正常工作时间服从指数分布其参数为λ,两个信道何时产生中断是相互独立的。
信道一旦中断,立刻进行维修,其维修时间也服从指数分布其参数为μ。
两个信道的维修时间也是相互独立的。
将系统中中断的信道数作为系统状态。
(1)求出这两个信道组成的系统的Q 矩阵;(2)画出状态传递率图。
(3)列出平衡方程。
7、(15分)在噪声背景中提取周期信号是通信工程中的一个重要问题。
例如在雷达接收机的输出端存在着周期信号的回波信号,又存在着随机噪声,雷达技术中一个重要问题就是要在噪声背景中识别是否有周期信号的存在。
随机过程试题及答案
随机过程试题及答案一、选择题(每题2分,共10分)1. 下列哪个是随机过程的数学定义?A. 一系列随机变量B. 一系列确定的函数C. 一系列随机函数D. 一系列确定的变量答案:C2. 随机过程的期望值函数E[X(t)]随时间t的变化特性是:A. 确定性B. 随机性C. 非线性D. 线性答案:A3. 马尔可夫链是具有以下哪个特性的随机过程?A. 无记忆性B. 有记忆性C. 独立性D. 相关性答案:A4. 泊松过程是一种:A. 连续时间随机过程B. 离散时间随机过程C. 连续空间随机过程D. 离散空间随机过程答案:A5. 布朗运动是:A. 一个确定的函数B. 一个随机过程C. 一个确定的变量D. 一个随机变量答案:B二、简答题(每题5分,共20分)1. 简述什么是平稳随机过程,并给出其数学特征。
答案:平稳随机过程是指其统计特性不随时间变化的随机过程。
数学上,如果一个随机过程的任意时刻的一维分布和任意两个时刻的二维分布都不随时间平移而改变,则称该过程为严格平稳过程。
2. 解释什么是遍历定理,并说明其在随机过程中的重要性。
答案:遍历定理是随机过程中的一个基本定理,它提供了时间平均与概率平均之间的联系。
在随机过程中,如果一个随机过程是遍历的,那么对于任意的观测时间点,其时间平均值将趋向于其期望值,这一点在统计推断和信号处理等领域具有重要应用。
3. 描述什么是随机过程的平稳增量,并给出其数学定义。
答案:随机过程的平稳增量是指在固定时间间隔内,随机过程增量的分布不随时间变化。
数学上,如果对于任意的非负整数n和任意的实数h,随机过程{X(t+h) - X(t)}与{X(h) - X(0)}具有相同的分布,则称该随机过程具有平稳增量。
4. 简述什么是马尔可夫性质,并给出一个实际应用的例子。
答案:马尔可夫性质是指一个随机过程的未来发展只依赖于当前状态,而与过去的状态无关。
具有马尔可夫性质的随机过程称为马尔可夫链。
例如,在天气预报中,明天的天气可能只与今天的天气有关,而与前几天的天气无关,这就是马尔可夫性质的一个实际应用。
随机过程与应用考试试题
随机过程与应用考试试题一、选择题1. 在马尔科夫链中,状态转移概率矩阵的要求是:A. 每行所有元素之和等于1B. 每列所有元素之和等于1C. 对角线上的元素均大于0D. 所有元素均大于02. 在随机过程中,平稳性的要求是:A. 每个时刻的概率分布都相同B. 概率分布随时间发生改变C. 均值和方差不随时间发生改变D. 方差不随时间发生改变3. 泊松过程的特点是:A. 不存在跳跃B. 存在连续的状态变化C. 均值和方差相等D. 每个单位时间发生事件的数量是恒定的4. 马尔科夫链是一种:A. 离散时间和离散状态的随机过程B. 离散时间和连续状态的随机过程C. 连续时间和离散状态的随机过程D. 连续时间和连续状态的随机过程5. 连续时间马尔科夫链的状态转移概率与时间的关系是:A. 与时间无关B. 每个时间段内相同C. 随时间变化而变化D. 无法确定二、填空题1. 在泊松过程中,到达的时间间隔满足 ______ 分布。
2. 在连续时间马尔科夫链中,状态转移概率与时间的关系可以由______ 函数来表示。
3. 马尔科夫链具有 ______ 性,即过去的状态对未来的状态具有影响。
4. 在随机过程中, ______ 是指在给定前面状态下,未来状态的条件概率分布。
三、解答题1. 请说明马尔科夫链的定义,并列举出两个例子。
2. 请说明泊松过程的特点,并说明其在实际应用中的一个例子。
3. 请解释连续时间马尔科夫链的平稳分布,并给出一个实际应用的例子。
四、应用题1. 假设某商品的售出数量服从泊松分布,平均每天售出5件。
如果要求计算每天售出不少于3件的概率,应如何计算?2. 某公交车站的乘客到达服从泊松过程,平均每小时到达12人。
如果公交车每隔10分钟发车一次,求在每趟车发车前等待的乘客人数的概率分布。
3. 某产品的寿命服从指数分布,平均寿命为1000小时。
如果要求计算寿命在800小时到1200小时之间的概率,应如何计算?以上是随机过程与应用考试试题的部分内容,请按要求回答题目。
研究生《随机过程》考试题
随机过程考试题(2009)一,(12分)已知12,X X 为独立同指数分布(1)EXP 的随机变量。
(1) 证明12X X +与112X X X +独立;(2) 令112212,Y X X Y X X =+=-,求12,Y Y 的联合概率密度. 二,(10分)设随机变量X 的分布律为{}11,0,1,2,.2x P X x x +=== 令 (){}min ,,0,1,2,.X n X n n ==求随机过程(){},0X X n n =≥的一维分布律及均值函数. 三,(12分)设(){},0N N t t =≥的强度为0λ>的Possion 过程, (1) 证明:若0,1s t n <<≥,则()(){}1kn kk n s s P N s k N t n C t t -⎛⎫⎛⎫===- ⎪⎪⎝⎭⎝⎭(2) 设随机变量T 与N 相互独立,且{},0.tP T t et μ->=>证明:(){},0,1,2,.kP N t k k μμλμλμ⎛⎫===⎪++⎝⎭四,(12分)设Markov 链的状态空间{}1,2,3S =,初始分布(){}014,12,14π=,一步转移概率矩阵为11124411022010⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭P 求:(1) 二步转移概率矩阵()2P(2) ()(){}22,42;P X X == (3) ()()321.E X X ⎡⎤=⎣⎦设Markov 链的状态空间{}1,2,3,4,5S =,一步转移概率矩阵为113001312140140000100010000001⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P(1) 画出状态转移图;(2) 指出哪些是非常返态?哪些是常返态? (3) 求常返态的周期及平均回转时间; (4) 给出状态空间S 的分解。
六(12分)设(){},X t t -∞<<+∞是均方可导的平稳过程,其自相关函数为{}.X R τ令 ()(),dX t Y t t dt=-∞<<+∞(1) 求()Y t 的自相关函数(2) 问(){},Y t t -∞<<+∞是否为平稳过程?为什么? 七,(12分)已知下列平稳过程X 的相关函数为{}.X R τ(相应地,谱密度()X S ω),求X 的谱密度(相应地,相关函数): (1){}()()4cos 3X R ecos ττπττ-=+(2)()()651,15150,15X S ωδωωωω⎧⎛⎫+-≤⎪ ⎪=⎨⎝⎭⎪>⎩(已知:()()()()11000cos ;12;fff f ωτπδωωδωωπδω---++⎡⎤⎣⎦ ()()()()10222200cos 0.f a f aaea aaτωτωωωω--+>-+++ )八,(8分)设有二阶矩随机变量X 及普通实函数()()f t t -∞<<+∞,证明:若f 在0t t =点可导, 则()()00t t Xf t Xf t ='=⎡⎤⎣⎦设有如图所示的交通网络,流入的为图示强度的Possion 过程(假定各过程独立),而在交会处车辆按图示的概率选择行走方向(假定方向的选择也相互独立).描述三个出口处的交通的情况.随即过程试题(2006)1, 已知()()123123123,06,,,0x x x x x x e f x x x others -++⎧<<<⎪=⎨⎪⎩112213323,22,y x y x x y x x ==-=-求: (1)123,,y y y 的概率密度(2)1Ey ,1Dy2,设X 的均值函数为()X m t ,自相关函数为()12,X R t t ,用()X m t 和()12,X R t t 来表示()()(),,X X X D t C t t ϕ3,,X Y 两个随机变量均值函数和方差分别为,,,X Y X Y m m δδ,相关系数为ρ,设Z X t Y =+,求()(),Z Z m t R t4,一强度为λ的Passion 过程,求: (1)()(){}P x t m x j n ==(2)若(){}110P N e -==,求()()23E N N ⎡⎤⎣⎦(3或者5)5,设()h x 为平方可积函数。
随机过程试题及答案
随机过程试题及答案一、选择题(每题5分,共20分)1. 下列哪一项是随机过程的典型特征?A. 确定性B. 可预测性C. 无记忆性D. 独立增量性答案:D2. 马尔可夫链的哪一性质表明,系统的未来状态只依赖于当前状态,而与过去状态无关?A. 独立性B. 无记忆性C. 齐次性D. 可逆性答案:B3. 布朗运动是一个连续时间的随机过程,其增量具有什么性质?A. 独立性B. 正态分布C. 独立增量性D. 所有选项都正确答案:D4. 随机过程的平稳性指的是什么?A. 过程的分布随时间不变B. 过程的均值随时间不变C. 过程的方差随时间不变D. 过程的自相关函数随时间不变答案:A二、填空题(每题5分,共20分)1. 如果随机过程的任意时刻的分布函数不随时间变化,则称该随机过程是________。
答案:平稳的2. 随机过程的自相关函数R(t,s)表示在时刻t和时刻s的随机变量的________。
答案:相关性3. 随机游走过程是一类具有________性质的随机过程。
答案:独立增量4. 泊松过程是一种描述在固定时间间隔内随机事件发生次数的随机过程,其特点是事件的发生具有________。
答案:无记忆性三、简答题(每题10分,共30分)1. 简述什么是马尔可夫过程,并给出其数学定义。
答案:马尔可夫过程是一种随机过程,其未来的状态只依赖于当前状态,而与过去状态无关。
数学上,如果对于任意的n,以及任意的时间序列t1, t2, ..., tn,满足P(Xt+1 = x | Xt = x_t, Xt-1 = x_t-1, ..., X1 = x_1) = P(Xt+1 = x | Xt = x_t),则称随机过程{Xt}为马尔可夫过程。
2. 描述布朗运动的三个基本性质。
答案:布朗运动的三个基本性质包括:1) 布朗运动的增量是独立的;2) 布朗运动的增量服从正态分布;3) 布朗运动具有连续的样本路径。
3. 什么是平稳随机过程?请给出其数学定义。
应用随机过程考试题
一、选择题1.在随机过程中,若某一过程的所有可能状态及其概率在时间上保持不变,则称该过程为:A.平稳过程B.非平稳过程C.马尔可夫过程D.遍历过程2.下列哪个不是描述随机变量分布特性的重要参数?A.期望值(均值)B.方差C.协方差D.样本容量3.马尔可夫链中,若当前状态仅依赖于前一个状态,则称该链具有:A.一阶记忆性B.无记忆性C.高阶记忆性D.完全记忆性4.在随机游走模型中,若每一步的位移是独立同分布的随机变量,且均值为0,则该模型属于:A.布朗运动B.泊松过程C.几何布朗运动D.平稳独立增量过程5.泊松分布常用于描述:A.单位时间内某事件发生次数的概率分布B.连续型随机变量的概率分布C.样本均值的分布D.两个随机变量之间的线性关系6.若一个随机过程的任意两个时间点上的随机变量之间都存在线性关系,则称该过程具有:A.平稳性B.相关性C.正态性D.独立性7.在连续时间马尔可夫链中,状态转移率矩阵描述了:A.各状态间的直接转移概率B.各状态间的间接转移概率C.单位时间内从某状态转移到其他状态的概率D.所有状态的总转移概率8.布朗运动的一个关键性质是:A.路径可预测性B.路径连续但几乎处处不可导C.路径分段平滑D.路径与时间呈线性关系9.对于随机过程X(t),若对任意t,X(t)的概率分布函数与时间t无关,则X(t)是:A.平稳过程B.严格平稳过程C.弱平稳过程D.遍历过程10.下列哪个随机过程模型常用于金融市场中的股票价格模拟?A.几何布朗运动B.泊松过程C.平稳独立增量过程D.线性回归过程。
(完整word版)随机过程试题
(完整word 版)随机过程试题电子科技大学研究生试卷(考试时间: 至 ,共 小时)课程名称 应用随机过程 学时 60 学分 3 教学方式 讲授考核日期 2009 年 元 月 5 日 成绩考核方式: (学生填写)一、(12分)已知随机过程{(),[2,2]},(),X t t X t U t U ∈-=+为随机变量,服从()0,π上 的均匀分布.试求:(1)任意两个样本函数,并绘出草图; (2)随机过程()X t 的特征函数;(3)随机过程()X t 的均值函数,自协方差函数.解 (1)(2)][][);(φ)()(t U u j t X u j e E eE u t +===][U u j t u j e E e= uj e eu j tu j π1π- (3)2π)()())((+=+=+=t t U E t U E t X E ; )]([)]([)]()([),(t X E s X E t X s X E t s C -= ][][)])([(t U E s U E t U s U E ++-++=12π)()]([)(222==-=U D U E U E二、(12分)设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数1(,)2cos X t t ω=,,2cos )ω,(2t t X -=t -∞<<+∞且1()0.8P ω=,2()0.2P ω=,分别求:(1)一维分布函数);0(x F 和);4π(x F ;(2)二维分布函数(0,;,)4F x y π。
解 1) 对任意实数t ∈R ,有 8.02.0cos 2cos 2)(p tt t X -特别有8.02.022)0(pX - ,8.02.022)4π(p X -学 号 姓 名 学 院 教师……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………故 ⎪⎩⎪⎨⎧<≤<--≤=<=.2,1;222.0;2,0})0({);0(x x x x X P x F ⎪⎪⎩⎪⎪⎨⎧<≤<--≤=<=.2,1;22,2.0;2,0})4π({);4π(x x x x X P x F 2)8.02.0)2,2()2,2())4π(),0((p X X -- (0,;,)4F x y π})4π(,)0({y X x X P <<=0,20.2,22,2;1,2,x y x y y x x y ⎧≤-≤⎪⎪=-<≤>-<≤>-⎨⎪>>⎪⎩或三、(12分)设随机过程()cos()Y t X t ω=+Θ,其中ω为常数,随机变量X 服从瑞利分布:22220()(0)00x X x e x f x x σσσ-⎧⎪>=>⎨⎪≤⎩~(0,2)U πΘ,且X 与Θ相互独立,试求随机过程()Y t 的均值函数与自协方差函数.解 ])ωcos([)()]([Θ+=t E X E t Y E 0)ωcos(π21σ1π200σ22222=+⨯=⎰⎰∞+-dy y t dx e x x)]([)]([)]()([),(t X E s X E t X s X E t s C -=)]()([t X s X E =])ω)cos(ωcos([)(2ΘΘ++=t s E X E⎰⎰++⨯=∞+-π200σ232)ωcos()ωcos(π21σ122dy y t y s dx e x x ⎰⎰+++-⨯=+∞-2π002)2)((cos )(cos [4π1σ4d θθs t βs t βdu ue u ).(cos σ2)(cos 21σ422s t βs t β-=-⨯=四、(12分)设在[0, t )时段内乘客到达某售票处的数目为一强度是5.2=λ(人/分)的泊松过程,试求:(1)在5分钟内有10位乘客到达售票处的概率;(2)第10位乘客在5分钟内到达售票处的概率; (3)相邻两乘客到达售票处的平均时间间隔。
随机过程试题及答案
随机过程试题及答案一、单项选择题(每题2分,共10分)1. 随机过程的数学定义是什么?A. 一系列随机变量的集合B. 一系列随机事件的集合C. 一系列随机数的集合D. 一系列随机函数的集合答案:A2. 马尔可夫链的无记忆性是指什么?A. 未来的状态只依赖于当前的状态B. 未来的状态只依赖于过去的状态C. 未来的状态只依赖于过去和现在的状态D. 未来的状态不依赖于任何状态答案:A3. 布朗运动的增量具有什么性质?A. 独立性B. 均匀分布C. 正态分布D. 指数分布答案:A4. 随机过程的平稳性是指什么?A. 过程的统计特性随时间不变B. 过程的统计特性随时间变化C. 过程的状态随时间不变D. 过程的状态随时间变化答案:A5. 泊松过程是哪种类型的随机过程?A. 连续时间随机过程B. 离散时间随机过程C. 离散空间随机过程D. 连续空间随机过程答案:A二、填空题(每题2分,共10分)1. 随机过程的样本函数是定义在时间轴上的______函数。
答案:随机2. 随机过程的独立增量性质是指在不相交的时间间隔内,随机过程的增量是______的。
答案:相互独立3. 随机过程的遍历性是指在足够长的时间后,随机过程的统计特性将______。
答案:趋于稳定4. 随机过程的平稳性分为严格平稳和______平稳。
答案:宽5. 一个随机过程的自相关函数是描述该过程在不同时间点的______的函数。
答案:相关性三、简答题(每题10分,共20分)1. 简述什么是随机过程的遍历性。
答案:随机过程的遍历性是指在足够长的时间后,随机过程的统计特性将趋于稳定,即过程的统计特性不随时间变化而变化,表现出一种长期的行为模式。
2. 描述随机过程的平稳性与独立增量性质的区别。
答案:随机过程的平稳性是指过程的统计特性随时间不变,即在任意时间点上,过程的统计特性都相同。
而独立增量性质是指在不相交的时间间隔内,随机过程的增量是相互独立的,即一个时间间隔内的增量不影响另一个时间间隔内的增量。
随机过程试题及答案
随机过程试题及答案一、单项选择题(每题2分,共10分)1. 随机过程的数学定义中,通常需要满足哪些条件?A. 样本空间、概率测度、随机变量B. 样本空间、概率测度、随机函数C. 样本空间、随机变量、随机函数D. 概率测度、随机变量、随机函数答案:B2. 马尔可夫链的无记忆性指的是什么?A. 过程的未来状态仅依赖于当前状态B. 过程的未来状态仅依赖于过去的状态C. 过程的未来状态依赖于当前和过去的状态D. 过程的未来状态依赖于所有历史状态答案:A3. 在随机过程中,如果一个过程的任何有限维分布都是联合正态的,则称该过程为什么?A. 正态过程B. 高斯过程C. 联合正态过程D. 多元正态过程答案:B4. 以下哪个不是平稳随机过程的性质?A. 一阶矩不随时间变化B. 任意两个不同时间点的协方差仅依赖于时间差C. 过程的均值随时间变化D. 过程的自相关函数仅依赖于时间差答案:C5. 随机过程的谱密度函数与自相关函数之间的关系是什么?A. 互为傅里叶变换B. 互为拉普拉斯变换C. 互为Z变换D. 互为梅林变换答案:A二、填空题(每题3分,共15分)1. 如果随机过程的样本路径是连续的,则称该过程为_________。
答案:连续过程2. 随机过程的样本函数是定义在时间轴上的_________。
答案:随机变量3. 对于一个平稳过程,其自相关函数R(τ)仅依赖于时间差τ,而不依赖于绝对时间t,即R(t1, t2) = R(t1 - t2) = R(τ),其中τ = t2 - t1。
这种性质称为_________。
答案:时间平移不变性4. 随机过程的遍历性是指过程的_________等于其统计平均。
答案:时间平均5. 随机过程的遍历性分为_________遍历性和_________遍历性。
答案:强,弱三、简答题(每题10分,共20分)1. 简述什么是泊松过程,并给出其概率质量函数。
答案:泊松过程是一种描述在固定时间或空间间隔内随机事件发生次数的随机过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
服从参数为的指数分布。
部分答案:
2、解:这里的平稳过程是指弱平稳过 程。 (1) 当 时,设 ,
因此 为平稳过程。 (2)若 , 是 的函数,因此不是平稳过程。
7、(15分)在噪声背景中提取周期信号是通信工程中的一个 重要问题。例如在雷达接收机的输出端存在着周期信号的回波 信号,又存在着随机噪声,雷达技术中一个重要问题就是要在 噪声背景中识别是否有周期信号的存在。通过对接收信号的自 相关函数进行分析即可检测出接收信号中是否含有周期回波信 号。说明检测原理。
比赛结束。以Xn,n1表示比赛至第n局时甲得的分数,则Xn,n1 为齐次马尔可夫链。
(1) 写出状态空间;(6分)
(2) 求2步转移概率矩阵;(6分)
(3) 问在甲获得1分的情况下,最多再赛2局可以结束的概
率。(8分)
5、一齐次马氏链的一步转移概率矩阵为:
初始分布为:
(10分)
6、设随机过程{X(t),
2008级硕士生随机过程考试题
1、(10分)设有随机过程{(t),-<t<},(t)= cos t, 其中为
均匀分布于(0,1)间的随机变量,即
2、(10分)随机过程(t)=sin(Ut) 其中U是在[0,2]上均匀分布的随机变量。若tT, [0,), 试分析(t)的平稳性。
而T=
3、(10分)随机过程;式中:A、0是实常数;是具有均匀分 布的随机变量:
8、设有三个状态的马氏链,其一步转移概率矩阵为
(1) 试画出该过程的状态传递图并说明其状态是常返态还是非常 返态;(5分)
(2) 求出极限分布。(5分) 9、无容量限制的M/M/S排队系统,系统的顾客到达率为,平均服务时间
为1/ ,画出该生灭过程的状态传递率图,并写出排队过程进入平稳 状态后的平衡方程式。(10分) 10、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的 人数。假设男女顾客到达商场的人数分别独立地服从每分钟1人 与每分钟2人的Possion过程。问到达商场顾客的总人数应该服 从什么分布?(10分)
分析(t)的平稳性。
4、(15分)把两个黑球和两个白球放在两个坛子中,每次从 每个坛子中随机的取出一球,然后把被取出的球交换放到坛子 里。设(n)表示n次交换后第一个坛子里的白球数。 (1)说明(n)构成一个齐次马尔科夫链,并写出状态空间; (2)写出一步、二步转移概率矩阵。
5、(10分)设{(n),n=0,1,2,…}是一齐次马尔科夫链,其
一步转移概率矩阵为 试分析状态类型。
6、(15分)设有两个通信信道,每个信道的正常工作时间服 从指数分布其参数为,两个信道何时产生中断是相互独立的。 信道一旦中断,立刻进行维修,其维修时间也服从指数分布其 参数为。两个信道的维修时间也是相互独立的。将系统中中断 的信道数作为系统状态。 (1)求出这两个信道组成的系统的Q矩阵; (2)画出状态传递率图。 (3)列出平衡方程。
-<t<}的数学期望为mX(t),
CX(t1,t2),而(t)是一个确定性函数。试求随机过程
Y(t)=X(t)+ (t)
协方差函数
的数学期望和协方差函数。(10分)
7、随机相位的正弦波过程:,其中振幅A为常数,角频率 取常数,相位
是一个均匀分布于间的随机变量。 (1) 求该过程的均值、方差、相关函数和协方差函数;(5分) (2) 判断(t)的广义平稳性。(5分)
2009级工程硕士《随机过程及应用》试题
1、简述马尔可夫过程的定义。(5分) 2、简述泊松过程的定义及其概率分布表达式。(5分)
3、填写下面转移率矩阵的空白元素。(10分)
4、甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p,乙胜的
概率为q,平局的概率为r。(p+q+r=1)设每局比赛后,胜者得
1分,负者得-1分,平局不计分பைடு நூலகம்当两人中有一个人得到2分时