固体物理第一讲 绪论PPT课件

合集下载

第一章固体物理课件U

第一章固体物理课件U
激光产生
通过受激辐射使光子在固体中放大并产生相干光。
光电子学的基本原理
光电效应
光子与固体中的电子相互作用,使电子获得能量并从固体表面逸 出。
光子吸收
固体吸收光子后,电子从低能级跃迁到高能级。
光子发射
固体中的电子从高能级跃迁到低能级时释放出光子。
光电子学的应用与发展
太阳能电池
利用光电效应将太阳能 转换为电能。
能带理论的计算方法
01
02
03
04
近自由电子近似
假设电子在固体中的运动接近 于自由电子,通过微扰理论计
算能带结构。
紧束缚近似
假设电子被束缚在原子附近, 通过原子轨道线性组合方法计
算能带结构。
正交化平面波方法
将电子波函数表示为平面波和 周期函数的乘积,通过求解薛
定谔方程计算能带结构。
赝势方法
用有效势代替真实的原子势, 简化能带结构的计算过程。
04
固体的光学性质与光电子学
固体的光学常数
折射率
描述光在固体中传播速 度相对于真空中的速度 的比值。
消光系数
表示光在固体中传播时 的衰减程度。
反射相移
光从一种介质反射到另 一种介质时发生的相位 变化。
固体的发光与激光
发光现象
固体受到激发后,电子从高能级跃迁到低能级时释放出的光子。
发光类型
包括荧光、磷光和化学发光等。
磁随机存取存储器(MRAM)
MRAM是一种基于自旋电子学的非易失性存储器件,具有高速读写、无限次擦写、低功 耗等优点,被广泛应用于嵌入式系统、数据中心等领域。
自旋逻辑器件
利用自旋极化电流实现逻辑运算,可以构建出全新的自旋逻辑器件,为未来的量子计算和 光计算提供技术支持。

大学固体物理ppt

大学固体物理ppt

绪 论:固体物理学应用
聚变发电
能源危机:
化石能源:2050石油枯竭,煤炭,可燃冰; 太阳能;风能;海洋能;核能:裂变和聚变
东方超环(EAST)
1.65亿元人民币。 韩国3亿美元, 美国5.7亿美元。
ITER
100亿美元
量子计算机(摩尔定律18月 P4,2000)
速度(大数质因子分解)100亿年 vs 30秒 解密 量子隐形传输
布拉伐格子 + 基元 = 晶体结构
一、布拉伐格子 → 表征了晶格的周期性
理想晶体:可看成是由完全相同的基本结构单元 (基元)在空间作周期性无限排列构成 单个原子或离子或若干个原子的集团
① 格点:代表基元中空间位置的点称为格点 一切格点是等价的 — 每个格点的周围环 境相同 → 因为一 切基元的组成,位相和取 向都相同!
, 为 一组基矢 Rl l1a1 l2a2 l3a3 a1, a2 , a3
x
1
3
二维布拉伐格子几种可能的基矢和原胞取法
二维晶格的晶系和布拉伐格子 晶系 轴和角度 布拉伐格子
斜方
长方
正方
六角
a≠b γ ≠90℃ a≠b γ = 90℃ a=b γ = 90℃ a=b γ=120℃
绪 论:《固体物理》的研究对象
一个超级大原子
T (0K附近)玻色-爱因斯坦凝聚态(BEC)
物 质 的 状 态
固态(晶体和非晶体) 液态(液晶体和非晶液体) 气态 (百万K) 等离子态:太阳(99%) 凝聚态物理
绪 论:《固体物理》的研究内容
晶体和非晶体的结构
固体理论: 电子,原子(离子)运动规律
固体宏观性质
固体材料的性质(半导体,金属,超导,绝缘体) 新型人工材料微观结构和宏观性质

《固体物理一绪论》PPT课件

《固体物理一绪论》PPT课件

绪论:三、固体物理学及其发展史
与此同时,* Heisenberg, *Wigner, *Mott, *朗道, 夫伦克尔,佩尔斯,*肖特基,*范弗莱克等当时一流 的理论物理学家都曾投入到固体理论的研究中并取得 了丰富的成果。
赛兹1940年出版的《现代固体理论》一书, 标志着固体物理的成熟并形成了固体物理理论 的第一个范式。(建立在对晶体认识的基础上)
5. 光学材料非线性研究 励强华教授
绪论:
四、我院在凝聚态物理领域的研究工作
6. 热电材料研究 胡建民教授、曲秀荣老师 7. 非晶和液体性质的研究 孙民华教授 8. 半导体光电子材料;光催化研究 李林、徐玲玲老师 9. 半导体材料电子结构、输运性质的第一性原理计算
尹海涛教授、牛丽老师
绪论:五、本课程的主要内容
Seitz F, Modern Theory of Solids, McGraw-Hill 1940
绪论:三、固体物理学及其发展史
晶格结构
晶格理论
晶格动力学 晶格热力学
理想晶格
固 体 物
电子理论
实际晶格理论 能带理论 金属中的自由电子气

功函数、接触电势等
输运理论 :电子与晶格的相互作用
固体物理分论 半导体、磁学、超导、非线性光学
绪论:
四、我院在凝聚态物理领域的研究工作
1. 磁性超晶格及多层膜的物理性质研究;光子晶体的磁性研究
王选章教授、付淑芳、李华、周胜老师
2. 半导体纳米材料及其应用;
复合氧化锌超晶格纳米线制备及 TFT研制
张喜田教授、高红教授
3. 光电子技术应用 孙文军教授
4. 量子光学;固体发光
吕树臣教授、孟庆裕、孙江亭老师
第一章 晶体结构与X射线衍射 第二章 晶体的结合 第三章 晶格振动和固体的热学性质 第五章 金属的自由电子理论 第六章 能带理论

黄昆版固体物理课件

黄昆版固体物理课件

第一章晶体结构§1-1 绪论固体物理与力学、电动力学、量子力学等学科不同,这些学科学习的是一种运动形式,而固体物理学习的则是一类物质,固体物理学习晶体的几何结构,学习形成晶体结构的原子的最普遍的运动形式,即晶格振动,学习晶体中的能量特征和运动,然后学习半导体物理超导电性等一些专题问题。

引入:固体是指在承受切应力时具有一定程度刚性的物质。

在相当长的时间里,人们研究的固体主要是晶体,晶体知识作为一门科学的出现,科学界公认是在17世纪中叶,距今已有300多年。

固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?一、固体物理的研究对象固体物理是研究固体的微观结构,组成固体的粒子(原子、离子、电子)之间相互作用与运动规律,并在此基础之上阐明固体的宏观性质和应用的学科。

它分为:晶体、非晶体和准晶体三类。

1、晶体:原子按一定的周期排列成规则的固体(即,长程有序) 例如:天然的岩盐、水晶以及人工的半导体锗、硅单晶都是晶体。

——图XCH001_055 和图XCH001_0001_03 是CaCO3和雪花结晶的结构——图XCH001_055 是高温超导体YBaCuO晶体的结构2、非晶体:原子的排列没有明确的周期性(短程有序),如:玻璃、橡胶、塑料。

——图XCH001_036_01 和图XCH001_036_02 分别是Be2O3单晶和非晶结构。

3、准晶体:介于晶体和非晶体之间的新的状态——称为准晶态。

理想晶体:内在结构完全规则的固体,又叫做完整晶体;实际晶体:固体中或多或少地存在有不规则性,在规则(排列)的背景中尚存在微量不规则性的晶体——近乎完整的晶体。

二固体物理的研究方法固体物理主要是一门实验性学科。

为了阐明所揭示出来的现象之间内在的本质联系,需要建立和发展关于固体的微观理论。

固体(晶体)是一个很复杂的客体,每一立方米中包含10个原子、电子,而且它们之间的相互作用相当强.固体的宏观性质就是如此大量有约23的粒子之间的相互作用和集体运动的总表现。

《固体物理基础教学课件》第一章

《固体物理基础教学课件》第一章

半导体的电子状态
半导体中的电子能级结构
半导体中的电子能级结构与金属不同,存在一个带隙,使得半导 体在一定温度下只能部分电子成为自由电子。
半导体的导电性
半导转变为导体。
半导体的光电效应
当光照射在半导体上时,半导体吸收光子后,价带上的电子跃迁到 导带,产生光电流。
晶体结构
80%
晶体结构的特点
晶体结构是指固体物质内部的原 子或分子的排列方式,具有周期 性、对称性和空间群特征。
100%
常见的晶体结构
常见的晶体结构有金刚石型、氯 化钠型、闪锌矿型等,它们在外 观和性质上都有所不同。
80%
晶体结构的分类
晶体结构可以根据原子或分子的 排列方式和空间群进行分类,有 助于理解其物理和化学性质。
核聚变能源
在核聚变能源领域,固体物理中的 高温高压等极端条件下的物理性质 研究为实验设计和设备制造提供了 重要依据。
在信息技术领域的应用
集成电路
集成电路的制造依赖于固体物理 中的半导体理论和热力学原理, 从芯片设计到制造工艺的每一个 环节都离不开固体物理的理论支
持。
存储技术
随着信息技术的快速发展,存储 技术也在不断进步。固体物理中 的磁学和光学理论在磁存储和光
推动高新技术产业的进步
固体物理学在信息技术、新能源等领域中有着广泛 的应用,如半导体技术、太阳能电池等,为高新技 术产业的进步提供了重要支撑。
对其他学科的交叉促进作用
固体物理学与化学、生物学、地球科学等学科有着 密切的联系,通过与其他学科的交叉融合,可以促 进相关领域的发展和创新。
02
固体物质的结构
复合材料
通过研究复合材料的微观结构和物理性质,可以设计和制备具有优异 性能的复合材料,广泛应用于航空航天、汽车、体育器材等领域。

固体物理学--ppt课件

固体物理学--ppt课件

22
简立方(Simple Cubic,简称 SC )
三个基矢等长并且互相垂直。
a3 a
a2
原胞与晶胞相同。 a1
a1 ai a 2 aj a3 ak
PPT课件
23
体心立方(Body
问题一
Centered
Cub8ic以1, 体B1心C原C2子个)为原顶子
点,分8别向三个顶角
体心立方晶胞中含有几个原子? 原子引基矢。
PPT课件
11
固体物理学原胞(原胞)特点:
只反映晶格周期性特征 体积最小的周期性重复单元 结点必为顶点,边长等于该方向周期的平行六
面体 六面体内部和面上皆不含其他的结点
PPT课件
12
结晶学原胞(晶胞)的特点:
除反映晶体周期性特征外,还反映其特有 的对称性;
不一定是最小的重复单元; 结点不仅在顶角上,还可在体心或面心; 原胞边长总是一个周期,并各沿三个晶轴
任何基元中相应原子周围的情况相同,但每个基 元中各原子周围情况不同。
c 基元
b a
PPT课件
10
3、晶格、原胞
晶格:通过点阵中 的结点,做许多平 行的直线族和平行 的晶面族,点阵就 成为一些网格,即 晶格。
原胞:用来反映晶 体周期性(及对称 性)特征的六面体 单元,有:
固体物理学原胞 结晶学原胞
问题二
体心立方原胞如何选取?
问题三
原胞的基a1矢 a形2 式 a?3
1 2
a3
问题原四胞体a1积 a?2 (i
j
k)
a2
a 2
(i
j
k)
a3
a 2
(i
j
k)
PPT课件

固体物理绪论ppt课件

固体物理绪论ppt课件
2. 金属的研究 —— 抽象出电子公有化的概念,再用单电 子近似的方法建立能带理论
3. 物质的铁磁性 —— 研究了电子与声子的相互作用,阐 明低温磁化强度随温度变化的规律
4. 超导的理论 —— 研究电子和声子的相互作用,形成库 柏电子对,库柏对的凝聚表现为超导电相变
六、固体物理学领域的一些重要进展 1. 人造材料、超晶格半导体、MBE、CVO等 2. 量子霍尔效应:电势差按量子变化而非连续变化 3. 降维效应:三维→二维→一维→零维(量子点) 4. 电荷密度波、自旋密度波 5. 无序:等效介质+微扰 6. 混合原子价 7. 3He的超流相(低温下流动无阻力) 8. 重整化群的方法(处理多体问题、相变、临界点等)
23. 生物物理(蛋白质、DNA等) 24. 软凝聚态物质(生物体、胶体、各种细小颗粒、沙堆
模型等) 25. 纳米材料 26. Bose-Einstein凝聚
……
《固体物理学》参考书目
1.《固体物理学》 —— 黄昆 韩汝琪,高等教育出版社
2. 《Introduction to Solid State Physics》Seventh Edition —— CHARLES KITTEKL, John Wiley
—— 费米发展了统计理论,为以后研究晶体中电子运动的 过程指出了方向
—— 20世纪三十年代,建立了固体能带论和晶格动力学
—— 固体能带论说明了导体与绝缘体的区别,并断定有 一类固体,其导电性质介于两者之间______半导体
—— 20世纪四十年代末,以诸、硅为代表的半导体单晶的 出现并制成了晶体三极管______ 产生了半导体物理
程序)(急冷方式获得)
16. 细小体系、团簇、C60、介观物理 17. 有机导体、高分子材料(具有掺杂导电性) 18. 非线性、非平衡、孤子、突变、湍流 19. 量子计算机,由量子态控制(传统计算机由0、1控制) 20. 超硬材料,如导电性极强的金刚石半导体,性能稳定、

《固体物理基础教学课件》第一章

《固体物理基础教学课件》第一章
精选ppt 2
课程特点
理解基本的物理概念 弄清基本的物理图像 以上课所讲PPT内容为主 不管公式的推导,强调物理的逻辑 考试:
期末70%+作业20%+考勤10%
精选ppt 3
授课安排
绪论及晶体结构(3次课) 固体的结合 (1次课) 晶格振动 (2次课) 能带论(1次课) 半导体电子论(4次课) 固体的磁性和超导电性(2次课) 量子霍尔效应专题(1次课) 固体物理前沿热点研究讲座(1次课) 复习答疑(1次课)
明集成电路
11.
2001年:克特勒(德国)、康奈尔、卡尔·E·维曼(美国)在碱金属原子稀薄气体的玻色-爱因斯坦凝聚态以及凝聚态物质性质早期基本性质
研究方面的成就
12.
2003年:阿列克谢·阿布里科索夫、安东尼·莱格特(美国)、维塔利·金茨堡(俄罗斯)在超导体和超流体领域中做出的开创性贡献
13.
2007年:艾尔伯·费尔(法国)和皮特·克鲁伯格(德国)发现巨磁电阻效应
精选ppt 5
第一讲 绪论
精选ppt 6
前言-固体物理的伟大成就
固体物理领域获得诺贝尔奖的工作
1.
1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究
2.
1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论
3.
1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论
研究固体的结构及其组成粒子(离子、电子)之间的 相互作用与运动规律,以阐明其宏观性能和用途。
固体的物理性质和规律由什么决定?
* 由组成固体的原子成分?比如,金刚石、石墨、C60固体都由 碳原子组成,但它们物理性质完全不同! * 金刚石、石墨、C60固体究竟有何不同?(原子排布结构)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

70年代出现了高分辨电子显微镜点阵成像技术,
在于晶体结构的观察方面有所进步。近年来发展
的扫描隧道显微镜,可以相当高的分辨率探测表
面的原子结构。
• 晶体的结构以及它的物理、化学性质 同晶体结合的基本形式有密切关系。通常 晶体结合的基本形式可分成:离子键合、 金属键合、共价键合、分子键合(范德瓦耳 斯键合)和氢键合。根据X射线衍射强度分 析晶体的物理、化学性质,或者依据晶体 价电子的局域密度分布的自洽理论计算, 人们可以准确地判定该晶体具有何种键合 形式。
(二)、固体物理的发展史
几百万年前的石器时代,或者几万年前人类开
始冶炼金属、制造农具和刀箭的时代。通过炼金术, 人们了解了一些材料的颜色、硬度、熔化等性质, 并用之于绘画、装饰等。
1611年,开普勒就开始思考雪花为什么呈六角 形;
1843年法拉第曾惊奇地发现硫化银的电阻随着 温度的升高而下降;
阿拉克西曼德:万物是由无数的原始物质构成的。 阿拉克西美尼:万物的本质是空气。 赫拉克里特:万物的本质是火,火与其他物类的混合物,一
般都以我们可以感知气味的其他物类来命名,但是火本身 是不变的因素。 埃姆毕多克拉斯:万物是由水、气、火、土组成。
• 巴门尼德: 宇宙中只有一个永恒的存在,像一个充实的
固体物理学
第一讲 绪论
• 一:固体物理学 • 二:发展史 • 三:当前研究的热点和前沿 • 四:本课程的主要讲解内容 • 五、参考书籍
一:固体物理学
固体物理学是研究固体物质的物理 性质、微观结构、构成物质的各种粒 子的运动形态,及其相互关系的科学。 它是物理学中内容极丰富、应用极广 泛的分支学科。
融汇了力学、热力学与统计物理学、 电动力学、量子力学和晶体学等多学 科的知识。
• 固体通常指在承受切应力时具有一定程度刚性的物 质,包括晶体和非晶态固体。简单地说,固体物理 学的基本问题有:
• 固体是由什么原子组成?它们是怎样排列和结合的? 这种结构是如何形成的?
• 在特定的固体中,电子和原子取什么样的具体的运 动形态?
《洪范》:宇宙是由金木水火土五种元素组成。 阴阳八卦也被用来解释自然界的千变万化。
炼丹术 是古代用人工的方法,炼制既可长生不老又能点 石成金之药的方术。炼丹术曾经在世界各国都有发展。炼 金术士们希望能够利用廉价的金属为原料,得到贵重的金 属金和银,也希望炼制出长生不老的仙丹。 炼丹术在我 国最早可追溯到秦始皇时期。秦始皇为了追求长生不老, 曾经派徐福等人出海寻找,还召集了一大帮方士(炼丹家) 日日夜夜为他炼制丹砂——长生不老药。中国的炼丹始于 神仙传说流行的两汉,汉朝时,宫廷中也召集了许多炼丹 术士们从事炼丹。历经六朝道教的推波助澜,至于李唐之 世还达到波澜壮阔的高潮,而宋元以后逐渐衰歇,到了明 朝正统、万历、嘉靖朝代,道教借着皇帝的昏庸而盛行, 炼丹术又趋兴旺,实际上,这一阶段,中国的资本主义思 想和自然科学研究也渐露萌芽,因此在炼丹术的回光返照 中也逐渐带进了科学的因素。
1830年布拉菲(A.内部结构可以
概括为是由一些相同的点子在空间有规则地作
周期性地无限分布;

费奥多罗夫在1890年、熊夫利在1891年、
巴洛在1895年,各自建立了晶体对称性的群理
论。熊夫利(A.M.Schoenflies)从理论上证明
晶体有32个点群,230个空间群;这为固体的

对于磁有序结构的晶体,增加了自旋磁矩有
序排列的对称性,直到20世纪50年代舒布尼科夫
才建立了磁有序晶体的对称群理论。

第二次世界大战后发展的中子衍射技术,是
磁性晶体结构分析的重要手段。 60年代起,人们
开始研究在超高真空条件下晶体解理后表面的原
子结构。 20年代末发现的低能电子衍射技术在60
年代经过改善,成为研究晶体表面的有力工具。
• 它的宏观性质和内部的微观运动形态有什么联系?
• 各种固体有哪些可能的应用?
• 探索设计和制备新的固体,研究其特性,开发其应 用。
二、固体物理发展史
(一)、古希腊的原子论 “万物是由什么构成的?”-BC600
泰勒斯:万物都是由水聚散构成的,水蒸气就是空气,空气 凝结为水和各种固体,所以万物的本质是水。
柏拉图: 他设想宇宙开头有两种直角三角形,一种是正方 形的一半,另一种是等边三角形的一半。从这些三角形就 合理地产生出四种正多面体,这就组成四种元素的微粒。 火微粒是正四面体,气微粒是正八面体,水微粒是正二十 面体,土微粒是立方体。第五种正多面体是由正五边形形 成的十二面体,这是组成天上物质的第五种元素,叫做以 太。整个宇宙是一个圆球,因为圆球是对称和完善的,球 面上的任何一点都是一样。宇宙也是活的,运动的,有一 个灵魂充溢全部空间。宇宙的运动是一种环行运动,因为 圆周运动是最完善的,不需要手或脚来推动。四大元素中 每一种元素在宇宙内的数量是这样的:火对气的比例等于 气对水的比例和水对土的比例。万物都可以用一个数目来 定名,这个数目就是表现它们所含元素的比例。
1929年迈斯纳又观测到硫化铜在非常低的温 度下(2K)突然变成比纯铜还好得多的导体;
从公元前3000年一直到本世纪初的整个历史 阶段,人们一直被指南针为什么能指方向这个问 题所困惑。
在相当长的时间里,人们研究的固体主要是 晶体。早在18世纪,人们对晶体外部的几何规则 性就有一定的认识。

球,空白不能存在,因为 “有”不能是 “无”。
• 阿拉克撒格拉: 物质是无限可分的。
• 毕达哥拉斯 :四元素都是由形状为规则立方体的基本粒 子构成的。
• 留基伯:一个整体是由无数粒子构成的,每个粒子都是巴 门尼德球,刚性,立体而不可分割。原子在空间移动,聚 散成物,原子的性质同一,形状与规模不同。
• 德谟克利特:物质是由原子组成。虚空而真实的空间是原 子运动的场所。人类的知识来源于原子对感官的影响。原 子是同一的,原子的特殊组合是变换的。
理论发展找到了基本的数学工具,影响深远。
• 1912年劳厄等发现X射线通过晶体的衍 射现象,证实了晶体内部原子周期性排列 的结构。加上后来布喇格父子1913年的工 作,建立了晶体结构分析的基础。19世纪 以来在晶体结构,固体的电学、磁学、光 学、热学等方面的发展所奠定的基础,固 体物理学才形成一门完整的学科。
相关文档
最新文档