04第四讲 正项级数的概念,比较判别法

合集下载

级数收敛发散的判断方法总结

级数收敛发散的判断方法总结

级数收敛发散的判断方法总结
级数是一种由数列构成的无限求和,是数学中的一个重要概念。

在学习级数时,我们需要掌握判断级数是否收敛或发散的方法。

一、正项级数判别法
正项级数是指所有项都是非负的级数。

如果正项级数的部分和有上界,则该级数收敛;如果正项级数的部分和无上界,则该级数发散。

二、比较判别法
比较判别法是指将待判断的级数与已知的收敛或发散的级数进行比较,从而判断待判断的级数的收敛性。

1. 比较法一:若0≤a_n≤b_n,则若级数∑b_n收敛,则级数∑a_n
必收敛;若级数∑a_n发散,则级数∑b_n必发散。

2. 比较法二:若a_n≥0,b_n≥0,则若存在正整数N,使得对于n
≥N,a_n≤kb_n,则级数∑b_n收敛,则级数∑a_n必收敛;若级数
∑a_n发散,则级数∑b_n必发散。

三、极限判别法
极限判别法是指将待判断的级数的通项公式中的n变为无穷大,然后求其极限值,从而判断级数的收敛性。

1. 当极限lim(a_n) = 0时,级数∑a_n可能收敛也可能发散。

2. 当极限lim(a_n) ≠ 0时,级数∑a_n必发散。

四、积分判别法
积分判别法是将待判断的级数的通项公式中的n替换为变量x,然后将其转化为函数f(x)的形式,然后对函数f(x)在正实数区间[a,∞)上求不定积分∫f(x)dx,若积分∫f(x)dx收敛,则级数∑a_n收敛;若积分∫f(x)dx发散,则级数∑a_n发散。

以上就是关于级数收敛发散的判断方法的总结,掌握这些方法可以帮助我们更好地判断级数的收敛性,加深对级数概念的理解。

级数收敛与发散的判定方法

级数收敛与发散的判定方法

级数收敛与发散的判定方法级数是由一系列连加的无穷项组成的数列。

在数学中,判断一个级数是收敛还是发散是一个重要的问题。

下面我将介绍几种常见的方法来判定级数的收敛性或发散性。

一、正项级数收敛判定法正项级数是指级数的每一项都是非负数。

对于正项级数,我们可以使用以下几种方法来判定其收敛性或发散性。

1. 比较判别法:如果一个正项级数的每一项都小于等于另一个已知收敛的正项级数的对应项,那么这个级数也是收敛的;如果一个正项级数的每一项都大于等于另一个已知发散的正项级数的对应项,那么这个级数也是发散的。

2. 比值判别法:对于正项级数,计算相邻两项的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。

3. 根值判别法:对于正项级数,计算相邻两项的根的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。

二、交错级数收敛判定法交错级数是指级数的每一项交替正负。

对于交错级数,我们可以使用以下方法进行判定。

1. 莱布尼茨判别法:对于交错级数,如果级数的每一项绝对值递减趋向于零,并且满足单调性条件,即后一项的绝对值不大于前一项的绝对值,那么该级数收敛。

三、级数收敛判定法对于非正项级数,也有一些方法可以判定其收敛性。

1. 绝对收敛判别法:如果一个级数的绝对值级数收敛,那么原级数也收敛。

2. 条件收敛判别法:如果一个级数是收敛的但不是绝对收敛的,那么它是条件收敛的。

四、其他级数的判定方法除了上述常见的判定法外,还有一些特殊的级数判定方法。

1. 积分判别法:将一个级数与一个函数的积分进行比较,如果积分收敛,则级数收敛;如果积分发散,则级数发散。

2. 定积分法:将级数的前n项求和表示为一个关于n的函数,然后对该函数进行定积分,如果定积分收敛,则级数收敛;如果定积分发散,则级数发散。

总结:级数的收敛与发散的判定方法有比较判别法、比值判别法、根值判别法、莱布尼茨判别法、绝对收敛判别法、条件收敛判别法、积分判别法和定积分法等。

正项级数

正项级数

1.引言级数是数学分析这门学科中的一个重要部分,而正项级数又是级数中最简单,同时也是级数中最基本的一种级数.证明级数的敛散性是级数的一种重要性质,解决级数的问题多半要涉及到讨论级数的敛散性.由于正项级数在级数中的基础地位,所以讨论正项级数的敛散性是级数的一个基础内容,也是十分重要的内容,所以正项级数敛散性判别法在数学分析中有着重要作用. 2.正项级数概念 2.1.正项级数定义设有数列{}n u ,即1u ,2u ,⋅⋅⋅,n u ,⋅⋅⋅,将此数列依次相加起来,即1n n u ∞=∑,称为数值级数,其中n u 称为级数的第n 项或通项.若级数的每一项n u 的符号都是正,则称级数1n n u ∞=∑是正项级数.2.2.正项级数收敛的充要条件部分和数列{n S }有上界,即存在某正数M,对0n ∀>,有n S <M ⇔正项级数1n n u ∞=∑收敛.2.3.正项级数敛散性判别法 2.3.1.比较原则设1nn u∞=∑和1nn v∞=∑是两个正项级数,如果存在某正数N,对一切n>N 都有n n u v ≤,那么 (1)若级数1nn v∞=∑收敛,则级数1nn u∞=∑也收敛; (2)若级数1nn u∞=∑发散,则级数1nn v∞=∑也发散;即1nn u∞=∑和1nn v∞=∑同时收敛或同时发散.比较原则的极限形式 :设1n n u ∞=∑和1n n v ∞=∑是两个正项级数.若limnn nu l v →∞=,则(1)当0l <<+∞时, 级数1nn u∞=∑与级数1nn v∞=∑同时收敛或同时发散;(2)当l =0且级数1nn v∞=∑收敛时, 级数1n n u∞=∑也收敛; (3)当l =+∞且级数1nn v∞=∑发散时,级数1nn u∞=∑也发散.2.3.2.达朗贝尔判别法(或比式判别法)设1n n u ∞=∑为正项级数,且存在某正数0N 及常数q (0<q<1)(1)若对一切n>0N , 成立不等式1n n u u +≤q,则级数1n n u ∞=∑收敛;(2)若对一切n>0N , 成立不等式1n n u u +≥1,则级数1n n u ∞=∑发散.达朗贝尔判别法的极限形式:若1n n u ∞=∑为正项级数,且1limn n nu u +→∞=q(1)当q<1时,则级数1n n u ∞=∑收敛;(2)当q>1或q=+∞时,则级数1n n u ∞=∑发散.2.3.3.柯西判别法(或根式判别法)设1n n u ∞=∑是正项级数,且存在某正数0N 及正常数L(1)若对一切0n N >,≤L<1,则级数1n n u ∞=∑收敛;(2)若对一切0n N >,≥1,则级数1n n u ∞=∑发散.柯西判别法的极限形式:设1n n u ∞=∑是正项级数,且n l ,则(1)当l <1时,级数1n n u ∞=∑收敛;(2)当l >1时,级数1n n u ∞=∑发散.2.3.4.积分判别法设f(x)为[1,+∞)上非负递减函数,那么正项级数()f n ∑与反常积分1()f x dx +∞⎰同时收敛或同时发散. 2.3.5拉贝判别法设1n n u ∞=∑是正项级数,且存在自然数0N 及常数r,(1) 若对一切n>0N ,成立不等式n 111n n u r u +⎛⎫-≥> ⎪⎝⎭,则级数1n n u ∞=∑收敛;(2) 若对一切n>0N ,成立不等式n 11n n u u +⎛⎫- ⎪⎝⎭≤1,则级数1n n u ∞=∑发散.拉贝判别法的极限形式:设1n n u ∞=∑是正项级数,且极限1lim 1n n n u u +→∞⎛⎫- ⎪⎝⎭=r 存在,则(1)当r>1时,级数1n n u ∞=∑收敛;(2)当r<1时,级数1n n u ∞=∑发散.3.判别方法的比较1.当级数可化为含参数的一般式、通项为等差或等比式或通项为含二项以上根式的四则运算且通项极限无法求出时,可以选用正项级数的充要条件进行判断.如:P 级数只能用正项级数的充要条件进行判断最为简便. 2.当级数表达式型如1nu ,n u 为任意函数、级数一般项如含有sin θ或cos θ等三角函数的因子可以进行适当的放缩,并与几何级数、P 级数、调和级数进行比较,1lim n n nu u +→+∞、n 易算出或1limn n nu u +→+∞=1、n 等此类无法判断级数收敛性或进行有关级数证明问题时,应选用比较原则.例:1.1111nn na a ∞=⎛⎫≤ ⎪+⎝⎭∑(a>1) 级数收敛 2.ln 11(ln )nn n ∞=∑= ln ln ln 1n n e 2ln 211n e n ≤= 级数收敛 比较原则使用的范围比较广泛,适用于大部分无法通过其它途径判别其敛散性的正项级数.3.当级数含有阶层、n 次幂,型如a!或n a 或分子、分母含多个因子连乘除时,选用达朗贝尔判别法.当通项含(1)n -与n u 的函数可以选用达朗贝尔判别法的极限形式进行判断,例:1. 113(21)!n n n ∞=⋅⋅⋅⋅-∑1limn n nu u +→∞=21lim 1n n n →∞++=2 级数发散x级数收敛.4.当级数含有n 次幂,型如n a 或()n n u 或通项1ln n p u n n=即分母含有含lnx 的函数,分子为1,或级数含有多个聚点时,可选用柯西判别法.例如:1. 121nn n n ∞=⎛⎫⎪+⎝⎭∑lim21n n n n →∞=+=12,级数收敛一般来说,当选用柯西判别法无法判断时,我们也可以选用达朗贝尔判别法来判断,但有时候我们用柯西判别法而不使用达朗贝尔判别法,因为柯西判别法得到的收敛条件比达朗贝尔判别法更优.例如:2.1+b+bc+n n b c ⋅⋅⋅++⋅⋅⋅(0)b c <<比由例题可知,两种判别法都可以用来判断上题,但柯西判别法与达朗贝尔判别法相比得出的收敛范围更小,约束条件更为详细.因此,上题选用柯西判别法比达朗贝尔判别法更好.在使用判别法时,我们可以选用柯西判别法找到最佳收敛条件.同时也存在只能使用柯西判别法,使用达朗贝尔判别法无法判断的情况.例如:3. (1)2nn ---∑n n 12 级数收敛 不可使用达朗贝尔判别法1limn n nu u +→∞=12(1)lim 2n n -+-→∞ 无法判断敛散性 因此,当我们观察级数的一般项的极限趋近于0时,我们可以选用达朗贝尔判别法或柯西判别法.5.当级数表达式型如1n u ,n u 为含有ln n 的表达式或1nu 可以找到原函数,或级数n u 为[1,)+∞上非负单调递减函数,n u 含有sin θ或cos θ等三角函数的因子可以找到原函数,可以选用积分判别法.例:1.6.当级数同时含有阶层与n 次幂,型如a!与n a 时,或使用比式、根式判别法时极限等于1或无穷无法判断其敛散性的时候,选用拉贝判别法.例:不能用达朗贝尔判别法不能用柯西判别法因此,当柯西判别法与达朗贝尔判别法无法判断敛散性时,我们可以选用拉贝判别法. 4.应用举例例1 1!2!...!(2)!n n u n +++=分析:本题无法使用柯西判别法与达朗贝尔判别法,因此选择比较原则进行判断. 解!10!(1)(2)(1)(2)(21)(2)n n n n u n n n n n n n ⋅<≤=<+⋅⋅⋅+⋅⋅⋅-,()n →∞且级数11(21)(2)i n n ∞=-∑收敛所以级数收敛. 例2 112(1)(1)...(1)nn na a a a ∞=+++∑分析:本题无法使用柯西判别法、达朗贝尔判别法,或比较原则以及其他的判别法进行判断,因此选用充要条件进行判断.解u所以级数收敛. 例3 1ln n p u n n=分析:本题分母含有ln n的表达式,优先选择积分判别法. +∞例4113135224246p p p⋅⋅⋅⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⎪ ⎪ ⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭分析:本题中通项(21)!!(2)!!nnun-=含有阶层,但不能使用柯西判别法或达朗贝尔判别法进行判断,因此选用拉贝判别法.解12221pnnu nu n++⎛⎫= ⎪+⎝⎭122111112121lim1lim lim112pnn n nnnou pn n nnun n→∞→∞→∞++⎛⎫⎛⎫-++-⎪ ⎪⎛⎫++⎝⎭⎝⎭-===⎪⎝⎭当2p>1,即p>2时,级数收敛.例52(1)2nn+-∑分析:本题中分子含有(1)n-,无法用达朗贝尔判别法或其他方法判别,这种类型也是柯西判别法的典型类型,取上极限进行判断,因此,选用柯西判别法.解112n→∞==<,∴级数收敛.5.总结数学分析作为数学系的重要专业基础课程,对学习好其他科目具有重要作用.级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等.而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断.判断正项级数的一般顺序是先检验通项的极限是否为0,若为0则发散,若不为0则判断级数的部分和是否有界,有界则收敛,否则发散.若级数的一般项可以进行适当的放缩则使用比较判别法,或可以找到其等价式用等价判别法.当通项具有一定的特点时,则根据其特点选择适用的方法,如达朗贝尔判别法、柯西判别法或拉贝判别法.当上述方法都无法使用时,根据条件选择积分判别法.当无法使用柯西判别法时,通常可以选用达朗贝尔判别法,当达朗贝尔判别法也无法使用时,使用比较原则,若比较雨泽还是无法判别时再使用充要条件进行断.由此,我们可以得到正项级数的判别法是层层递进使用的,每当一种判别法无法判断时,就出现一种新的判别法来进行判断,因此正项级数的判别法有无穷多种.正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍.本文归纳总结正项级数收敛性判断的一些典型方法,比较这些方法的不同特点,总结出一些典型的正项级数,根据不同的题目特点分析、判断选择适宜的方法进行判断.正项级数收敛判别法也可用于判定负项级数及变号级数的绝对收敛性,也可以推广到傅立叶级数的敛散性判别,在复变函数中也可以用于判定级数在复平面上的敛散性和收敛半径.参考文献[1]陈欣.关于数项级数求和的几种特殊方法 [J] . 武汉工业学院学报,2002,4.[2]陈金梅.幂级数求和法例谈 [J] . 石家庄职业技术学院报,2005,9.[3]夏学启. 贝努利数的简明表达法 [J] . 芜湖职业技术学院学报,2006,2.[4]吴良森等编著.数学分析习题精解 [M] . 北京:科学出版社,2002,2.[5]费定晖,周学圣编著.吉米多维奇数学分析习题集题解 [M] . 济南:山东科学技术出版社,2005,1.[6]周应编著.数学分析习题及解答 [M] . 武汉:武汉大学出版社,2001,8.[7]王晓敏,李晓奇编著.数学分析学习方法与解题指导[M] . 长春:东北大学出版社,2005,12.[8] B.A zhuo, etc. (JiangFeng, Ritchie. Mathematical analysis [M]. Beijing: higher education press, 2006,12.[9]胡适耕,张显文编著.数学分析原理与方法 [M] .北京:科学出版社,2008,5.[10]陈纪修,于崇华,金路编著. 数学分析下册 [M] . 北京:高等教育出版社,2000,4.致谢我的本科论文是在仝雅娜老师的指导下圆满完成的,仝老师在兢兢业业工作的同时,还要抽出很多时间帮我答疑解惑,细心指导,让我学会了很多东西.在此,特向仝老师表示衷心的感谢和诚挚的敬意.此外,还要感谢我的许多同学,他们在我的论文写作中给予了大量的帮助,在此,我也深深的感谢他们.同时,我还要感谢在我学习期间给我极大关心和支持的老师、同学和朋友,感谢你们!。

正项级数

正项级数

的敛散性.
故原级数收敛.
例2 判定级数
的敛散性.

收敛, 则级数
收敛.
例3 判定级数
的敛散性.
解 因为
发散, 则级数
发散.
定理9.2.3 (比较判别法的极限形式)
若两个正项级数
满足:
(1)当0 < l < +∞时, 级数
同敛散;
(2)当l= 0且级数 收敛时, 级数 也收敛;
(3)当l= +∞且级数
发散时, 级数 也发散.
§9.2 正项级数及其敛散性判别
一. 正项级数的概念 二. 正项级数敛散性的判别法
一、正项级数的概念
定义9.2.1 若数项级数 中的各项 则称此级数为正项级数.
于是正项级数的部分和数列
是一个单増数列, 即
定理9.2.1 正项级数 有上界.
收敛的充要条件是部分和数列
此定理的等价命题: 正项级数发散的充要条件是部分和数列 其等价命题是: “若 无上界, 则 从而正项级数发散.”
故原级数发散.
3. 根值判别法
定理9.2.5 (柯西根值判别法) 若正项级数
满足
则 (1) 当0 ≤ l < 1时, 级数
收敛;
(2) 当 l > 1时, 级数 发散;
(3) 当 l = 1 时, 级数
可能收敛, 也可能发散.
例6 判定级数
的敛散性.

故原级数收敛. 练习:
3,(1) 判定级数 解
无上界.
二. 正项级数敛散性的判别法
1. 比较判别法 定理9.2.2 (比较判别法) 设两个正项级数
的对
应项满足:
则 (1)当级数 收敛时, 级数 (大收小收)

正项级数及其敛散性判别

正项级数及其敛散性判别


un1 lim lim n u n
( n 1)! 10n1 n! n 10n
n1 lim n 10
故原级数发散.
22
例9 判定级数ຫໍສະໝຸດ n1 的敛散性. n 1 n( n 2)

un1 (n 2) n(n 2) lim 1 解 因为 lim n u n ( n 1) ( n 3)( n 1) n
1 l l un l r 1 2
n

un r n ,
n N
因为当 0 r 1 时, r N r N 1 r N 2
收敛。 所以, 级数
u
1 比如 p 级数 p , 无论 p 取何值, 均有 n 1 n
un1 np 1 lim lim lim 1 n u n ( n 1) p n 1 n (1 ) p n
但当 p >1时, p 级数收敛; 当 p ≤1 时, p 级数发散.
20
( n 1)! 例7 判定级数 n 1 的敛散性. n n 1
u 发散时,
n 1 n

级数
v
n 1

n
也发散.
12
定理9.2.3 (比较判别法的极限形式) 若两个正项级数
un 及 vn 满足: lim
n 1 n 1


un l, n v n
(1)当0 < l < +∞时, 级数 (2)当l= 0且级数 (3)当l= +∞且级数

u 和 v
n 1
发散时, 级数
v
n 1

n
也发散.
7

正项级数敛散性的判别方法

正项级数敛散性的判别方法

正项级数敛散性的判别方法正项级数是指级数的所有项都是非负数的级数。

判断正项级数的敛散性的方法主要有以下几种:比较判别法、根式判别法、积分判别法、极限判别法和对数判别法。

一、比较判别法:1. 比较判别法之比较大法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≤bn,那么若∑bn收敛,则∑an也收敛;若∑bn发散,则∑an也发散。

2. 比较判别法之比较小法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≥bn,那么若∑bn发散,则∑an也发散;若∑bn收敛,则∑an也收敛。

二、根式判别法:设an≥0,如果存在正常数p使得lim[(an)^1/n]=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,根式判别法无法确定级数的敛散性。

三、积分判别法:将正项级数∑an转化为函数f(x)的积分,即∫f(x)dx,如果对于函数f(x),当x趋向于无穷大时有f(x)递减且连续,则1. 若∫f(x)dx收敛,则级数∑an也收敛;2. 若∫f(x)dx发散,则级数∑an也发散。

四、极限判别法:如果存在常数L>0,使得lim(n→∞)n*an=L,则1. 若L<1,则级数∑an收敛;2. 若L>1,则级数∑an发散;3.若L=1,极限判别法无法确定级数的敛散性。

五、对数判别法:设an≥0,如果存在正常数p使得limln(an)/ln(n)=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,对数判别法无法确定级数的敛散性。

这些判别方法在实际应用中都有其适用范围和局限性,需要根据具体情况选择合适的方法进行判断。

同时,在判断级数的敛散性时,还可以结合其他定理和方法,如柯西收敛准则、阿贝尔定理、绝对收敛等进行综合分析。

正项级数判别 法

正项级数判别 法

正项级数判别法
正项级数是指数列 $a_n$ 项全是正数的级数,即
$\sum\limits_{n=1}^{\infty}a_n$,其中 $a_n>0$。

对于这种级数,我们有一个非常有用的判别法,叫做正项级数判别法。

正项级数判别法的主要思想是通过比较级数的通项 $a_n$ 与一个已知的收敛级数的通项之间的大小关系,来判断所给级数是否收敛。

根据比较级数的大小关系,我们可以将正项级数分为以下三类。

一、大于等于已知收敛级数的通项
如果级数 $\sum\limits_{n=1}^{\infty}a_n$ 的通项 $a_n$ 大于等于已知收敛级数$\sum\limits_{n=1}^{\infty}b_n$ 的通项 $b_n$,即 $a_n\geq b_n$,那么我们可以得到如下的结论:
右边这个级数显然也发散。

因此,如果 $a_n\leq b_n$,则
$\sum\limits_{n=1}^{\infty}a_n$ 必发散。

三、属于柯西型级数
这个结论比较抽象,需要用到柯西收敛准则。

具体地说,如果对于任意一个正实数$\epsilon>0$,存在正整数 $N$,使得当 $n\geq N$ 时,有:
$$|a_n-b_n|<\epsilon$$
正项级数判别法的应用非常广泛,尤其对于那些可以化为 $a_n=\dfrac{1}{n^p}$ 的级数,直接运用大小关系即可得出结论。

同时,正项级数判别法也可以用来求极限,提高我们解决问题的效率。

正项级数收敛性的判别方法

正项级数收敛性的判别方法

正项级数收敛性的判别方法正项级数是指级数的每一项都是非负数的级数。

1.比较判别法:比较判别法是通过与已知收敛(或发散)的级数进行比较,判断待定级数的收敛性。

具体有以下两种情况:a.若存在一个已知的正项级数∑a_n和正数c,使得对于所有的n,有a_n≤c*b_n,那么只要∑b_n收敛,∑a_n也收敛;b.若存在一个已知的正项级数∑a_n和正数c,使得对于所有的n,有a_n≥c*b_n,那么只要∑b_n发散,∑a_n也发散。

2.比值判别法:比值判别法是通过计算级数的项之间的比值的极限,来判断级数的收敛性。

具体步骤如下:计算序列c_n=(a_{n+1})/a_n的极限lim_{n→∞}c_n。

根据c_n的不同取值范围,可以得出以下结论:a. 若lim_{n→∞}c_n < 1,那么级数∑a_n绝对收敛;b. 若lim_{n→∞}c_n > 1,那么级数∑a_n发散;c. 若lim_{n→∞}c_n = 1,那么该判别法不确定。

3.根值判别法:根值判别法是通过计算级数的项的根的极限,来判断级数的收敛性。

具体步骤如下:计算序列c_n=(a_n)^{1/n}的极限lim_{n→∞}c_n。

根据c_n的不同取值范围,可以得出以下结论:a. 若lim_{n→∞}c_n < 1,那么级数∑a_n绝对收敛;b. 若lim_{n→∞}c_n > 1,那么级数∑a_n发散;c. 若lim_{n→∞}c_n = 1,那么该判别法不确定。

4.积分判别法:积分判别法是将级数中的每一项转化为一个函数f(x),然后通过计算该函数在区间[a,∞)上的不定积分,来判断级数的收敛性。

具体步骤如下:a.将级数的每一项a_n转化为函数f(x)在区间[a,∞)上的函数表达式;b. 计算函数f(x)在区间[a, ∞)上的不定积分∫f(x)dx;c. 若不定积分∫f(x)dx收敛,那么级数∑a_n收敛;d. 若不定积分∫f(x)dx发散,那么级数∑a_n发散。

正项级数的比较判别法

正项级数的比较判别法

正项级数的比较判别法
正项级数的比较判别法是一种用来判断正项级数收敛或发散的方法,即对于一组非负的项数递增的级数$\sum_{n=1}^{\infty} a_n$和$\sum_{n=1}^{\infty} b_n$,如果存在正常数$M$使得
对于所有$n$,都有$a_n \leq M b_n$,那么有以下结论:
1. 如果$\sum_{n=1}^{\infty} b_n$收敛,则$\sum_{n=1}^{\infty} a_n$收敛。

2. 如果$\sum_{n=1}^{\infty} b_n$发散,则$\sum_{n=1}^{\infty} a_n$发散。

该判别法的逻辑基于比较,即通过与已知的收敛或发散的级数进行比较,来判断待判定的正项级数的性质。

当待判定的级数与一个已知收敛的级数具有类似的增长规律时,可以使用比较判别法。

需要注意的是,比较判别法只适用于非负的项数递增的级数,当级数中存在负项或者项数不是递增的时候,就不能使用比较判别法进行判断。

正项级数敛散性的比较判别

正项级数敛散性的比较判别

正项级数敛散性一.正项级数的定义若级数中各项都是非负的( 即01,2,n u n =≥,…),则称该级数为正项级数。

[1] 由正数和零构成的级数称为正项级数。

二.正项级数收敛性的一般判别原则若级数各项的符号都相同,则称为同号级数。

而对于同号级数,只须研究各项都由正数组成的级数——正项级数。

因负项级数同正项级数仅相差一个负号,而这并不影响其收敛性。

定理1 正项级数∑∞=1n n u 收敛⇔部分和数列{}n S 有界。

证明:由于对n ∀,0>n u ,故{}n S 是递增的,因此,有 ∑∞=1n n u 收敛⇔{}n S 收敛⇔{}n S 有界。

定理2(比较原则) 设∑∞=1n n u 和∑∞=1n n v 均为正项级数,如果存在某个正数N ,使得对N n >∀都有n n v u ≤,则 (1)若级数∑∞=1n n v 收敛,则级数∑∞=1n n u 也收敛;(2)若级数∑∞=1nnu发散,则级数∑∞=1nnv也发散。

证明:由定义及定理1即可得。

[2]比较判别法;比较判别法的极限形式;推论(常用结论)比较判别法是判断正项级数收敛性的一个重要方法。

对一给定的正项级数,如果要用比较判别法来判别其收敛性,则首先要通过观察,找到另一个已知级数与其进行比较,并应用定理2进行判断。

只有知道一些重要级数的收敛性,并加以灵活应用,才能熟练掌握比较判别法。

至今为止,我们熟悉的重要的已知级数包括等比级数、调和级数以及-p级数等。

要应用比较判别法来判别给定级数的收敛性,就必须给定级数的一般项与某一已知级数的一般项之间的不等式。

但有时直接建立这样的不等式相当困难,为应用方便,我们给出比较判别法的极限形式。

使用比较判别法或其极限形式,需要找到一个已知级数作比较,这多少有些困难。

下面介绍的几个判别法,可以利用级数自身的特点,来判断级数的收敛性。

正项级数

正项级数
n1
目录 上页 下页 返回 结束

机动
例4:判定下列级数的敛散性:
(1)

n1

2n 1 n 10
3
;
(2)

n1

1 3 n
n
;
2n 1
2n n n 10 ( lim 解: 1 ) lim 3 n 1 n n 10
3
3
2
2

n1

1 n
特别地, 当 u n ~ v n ( n ) 时 ,
两级数有相同的敛散性;
(2) 当 l 0 时 , 若
v n 收敛
n1

,则
u n 收敛
n1


( 3 ) 当 l 时 ,若
vn
n1

则 发散 ,
un
n1
机动

发散 ,
目录
上页
下页
返回
结束
证明
( 1 ) 由 lim l l 2 un vn un ห้องสมุดไป่ตู้n

1
收敛 发散
重要参考级数:

几何级数,p-级数,调和级数。

推论:设
un 、 vn 均为正项级数,且存在 N ,当
n 1 n 1

n N 时,有 un kv n ( k 0 ) ,则
(1)若
vn 收敛,则 un
n 1 n 1
收敛;
(2)若
un
n 1

发散,则
2
收敛 ,
n
2
1
(2)
故原级数收敛.

正项级数的判别法

正项级数的判别法


思考题
设正项级数 un 收敛, 能否推得 un 收敛?
2 n1 n1
反之是否成立?
思考题解答
由正项级数 un 收敛,可以推得 un 收敛,
2 n 1 n1
un lim lim un 0 n u n n
由比较审敛法知 un 收敛.
2
1时级数发散; 1 时失效.
1 例如, 设级数 n , n1 n

1 1 un n n 0 ( n ) 级数收敛. n n
n
小 结
正 项 级 数
1. 若 Sn S , 则级数收敛;


2. 当 n , un 0, 则级数发散;
3.按基本性质; 4.充要条件 5.比较法 6.比值法 7.根值法Leabharlann lim a2 nn
1 , 6
lim a2 n1
n
3 , 2
un1 lim lim an 不存在. n u n n
例 4 判别下列级数的收敛性:
1 (1) ; n 1 n!


n! 1 (2) n ; (3) . n 1 10 n 1 ( 2n 1) 2n 1 un1 ( n 1)! 1 (1) 0 ( n ), 1 un n1 n! 1 故级数 收敛. n 1 n!
1 (1) sin ; n n 1


二、比值判别法
un 1 (数或 ) 设 un 是正项级数,如果 lim n u n 1 n
则 1时级数收敛; 1 时级数发散; 1 时失效.

证明 当为有限数时, 对 0,

高等数学-正项级数

高等数学-正项级数

n1 n1


(1) 若 vn 收敛,则 un 也收敛.
n1
n1


(2) 若 un 发散,则 vn 也发散.
n1
n1
比较判别法的极限形式 :
设 lim un l,则 v n
n
(1) 若 0 l , 则两个级数有相同的敛散性;


(2) 当 l 0 时, 若 vn 收敛,则 un 也收敛;

un 与
1
f (x)dx 有相同的敛散性.
n1
【例9-5】证明p-级数
1
np
n1

1

1 2p


1 np

当 0 p 1 时发散,当 p >1 时收敛.
【例9-6】讨论级数


n2
n
1 ln p
n
的敛散性,其中 p>0.
2. 比较判别法


设有两个正项级数 un, vn,且 un vn(n 1, 2,L ),则
n 1
n 1


若 un 发散, 则 vn 也发散.
n 1
n 1


(3)当l 时, 若 vn 发散,则 un 也发散;
n 1
n 1


若 un 收敛,则 vn 也收敛.
n 1
n 1
【例9-7】判断下列正项级数的敛散性:
(1)

2n
n1
sin

3n
;

(2)
n1
1; n(n2 1)

(3)
1
.

正项级数比较判别法探讨

正项级数比较判别法探讨

正项级数比较判别法探讨
正项级数比较判别法是一种比较和判别数学递归序列的有效方法。

它是指根据所给序列的比值的性质,找出序列的收敛特性,即推断出此序列是否为正项级数。

此方法比较寻找等比数列或等差数列优越,被广泛用于数学解答当中。

本文讨论正项级数比较判别法的基本原理和应用,以及相关理论及实践准则。

首先,讨论正项级数比较判别法的基本原理。

正项级数比较判别法是一种用来判断数列是否为正项级数的比较方法,它是通过对下面的比值来发现等比数列特性:
$${x_1}/{x_2}={x_2}/{x_3}={x_3}/{x_4}={x_4}/{x_5}=……={x_{n-1}}/{x_n}$$由此可以判断出此序列是否为正项级数,即确定比值的极限值,如果极限值等于1,该数列就是正项级数。

其次,讨论正项级数比较判别法的应用及实践准则。

正项级数比较判别法可以应用于各种数学问题的解决,尤其适用于复杂的无法用求和公式表示的序列。

实践准则包括:(1)确定比值的极限值,如果极限值等于1,则数列即为正项级数;(2)要注意比值的变化,如果比值的变化趋于不变,或者比值向某一个值变化,则该数列便是正项级数;(3)要注意比值中数值的符号,如果比值中数值的符号改变,则数列不是正项级数。

最后,正项级数比较判别法是一种有效比较和判别数学递归序列的方法,它可以有效比较出数列是否为正项级数,对于复杂的数学序列计算提供有效的帮助。

但同时也要注意比值的变化,当比值的变化不一致时,数列也不一定是正项级数。

正项级数的判别法

正项级数的判别法

2、收敛.
四、1、收敛;
2、收敛.
五、1、发散;
2、收敛;
a 1,收敛; 3、0 a 1,发散;
a 1,发散.
2021/10/10
25
2021/10/10
4
例 1 讨 论 P-级 数
121p31p41p n 1p 的 收 敛 性 .(p0)

设p1,
1 np
1, n
则P级数发. 散
y
设p1,由图可知
1 n dx
np x n1 p
sn12 1p3 1p n 1p
y
1 xp
(p1)
112d xpx nn1d xpx
o 1 234
则 1时 级 数 收 敛 ;1时 级 数 发 散 ; 1时 失 效 .
证明 当为有限数,时对 0,
N, 当 nN时 , 有 un1 , un
即 un1 (nN )
un
2021/10/10
12
当1时, 取 1, 使 r1,
uN 2rN u 1, u N 3 rN u 2 r 2 u N 1 , ,

级数
1发
散 ,
n1n
( 1 )
级数
n1
1 n2
收敛,
2021/10/10
14
2.条 件 是 充 分 的 ,而 非 必 要 .
例 u n22 ( n1)n2 3 nvn,
级n数 1unn 122 ( n1)n收,敛
但 uu nn 122(2 ( ( 1)1n)n 1)an,
n!
故级数 1收敛 .
n1n!
2021/10/10
16
(2)
un1 un
(1n0n11)!1n0!n

正项级数判别 法

正项级数判别 法

-----精品文档------
注意: 条件是充分的,而非必要.
例 un22 ( n1)n2 3nvn,
级数un
n1
2(1)n
2n
n1
收,敛
但un1 un
22(2(( 1)1n)n1)an,
lim
n
a2n
1, 6
lnima2n1
3, 2
limun1 n un
ln iman
不存.在
-----精品文档------
级数。 (3)比较对象的选取有时比较困难。
-----精品文档------
定理4 . 比值审敛法 ( D’alembert 判别法)
设(1) 当un为正1项时级, 级数数, 且收敛nl im; uunn1 , 则
(2) 当1或 时, 级数发散 .
(3)当 = 1 时,不能用此法判定级数的敛散性。
考 1 虑2 级p 1 数1 n 22 p 1 ( n1 113 )pp 1 11 n p 11 n 的p 1 部 1 分 ( 和n 1 1 )p 1 n kn1k1p1(k11)p11(n11)p1 n 1
故级数收敛 , 由比较审敛法知 p 级数收敛 .
n 1
u n 收敛;
n 1
l i m n
un vn
l(0l), u n 和 v n
n 1
n 1
,
v n 发散
有相同的 敛散性。
u n 发散;
n 1
n 1
注意lnim: uv若nn
0,

vn
n 1
发散,则
un
n 1
不一定发散。
本质:比较两正项级数一般项作为无穷小量的阶
-----精品文档------

正项级数的定义

正项级数的定义

正项级数的定义正项级数的定义正项级数是指一个由非负实数构成的无穷级数,即所有项都大于等于零。

一、基本概念1. 无穷级数无穷级数是指由无限多个项组成的和,每个项都是一个实数。

2. 正项级数正项级数是指所有的项都大于等于零的无穷级数。

换句话说,如果一个无穷级数中所有的项都是非负实数,则该级数为正项级数。

二、符号表示正项级数通常用以下符号表示:∑n=1∞an=a1+a2+a3+...+an+...其中,a1, a2, a3,..., an,...均为非负实数。

三、收敛与发散1. 收敛如果一个正项级数的部分和有上界,则该正项级数收敛。

即:S = a1 + a2 + a3 + ... + an ≤ M其中,M为某个实常量。

2. 发散如果一个正项级数的部分和没有上界,则该正项级数发散。

即:S = a1 + a2 + a3 + ... + an → ∞四、判别法则在判断一个正项级是否收敛或发散时,可以使用以下几种判别法则:1. 比较法则对于两个正项级数∑an和∑bn,如果存在一个正整数N,使得对于n > N,有an ≤ bn,则有:- 如果∑bn收敛,则∑an也收敛;- 如果∑an发散,则∑bn也发散。

2. 极限比较法则对于两个正项级数∑an和∑bn,如果存在一个正实数L,使得当n趋向于无穷大时,则有:- 如果L < 1,则∑an和∑bn同时收敛或同时发散;- 如果L > 1,则当且仅当∑bn收敛时,∑an也收敛;- 如果L = 1,则该法则无法判断。

3. 比值法则对于一个正项级数∑an,如果存在一个正实数L,使得当n趋向于无穷大时,则有:- 如果L < 1,则该级数收敛;- 如果L > 1,则该级数发散;- 如果L = 1,则该法则无法判断。

4. 根值法则对于一个正项级数∑an,如果存在一个正实数L,使得当n趋向于无穷大时,则有:- 如果L < 1,则该级数收敛;- 如果L > 1,则该级数发散;- 如果L = 1,则该法则无法判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析第十二章数项级数
正项级数的概念,比较判别法
第四讲
数学分析第十二章数项级数
正项级数收敛性的一般判别原则
若数项级数各项的符号都相同,则称为同号级数. 对于同号级数,只须研究各项都是由正数组成的级数(称正项级数).
由级数与其部分和数列的关系,得:
数学分析第十二章数项级数
定理12.5
>=0(1,2,),i u i 由于证所以{S n }是递增数列. 单调数列收敛的充要条件是该数列有界(单调有界定理).仅靠定义和定理12.5来判断正项级数的收敛性是不
容易的,敛性判别法则.
n u ∑正项级数收敛的充要条件是:{}n S 有界, <.
n S M 即存在某正数M ,对一切正整数n 有而这就证明了定理的结论.
部分和数列因此要建立基于级数一般项本身特性的收
数学分析第十二章数项级数
定理12.6(比较原则)
n n u v ∑∑设和是两个正项级数,
如果存在某正数N ,对一切n > N 都有
,(1)
n n u v ≤则
(i),;
n n v u 若级数收敛则级数也收敛∑∑(ii),.
n n u v 若级数发散则级数也发散∑∑证因为改变级数的有限项并不影响原有级数的敛因此不妨设不等式(1)对一切正整数都成立.
'''∑∑n
n n n S S u v 现在分别以和记级数与的部分和.散性,
数学分析第十二章数项级数
由(1)式可得,对一切正整数n ,都有
.(2)
n
n S S '''≤,lim ,n n
n v S →∞
''∑若收敛即存在则由(2)式对一切n 有lim n
n n S S →∞
'''≤,n u ∑{}n S '即正项级数的部分和数列有由定理12.5级数n u ∑收敛, (ii)为(i)的逆否命题,自然成立.
≤(1)
n n
u v 界,这就证明了(i).
数学分析第十二章数项级数
例1 -+∑21
.
1
n n 考察的收敛性解≥2,n 由于当时有
因为正项级数21
(1)
n n n ∞
=-∑收敛(§1例2),
原则, 级数2
1
1
n n -+∑也收敛.2
2
11
1n n n n
≤-+-()1.1n n =-故由比较
数学分析第十二章数项级数
22,,0,0.
n
n
n n u v u v >>∑∑收敛且例2 若级数22
10(),2n n n n u v u v <≤+证因为根据比较原则, 得到正项级数
n n
u v
∑收敛.
在实际使用上,比较原则的极限形式通常更方便.
n n u v 则级数收敛.
∑∑∑2
2,n
n
u v
而级数
均收敛,。

相关文档
最新文档