金属学及材料科学基础总结
金属材料学知识点总结
金属材料的热处理
热处理原理
01
热处理是通过改变金属材料内部组织结构来改善其性能的一种
工艺方法。
热处理工艺
02
包括退火、正火、淬火和回火等,不同的热处理工艺适用于不
同种类的金属材料。
热处理设备
03
热处理设备包括电炉、盐浴炉、真空炉等,选择合适的热处理
设备对获得良好性能的金属材料至关重要。
03
金属材料的力学性能
金属材料的轻量化
总结词
通过采用轻质材料、优化结构设计、减少材料厚度等方式,降低产品的重量。
详细描述
轻量化是现代工业领域中重要的技术趋势,特别是在汽车、航空航天和电子产品等领域。轻量化可以 降低产品的能耗、提高机动性、减少振动和噪音等。常用的轻量化金属材料包括铝合金、钛合金和镁 合金等。
金属材料在新能源领域的应用
电化学保护
通过外加电流或牺牲阳极等方法,改变金属 的电化学状态,防止腐蚀。
选用耐蚀材料
选用耐蚀性能好的金属或合金材料,提高耐 蚀性。
05
金属材料的新技术与新应 用
金属材料的高性能化
总结词
通过改进制造工艺和材料成分,提高金 属材料的力学性能、物理性能和化学性 能。
VS
详细描述
金属材料的高性能化主要涉及合金设计、 热处理工艺优化、表面处理技术等。这些 技术可以提高金属材料的硬度、韧性、耐 腐蚀性、高温性能等,使其在更广泛的领 域得到应用。
良好的导电性和导热性
金属材料是电和热的良导体,广泛用于电子 、电力和散热等领域。
耐腐蚀性
部分金属材料具有较好的耐腐蚀性,可以在 各种环境条件下使用。
金属材料的用途
机械制造业
用于制造各种机器 零部件、工具等。
材料科学基础(总结)
液态金属的结构特点:“长程无序、短程有序、此起彼伏、时聚时散”液态金属中存在着浓度、结构和能量三大起伏减小晶粒尺寸的方法:①增加环境冷却能力,控制过冷度。
②化学变质法。
③增强液体流动。
④外加振动。
多相体系中的相平衡条件:任一组元在各相中的化学位相等。
金属热变形及对组织与性能的影响:热变形时再结晶能很快发生,材料始终保持高的塑性状态;热加工可以可使金属内部的组织与性能得以改善。
铸态下的粗大柱状晶和等轴晶破坏,重新再结晶形成细小的等轴晶粒;减小显微偏析,使铸锭内原有的内部气孔(未被氧化)和疏松等焊合,均化成分,减少缺陷;第二相和夹杂物沿流变方向分布,出现热纤维组织,使金属产生各向异性。
固体金属扩散的条件:存在扩散驱动力;扩散原子必须固溶;要有足够高的温度;要有足够长的时间。
柯肯达尔效应:在置换固溶体中由于两组元的原子以不同的速率相对扩散从而引起相应的扩散偶之间的界面标记漂移的现象称为柯肯达尔效应。
淬火钢的硬度与含碳量的关系:1、曲线1即为完全淬火后所得的硬度曲线,当C量低时,淬火后马氏体的硬度随碳量增加而升高;当C量高时,M f已在0℃以下,淬火后得到M+A 双相组织。
故随C量增高,A量增加,由于A硬度低,硬度反而下降。
曲线2,对于过共析钢采用的是高于AC1的不完全淬火,所得马氏体中碳含量即为该温度下A的饱和C浓度,温度不变时均相同,故随碳含量增高,硬度基本不变。
曲线3采用完全淬火并进行冷处理,使奥氏体全部转化为马氏体,所得即为马氏体硬度和碳含量关系。
如果过共析钢加热温度超过Acm,将导致渗碳体消失,奥氏体晶粒粗化,淬火后得到粗大针状马氏体,残余奥氏体量增多,硬度和耐磨性降低,脆性增大;如果淬火温度过低,可能得到非马氏体组织,则钢的硬度达不到要求,过共析钢淬火通常是在Ac1以上30--50℃。
用位错理论解释低碳钢的应变时效现象:溶质原子向位错线下聚集过程是一个扩散过程,受扩散条件(时间和温度等)的控制。
金属学及材料科学基础总结题
总结题2一、判断:(对的打√,错的打×)一、钢淬火时的冷却速度越快,马氏体的硬度越高。
( x )2、当把亚共析钢加热到Ac1和Ac3之间的温度时,将获得由铁素体和奥氏体构成的两相组织,在平衡条件下,其中奥氏体的碳含量总是大于钢的碳含量。
()3、20钢比T12钢的碳含量要高。
( X )4、正火是将钢件加热至完全奥氏体化后空冷的热处理工艺。
()5、65Mn是合金调质结构钢。
弹簧钢( X )6、回火索氏体的性能明显优于奥氏体等温冷却直接所得到的片层状索氏体的性能。
()7、T10A和60号钢均属于高碳钢。
( X )8、室温下,金属晶粒越细,则强度越高、塑性越好。
()9、一般来说,钢的强度高于铸铁的强度。
()10、65Mn的淬透性比65号钢的淬透性差。
()11、从C曲线中分析可知,共析钢的过冷奥氏体在A1-550℃的范围内发生贝氏体转变。
()12、所谓本质细晶粒钢就是一种在任何加热条件下晶粒均不发生粗化的钢。
()13、过冷奥氏体转变为马氏体是一种扩散型转变。
()14、60钢比T12钢的碳含量要高。
()15、马氏体是碳在α-Fe中的过饱和固溶体,当奥氏体向马氏体转变时,体积要收缩。
()16、当亚共析成分的奥氏体在冷却发生珠光体转变时,温度越低,其转变产物组织越粗。
()17、贝氏体是过冷奥氏体中温转变产物,在转变过程中,碳原子能进行扩散,而铁原子不能进行扩散。
()1八、不论碳含量高低,马氏体的硬度都很高,脆性都很大。
()19、高合金钢既具有良好的淬透性,也具有良好的淬硬性。
()20、经退火后再高温回火的钢,能得到回火马氏体组织,具有良好的综合机械性能。
()21、热加工是指在室温以上的塑性变形加工。
()22、在正常加热淬火条件下,亚共析钢的淬透性随碳的增高而增大,过共析钢的淬透性随碳的增高而减小。
()二、填空题:请把答案填在题中横线上。
1、钢的淬透性越高,则其C曲线的位置越向(填“左或右”)。
2.、HT200牌号中“HT”表示,数字”200”表示。
材料科学与工程专业课程总结模板金属材料学
材料科学与工程专业课程总结模板金属材料学金属材料学是材料科学与工程专业中的一门重要课程,它主要涉及金属材料的基本原理、制备方法、性能特点以及应用方向等内容。
通过学习金属材料学这门课程,我对金属材料的认识和理解得到了很大的提升。
在此,我将针对金属材料学这门课程进行总结,以便更好地回顾所学内容并体会其中的重要知识点。
首先,在学习金属材料学的过程中,我了解到金属材料的特点和分类。
金属材料具有良好的导电、导热性能,并且通常具有较高的强度和韧性。
根据金属材料的组织结构和组分特点,金属材料可以分为纯金属、合金和间歇化合物等多种类型。
这些了解为我后续的学习和实践提供了基础。
其次,金属材料学涉及到金属的结构与性能的关系。
金属材料的结构包括晶体结构和晶界结构,晶体结构又可分为面心立方结构、体心立方结构和六方最紧密堆积结构等。
不同的金属结构会对材料的物理、化学和力学性能产生重要影响。
通过学习晶体结构和晶界结构的相关知识,我可以更好地理解金属材料的性能变化规律,为后续的材料设计和优化提供依据。
金属材料学还包括金属材料的热处理技术。
热处理技术可以通过改变金属材料的组织结构来改善材料的性能。
常见的热处理方法包括退火、淬火、时效处理等。
通过掌握不同热处理方法的原理和操作技巧,我可以根据实际需求对金属材料进行合理处理,提高其性能和使用寿命。
此外,金属材料学还涵盖了金属材料的物理性能和力学性能等内容。
物理性能包括密度、热膨胀系数、导电性和导热性等,而力学性能包括强度、韧性、硬度、杨氏模量和塑性等。
这些性能参数对于理解金属材料的本质和应用范围非常关键。
通过学习金属材料的物理性能和力学性能,我可以更好地选择适合特定工程项目的金属材料,并预测其在不同条件下的行为。
在金属材料学的学习过程中,我还了解到金属材料的加工与应用。
金属材料的加工包括锻造、轧制、拉伸、挤压等方法,通过这些方法可以得到不同形状和尺寸的金属制品。
金属材料的应用广泛,包括航空航天、汽车制造、电子产业、建筑工程等众多领域。
金属材料学期末总结怎么写
金属材料学期末总结怎么写金属材料学是一门涉及金属的组织结构、性能和应用的学科。
通过本学期的学习,我对金属材料的相关知识有了更深入的了解,并且在实验中也获得了实践的经验。
在这篇总结中,我将回顾本学期所学的内容,总结学习中的收获和体会。
首先,在金属材料的组织结构方面,我们学习了晶体学的基本原理与方法,了解了各种晶体结构的特点及其在金属材料中的应用。
我学会了用X射线衍射分析方法来确定晶体的晶格常数和晶体结构,这对我理解金属材料的性质和性能有很大的帮助。
另外,我们还学习了金属材料的晶体缺陷,如位错、孔隙等,以及其对金属材料性能的影响。
通过对晶体缺陷的学习,我认识到了金属材料的强度、塑性等性能与材料的晶体缺陷有着密切的关系。
其次,在金属材料的物理性能方面,我们学习了金属材料的力学性能、热学性能和电学性能等各个方面。
在力学性能方面,我们更深入地学习了金属材料的强度、硬度和韧性等重要指标。
通过学习金属的拉伸、压缩等力学性能试验,我了解到了金属材料在不同条件下的力学行为。
在热学性能方面,我们研究了金属材料的热膨胀、导热和热电效应等。
在电学性能方面,我们学习了金属材料的电导率、电阻率和磁性等特性。
这些知识让我对金属材料的综合性能有了更全面的了解。
此外,在金属材料的加工与应用方面,我们学习了金属材料的热加工和表面处理等技术。
热加工包括了锻造、轧制和淬火等工艺,我们通过实验和理论学习了金属材料在热加工过程中的组织变化和力学性能的变化。
表面处理包括了金属的腐蚀与防护、电镀和涂装等工艺,这些工艺对提高金属材料的耐蚀性和装饰性起到了重要作用。
通过学习这些工艺,我认识到金属材料在实际应用中需要经过各种加工与处理才能满足不同的需求。
在金属材料学习中,实验是非常重要的一部分。
参与实验让我更加深刻地理解了课堂上的理论知识,并且锻炼了实验操作和数据处理的能力。
在实验中,我了解了不同金属材料的特点和应用范围,并且学习了各种测试和分析方法,如金相显微镜观察、电子显微镜观察和硬度测试等。
材料科学基础总结(金属)
1、其内部结构包括四个层次:①原子结构;②结合键;③原子的排列方式;④显微组织。
2、结合键的定义:所谓结合键是指由原子结合成分子或固体的方式和结合力的大小。
3、化学键有:离子键、共价键、金属键。
物理键:氢键、分子间力4、共价键具有方向性、饱和性。
金刚石、单质硅、SiC、H2、O2、F2、碳-氢化合物。
5、共价晶体特点:结构稳定,熔点高,质硬脆,一般是绝缘体,其导电性能差。
6、离子键的特点:常温下,电绝缘体;在高温熔融状态时,正负离子在外电场作用下可以自由运动,即呈现离子导电性。
离子键没有方向性、无饱和性。
7、离子晶体的特点:离子键很强,故有高硬度、熔点,强度大,固体下不导电,熔融时才导电。
离子间发生相对位移,电平衡破坏,离子键破坏,脆性材料。
较高熔点(正、负离子间有很强的电的吸引力)8、金属键的定义:由金属正离子和自由电子之间互相作用而结合称为金属键。
9、金属键的特点:金属键无方向性,金属键无饱和性,具有高对称性。
10、金属键型晶体的特征:良好的延展性、良好的导电性、具有正的电阻温度系数、导热性好、金属不透明、具有金属光泽(自由电子可吸收可见光的能量)11、范德瓦尔斯键没有方向性和饱和性。
12、13、晶体的定义:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。
14、非晶体在整体上是无序的;近程有序。
15、晶体的特征:(1)周期性(不论沿晶体的哪个方向看去,总是相隔一定的距离就出现相同的原子或原子集团。
这个距离称为周期)液体和气体都是非晶体。
(2)有固定的凝固点和熔点(3)各向异性(沿着晶体的不同方向所测得的性能通常是不同的:晶体的导电性、导热性、热膨胀性、弹性、强度、光学性质)。
16、晶体与非晶体的区别17、a.根本区别:质点是否在三维空间作有规则的周期性重复排列b.晶体熔化时具有固定的熔点,而非晶体无明显熔点,只存在一个软化温度范围c.晶体具有各向异性,非晶体呈各向同性(多晶体也呈各向同性,称“伪各向同性”)18、点代表原子(分子或离子)的中心,也可是彼此等同的原子群或分子群的中心,各点的周围环境相同。
金属材料学简要总结
金属材料学简要总结《金属材料学》复习总结第1章:钢的合金化概论一、名词解释:合金化:未获得所要求的组织结构、力学性能、物理性能、化学性能或工艺性能而特别在钢铁中加入某些元素,称为合金化。
过热敏感性:钢淬火加热时,对奥氏体晶粒急剧长大的敏感性。
回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力。
回火脆性:淬火钢回火后出现韧性下降的现象。
二、填空题:1.合金化理论是金属材料成分设计和工艺过程控制的重要原理,是材料成分、工艺、组织、性能、应用之间有机关系的根本源头,也是重分发结材料潜力和开发新材料的基本依据。
2.扩大A相区的元素有:Ni、Mn、Co(与Fe-γ无限互溶);C、N、Cu(有限互溶);α无限互溶);Mo、W、Ti(有限互溶);扩大F相区的元素有:Cr、V(与Fe-缩小F相区的元素有:B、Nb、Zr(锆)。
3.强C化物形成元素有:Ti、Zr、Nb、V;弱C化物形成元素有:Mn、Fe;4.强N化物形成元素有:Ti、Zr、Nb、V;弱N化物形成元素有:Cr、Mn、Fe;三、简答题:1.合金钢按照含量的分类有哪些?具体含量是多少?按含碳量划分又如何?●按照合金含量分类:低合金钢:合金元素总量<5%;中合金钢:合金元素总量在5%~10%;高合金钢:合金元素总量>10%;●按照含碳量的分类:低碳钢:w c≤0.25%;中碳钢:w c=0.25%~0.6%;高碳钢:w c>0.6%;2.加入合金元素的作用?①:与Fe、C作用,产生新相,组成新的组织与结构;②:使性能改善。
3.合金元素对铁碳相图的S、E点有什么影响?这种影响意味着什么?(1)A形成元素均使S、E点向左下方移动,如Mn、Ni等;F形成元素均是S、E点向左上方移动,如Cr、V等(2)S点向左下方移动,意味着共析C含量减小,使得室温下将得到A组织;E点向左上方移动,意味着出现Ld的碳含量会减小。
4.请简述合金元素对奥氏体形成的影响。
材料科学基础知识点总结
材料科学基础知识点总结金属的晶体结构金属的晶体结构有面心立方、体心立方等不同类型。
不同类型的晶体结构具有不同的配位数、致密度、原子半径以及八面体、四面体间隙个数等特征。
晶向指数、晶面指数可以用来标定晶体的方向和面。
柏氏矢量和晶界具有特殊的性质,可以用来判断位错的类型和晶界的特征。
纯金属的结晶纯金属的结晶过程受到阻力和动力的影响,过冷度是理论结晶温度与实际结晶温度的差。
在铸锭的过程中,形成三晶区的原因是晶核的形成和生长过程中的热力学条件和结构条件。
细化晶粒的方法可以通过加入形核剂来实现。
相起伏是液态金属___的近程规则排列,起伏不定,不断变化。
1、晶粒细化晶粒细化是一种改善材料塑性和韧性的方法。
随着晶粒尺寸的减小,材料的塑性和韧性得到改善,同时强度也有所提高。
这是因为晶粒越小,位错塞集群中位错个数越少,从而增加了位错的运动阻力,提高了材料的强度。
晶粒细化的规律是,晶界越多、晶粒越小,材料的屈服强度越高。
根据___-配奇关系式σs=σ+Kd-1/2,晶粒的平均直径越小,材料的屈服强度越高。
晶粒细化的方法包括增加过冷度、变质处理、振动和搅拌等方法,以及通过正火和退火的热处理方法来细化晶粒。
在钢中加入强碳化物形成元素也可以实现晶粒细化。
2、第二相强化第二相强化是通过改变材料中第二相的形态和分布来提高材料的强度和硬度。
钢中第二相的形态主要有网状、片状和粒状三种。
网状Fe3C的析出会降低钢的机械性能,而片状和粒状的分布则可以提高钢的强度和硬度,但对塑性和韧性的影响不同。
片状分布时,片层间距越小,强度越高,塑性和韧性也越好。
而粒状分布时,颗粒越细小、分布越均匀,合金的强度越高,但对塑性的危害也越大。
无论是片状还是粒状,第二相都可以阻止位错的移动。
第二相强化的方法包括合金化,即加入合金元素,并通过热处理或变形来改变第二相的形态和分布。
3、固溶强化固溶强化是通过溶质原子的溶入来提高固溶体的强度和硬度,但会降低其塑性和韧性。
材料科学基础总结
材料科学基础总结材料科学是研究各种材料成分、结构、组织和性能以及它们之间关系的科学。
材料的分类:用途分(机构材料和功能材料)属性(金属、非金属、有机高分子)材料科学的基础是材料科学研究的基础理论。
它在共同的理论基础上建立了各种材料(包括金属、陶瓷和聚合物材料)的微观结构和宏观结构规律,以指导材料的研究、生产、应用和开发。
金属键:金属中自由电子与金属正离子之间构成键合称为金属键特点:电子共有,既不饱和也不定向,形成低能密堆结构。
性能:良好的导电性、导热性和延展性离子键:正负离子依靠它们之间的静电力结合在一起形成的键特点:无方向性、饱和性性能:高熔点硬度,良好的电绝缘性共价键:两个或多个电负性相差不大的原子间通过共用电子队形成的化学键特点:饱和性、配位数较小、方向性性质:熔点高、质硬脆、导电能力差晶体:原子(离子或分子)在三维空间(各向异性、固定熔点)中有规律、周期性排列的物质空间点阵:将晶体中原子或原子团抽象为纯几何点,即可得到一个由无数几何点在三维空间排列成规则的阵列单元单元:取出空间晶格中具有代表性的基本单元作为晶格的组成单元。
选择原则:1.所选平行六面体应反映晶格的最高对称性2.平行六面体的等边数和角度应最大3.当平行六面体的棱边夹角存在直角时,直角数目应最多4.晶胞应具有最小体积晶格:为了表达空间原子排列的几何规律,把粒子(原子或分子)在空间的平衡位置作为结点,人为地将结点用一系列相互平行的直线连接起来形成的空间格架称为晶格。
晶体方向:空间晶格中节点柱的方向。
空间中任意两个节点之间连接线的方向代表晶体中原子柱的方向。
晶面:空间中不在一直线任三个阵点的构成的平面,代表了晶体中原子面的方向。
常见的金属晶体结构:体心立方、面心立方、密排六方配位数:晶体结构中任一原子周围最近且等距离的原子数。
致密度(k):晶胞中原子所占的体积分数nvk?vn为晶胞原子数,v原子体积,v晶胞体积合金:两种或两种以上金属或金属与非金属通过熔炼、烧结或其他方法结合而形成的具有金属性质的物质。
胡赓祥第三版材料科学基础知识总结与复习答案
胡赓祥第三版材料科学基础知识总结与复习答案1. 金属的结构和性质金属的结构由晶格和晶界组成。
晶格是由金属原子按照一定的排列规律形成的三维结构,晶界是相邻晶粒之间的边界。
金属的性质受晶格结构和晶界的影响。
2. 金属的热处理金属的热处理包括退火、正火、淬火和回火等。
退火可改善金属的塑性和韧性,正火可提高金属的硬度和强度,淬火可使金属具有高硬度和高强度,回火可降低金属的脆性。
3. 金属的腐蚀与防护金属在环境中容易发生腐蚀,腐蚀会导致金属的性能下降。
常见的金属腐蚀方式包括电化学腐蚀、化学腐蚀和物理腐蚀。
为了防止金属腐蚀,可以采取防护措施,如涂层保护、金属合金化等。
4. 金属的力学性能金属的力学性能包括强度、韧性、硬度和塑性等。
强度指金属抵抗外力的能力,韧性指金属在受力下发生塑性变形的能力,硬度指金属抵抗划伤的能力,塑性指金属在受力下发生永久形变的能力。
5. 金属的疲劳与断裂金属在长期受到交变载荷作用下容易发生疲劳破坏,疲劳破坏是由于金属内部微小缺陷的逐渐扩展导致的。
金属的断裂是指在受到过大载荷作用下金属突然破裂。
为了预防金属的疲劳与断裂,可以采取措施如降低应力集中、提高材料的强度等。
6. 陶瓷材料的结构和性能陶瓷材料是由非金属元素形成的晶体结构,其特点是硬度高、耐磨损、耐高温等。
陶瓷材料的性能受晶体结构和晶界的影响。
7. 高分子材料的结构和性能高分子材料是由大量重复单元组成的聚合物,其特点是轻质、柔软、绝缘等。
高分子材料的性能受分子结构和分子链的影响。
8. 复合材料的结构和性能复合材料由两种或两种以上不同材料组成,通过界面连接形成整体性能。
复合材料的性能受组分材料、界面结构和相互作用的影响。
9. 材料的选型与设计材料的选型与设计需要考虑材料的性能、用途要求、成本等因素。
根据具体要求选择合适的材料,进行设计和优化。
10. 材料的制备与加工材料的制备与加工包括原材料的提取、合成和加工成形等过程。
不同材料需要采用不同的制备和加工方法。
金属材料学总结
金属材料学总结第一篇:金属材料学总结第一章1、为什么钢中的硫和磷一般情况下总是有害的?控制硫化物形态的方法有哪些?答:S与Fe形成FeS,会导致钢产生热脆;P与形成Fe3P,使钢在冷加工过程中产生冷脆性,剧烈降低钢的韧性,使钢在凝固时晶界处发生偏析。
硫化物形态控制:a、加入足量的锰,形成高熔点MnS;b、控制钢的冷却速度;c、改善其形态最好为球状,而不是杆状,控制氧含量大于0.02%;d、加入变形剂,使其在金属中扩散开防止聚焦产生裂纹。
2、钢的强化机制有哪些?为什么一般钢的强化工艺采用淬火加回火?答:a、固溶强化(合金中形成固溶体、晶格畸变、阻碍位错运动、强化)b、细晶强化(晶粒细化、晶界增多、位错塞积、阻碍位错运动、强化)c、加工硬化(塑性变形、位错缠绕交割、阻碍位错运动、强化)d、弥散强化(固溶处理的后的合金时效处理、脱溶析出第二相、弥散分布在基体上、与位错交互作用、阻碍位错运动、强化)淬火处理得到强硬相马氏体,提高钢的强度、硬度,使钢塑性降低;回火可有效改善钢的韧性。
淬火和回火结合使用提高钢的综合性能。
3、按照合金化思路,如何改善钢的韧性?答:a、加入可细化晶粒的元素Mo、W、Cr;b、改善基体韧性,加Ni元素;c、提高冲击韧性,加Mn、Si元素; d、调整化学成分; e、形变热处理; f、提高冶金质量;g、加入合金元素提高耐回火性,以提高韧性。
4、试解释40Cr13属于过共析钢,Cr12钢中已出现共晶组织,属于莱氏体钢。
答、Cr元素使共析点左移,当Cr量达到一定程度时,共析点左移到碳含量小于0.4%,所以40Cr13属于过共析钢;Cr12中含有高于12%的Cr元素,缩小Fe-C平衡相图的奥氏体区,使共析点右移。
5、试解释含Mn钢易过热,而含Si钢高淬火加热温度应稍高,且冷作硬化率高,不利于冷变性加工。
答:Mn在一定量时会促使晶粒长大,而过热就会使晶粒长大。
6、合金钢中碳化物形成规律①②③④⑤⑥⑦答:①、K类型:与Me的原子半径有关;②、相似相容原理;③、强碳化物形成元素优先于碳结合形成碳化物;④、NM/NC比值决定了K类型;⑤、碳化物稳定型越好,溶解越难,析出越难,聚集长大也越难。
材料科学基础知识总结-辽宁科技大学金材10-1
第0章 绪论1.材料的分类①金属材料 ②无机非金属材料 ③高分子材料 ④复合材料2.无机非金属材料分类①水泥 ②玻璃 ③耐火材料 ④陶瓷(器)第一章 固体结构1.要求掌握的内容⑴晶体、晶体结构、空间点阵、对称、配位数、配位多面体、合金、固溶体、置换固溶体⑵晶体结构与空间点阵的关系和区别、点阵几何元素表示法、球体的最紧密堆积、金属的晶体结构、固溶体、鲍林规则、用鲍林规则分析离子晶体结构.⑶重点:晶体结构与空间点阵的关系和区别、点阵几何元素表示法、典型离子晶体的结构.⑷ 难点:空间点阵,点阵几何元素表示法,鲍林规则,硅酸盐晶体结构2.⑴晶体:内部质点在三维空间呈周期性重复排列的固体,即晶体是具有格子构造从理想晶体结构中抽象出来,相当于晶体结构中结构⑶晶体结构与空间格子晶体结构:客观实体,有实际内容,质点代表原子、离子、分子等。
空间格子:抽象几何图形,结点为几何点。
⑷根据6个点阵参数间的相互关系,可将全部空间点阵归属于7种类型,即7个晶系。
⑸布拉菲点阵:用数学方法推导出能够反映空间点阵全部特征的单位平面六面体只有14种,这14种空间点阵也称布拉菲点阵。
⑹晶胞-能代表整个晶体全部结构特征的最小单位。
(与单位平行六面体(单位空间格子)相对应,从实际晶体选取的这种最小单位。
)单位平行六面体(单位空间格子):能代表整个空间点阵全部特点的最小单位。
晶体结构:晶体内部质点在三维空间作周期性重复排列构成。
晶胞与平行六面体比较:区别:点的意义不同相同:晶胞与平行六面体的大小、形状、参数相同,“点”排列规律相同2.晶向符号①符号[212] ②符号[]210晶向符号不仅代表一根直线方向,而且代表所有平行于这根直线的直线方向。
3.晶面指数X C A ZO AX Z OXm 面: ()233 晶面符号代表了一组平行等距的晶面。
P 面: ()2334.晶带:⑴晶带:所有平行或相交于某一直线的这些晶面构成一个晶带,此直线称为晶带轴。
材料科学基础基础知识点总结
第一章材料中的原子排列第一节原子的结合方式2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。
如复合材料。
3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
图1-5特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷; b 可有无限多种。
2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。
材料科学基础总结
材料科学基础总结1. 简介材料科学作为一门交叉学科,研究材料的组织结构、性能以及其应用。
它涵盖了多种材料类型,包括金属、陶瓷、高分子材料和复合材料等。
本文将对材料科学的基础知识进行总结,从材料的结构到性能以及应用方面进行讨论。
2. 材料的结构2.1 原子结构材料的基本组成单元是原子,不同材料的原子结构有所不同。
原子中包含了质子、中子和电子,其中质子和中子位于原子核中,电子绕核轨道运动。
不同元素的原子核中质子的个数不同,决定了元素的化学性质。
2.2 晶体结构晶体是指原子或分子按照一定的规律排列形成的具有周期性结构的物质。
晶体结构可以分为立方晶系、正交晶系、单斜晶系、菱面晶系等不同类型。
晶体的结构对材料的性能具有重要影响,例如晶体的密排度与材料的硬度、强度密切相关。
2.3 晶体缺陷晶体中存在各种缺陷,包括点缺陷、线缺陷和面缺陷。
点缺陷包括空位、插入原子和替代原子等,线缺陷包括位错和螺旋位错等,面缺陷包括晶格错配和晶界等。
晶体缺陷会影响材料的导电性、塑性和化学反应性。
3. 材料的性能3.1 机械性能材料的机械性能包括强度、硬度、韧性和塑性等指标。
强度是指材料抵抗外部加载时的能力,硬度是指材料抵抗划痕和压痕的能力,韧性是指材料抵抗断裂的能力,塑性是指材料在外力作用下的变形能力。
3.2 热性能材料的热性能包括热膨胀系数、热导率和熔点等指标。
热膨胀系数是指材料在温度变化时的尺寸变化程度,热导率是指材料传导热量的能力,熔点是指材料从固态到液态的温度。
3.3 电磁性能材料的电磁性能包括导电性、磁性和介电性等指标。
导电性是指材料导电的能力,磁性是指材料在外磁场作用下的磁性特性,介电性是指材料在电场中的电学特性。
4. 材料的应用4.1 金属材料金属材料具有优良的导电性和导热性,广泛应用于电子、航空航天和车辆制造等领域。
常见的金属材料有铁、铜、铝和钛等。
4.2 陶瓷材料陶瓷材料具有优良的耐热性和耐腐蚀性,广泛应用于建筑、化工和电子等领域。
2023年材料科学基础知识点总结
金属学与热处理总结一、金属旳晶体构造重点内容:面心立方、体心立方金属晶体构造旳配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数旳标定;柏氏矢量具旳特性、晶界具旳特性。
基本内容:密排六方金属晶体构造旳配位数、致密度、原子半径,密排面上原子旳堆垛次序、晶胞、晶格、金属键旳概念。
晶体旳特性、晶体中旳空间点阵。
晶胞:在晶格中选用一种可以完全反应晶格特性旳最小旳几何单元,用来分析原子排列旳规律性,这个最小旳几何单元称为晶胞。
金属键:失去外层价电子旳正离子与弥漫其间旳自由电子旳静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子旳排列在一定范围内发生有规律错动旳一种特殊构造组态。
位错旳柏氏矢量具有旳某些特性:①用位错旳柏氏矢量可以判断位错旳类型;②柏氏矢量旳守恒性,即柏氏矢量与回路起点及回路途径无关;③位错旳柏氏矢量个部分均相似。
刃型位错旳柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有旳某些特性:①晶界旳能量较高,具有自发长大和使界面平直化,以减少晶界总面积旳趋势;②原子在晶界上旳扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子旳富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以制止位错旳运动,提高材料旳强度。
二、纯金属旳结晶基本内容:结晶过程、阻力、动力,过冷度、变质处理旳概念。
铸锭旳缺陷;结晶旳热力学条件和构造条件,非均匀形核旳临界晶核半径、临界形核功。
相起伏:液态金属中,时聚时散,起伏不定,不停变化着旳近程规则排列旳原子集团。
过冷度:理论结晶温度与实际结晶温度旳差称为过冷度。
变质处理:在浇铸前去液态金属中加入形核剂,促使形成大量旳非均匀晶核,以细化晶粒旳措施。
过冷度与液态金属结晶旳关系:液态金属结晶旳过程是形核与晶核旳长大过程。
从热力学旳角度上看,没有过冷度结晶就没有趋动力。
根据T R k ∆∝1可知当过冷度T∆为零时临界晶核半径R k 为无穷大,临界形核功(21T G ∆∝∆)也为无穷大。
大二材料科学基础知识点
大二材料科学基础知识点材料科学是一门研究材料的性质、结构、制备和应用的学科,它在现代科学技术中起着重要的作用。
作为大二学生,了解材料科学基础知识点对于深入学习相关专业课程和未来的职业发展至关重要。
本文将介绍大二材料科学基础知识点,帮助读者建立起对这门学科的初步认识。
一、材料分类在材料科学中,根据材料的性质和组成,可以将材料分为金属材料、无机非金属材料和有机高分子材料三大类。
1.金属材料:金属材料具有良好的导电和导热性能,常见的金属材料有铁、铝、铜等。
金属材料通常具有较高的强度和硬度,可广泛应用于建筑、交通工具制造等领域。
2.无机非金属材料:无机非金属材料包括陶瓷、玻璃等,其硬度较高、耐磨性好,同时具有较好的绝缘性能。
无机非金属材料广泛应用于陶瓷制品、玻璃器皿等产业。
3.有机高分子材料:有机高分子材料由大分子有机化合物构成,包括塑料、橡胶、纤维素等。
有机高分子材料通常具有较低的密度和良好的加工性能,广泛应用于包装、塑料制品等领域。
二、材料结构了解材料的结构可以帮助我们理解其性能和制备工艺。
在材料科学中,常见的结构有晶体结构和非晶体结构。
1.晶体结构:晶体是由大量原子或分子周期性排列组成的固体。
晶体结构具有规则的几何形状和周期性性质。
根据晶体结构的不同,可以将晶体分为金属晶体、离子晶体和共价晶体等。
2.非晶体结构:非晶体是指没有规则的排列结构,也被称为无定形材料。
与晶体相比,非晶体结构没有明确的晶格,具有更高的熵和较低的密度。
非晶体常见于玻璃等材料中。
三、材料性能材料的性能决定了其在特定应用中是否适合使用。
材料科学的研究中,常关注材料的力学性能、热学性能、电学性能和化学性能等。
1.力学性能:力学性能描述了材料在受力作用下的变形和破坏行为。
常见的力学性能指标包括强度、硬度、韧性等。
不同材料的力学性能差异很大,我们需要根据实际需求选择合适的材料。
2.热学性能:热学性能研究材料在温度变化下的热传导、膨胀等性质。
材料科学基础第三版知识点总结
材料科学基础第三版知识点总结材料科学基础是材料科学与工程领域的基础课程,它涵盖了材料科学的基本概念、原理和应用。
本文将对材料科学基础第三版的知识点进行总结,包括材料分类、材料结构与性能、材料加工与制备、材料表征与测试等方面。
一、材料分类材料可以根据其组成、结构和性能特点进行分类。
常见的材料分类包括金属材料、陶瓷材料、聚合物材料和复合材料等。
金属材料具有良好的导电性和导热性,常用于制造结构件和电子器件;陶瓷材料具有优异的耐高温、耐磨损和绝缘性能,常用于制造陶瓷制品和电子陶瓷;聚合物材料具有轻质、柔韧和绝缘性能,常用于制造塑料制品和纤维材料;复合材料由两种或多种不同类型的材料组成,具有综合性能优异的特点,常用于制造飞机、汽车和船舶等。
二、材料结构与性能材料的结构决定了其性能。
材料的结构包括晶体结构、非晶态结构和纳米结构等。
晶体结构是由原子或分子按照一定的规则排列而成的,具有周期性和有序性;非晶态结构则是无序的,原子或分子的排列没有规律;纳米结构是指材料中存在纳米级别的微观结构。
材料的性能包括力学性能、热学性能、电学性能和光学性能等。
力学性能包括强度、硬度、韧性和延展性等;热学性能包括热膨胀系数、热导率和热容量等;电学性能包括电导率、介电常数和磁导率等;光学性能包括透光性、反射率和折射率等。
三、材料加工与制备材料加工是指通过物理、化学或机械方法改变材料的形状、结构和性能的过程。
常见的材料加工方法包括铸造、挤压、锻造、焊接、切削和表面处理等。
铸造是将熔化的金属或合金注入模具中,经冷却凝固后得到所需形状的方法;挤压是将金属坯料通过模具挤压成型的方法;锻造是通过对金属坯料施加压力使其变形成型的方法;焊接是将两个或多个金属部件加热至熔化状态并连接在一起的方法;切削是通过刀具对材料进行削减和切割的方法;表面处理是对材料表面进行改性和涂装的方法。
四、材料表征与测试材料表征与测试是对材料进行分析和评估的过程。
常见的材料表征与测试方法包括显微镜观察、X射线衍射、热分析、电子显微镜和拉伸试验等。
材料科学基础基础知识点总结
精心整理第一章 材料中的原子排列第一节 原子的结合方式 2 原子结合键 (1)离子键与离子晶体 原子结合:电子转移,结合力大,无方向性和饱和性; 离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体 原子结合:电子共用,结合力大,有方向性和饱和性; 原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(1)――-:构成空间点阵的最基本单元。
(2)选取原则: a 能够充分反映空间点阵的对称性; b 相等的棱和角的数目最多; c 具有尽可能多的直角; d 体积最小。
(3) 形状和大小 有三个棱边的长度a,b,c 及其夹角α,β,γ表示。
(4) 晶胞中点的位置表示(坐标法)。
3 布拉菲点阵 图1-7 14种点阵分属7个晶系。
4 晶向指数与晶面指数 晶向:空间点阵中各阵点列的方向。
晶面:通过空间点阵中任意一组阵点的平面。
国际上通用米勒指数标定晶向和晶面。
(1) 晶向指数的标定 a 建立坐标系。
确定原点(阵点)、坐标轴和度量单位(棱边)。
b 求坐标。
u’,v’,w’。
c 化整数。
u,v,w. d 加[ ]。
[uvw]。
说明: a 指数意义:代表相互平行、方向一致的所有晶向。
b 负值:标于数字上方,表示同一晶向的相反方向。
b 性质:晶带用晶带轴的晶向指数表示;晶带面//晶带轴; hu+kv+lw=0c 晶带定律 凡满足上式的晶面都属于以[uvw]为晶带轴的晶带。
推论: (a) 由两晶面(h 1k 1l 1) (h 2k 2l 2)求其晶带轴[uvw]: u=k 1l 2-k 2l 1; v=l 1h 2-l 2h 1; w=h 1k 2-h 2k 1。
(b) 由两晶向[u 1v 1w 1][u 2v 2w 2]求其决定的晶面(hkl)。
H=v 1w 1-v 2w 2; k=w 1u 2-w 2u 1; l=u 1v 2-u 2v 1。
材料科学基础总结
材料科学基础总结一、材料科学基础概述材料科学是研究材料的结构、性质、制备和应用的学科,其研究范围涵盖了无数种不同类型的材料,包括金属、陶瓷、高分子、半导体等。
材料科学是现代工程技术和制造业的基础,它对于推动社会经济发展和提高人民生活水平具有重要作用。
二、材料结构与性质1.原子结构原子是构成所有物质的最小单元,由原子核和电子组成。
原子核由质子和中子组成,电子围绕原子核运动。
原子中的电子层数目不同,每个层次能容纳的电子数也不同。
在化学反应中,原子通过失去或获得电子来形成离子。
2.晶体结构晶体是由具有规则排列方式的原子或离子组成的固体物质。
晶体可以分为单晶体和多晶体两种类型。
单晶体具有完整而连续的结构,因此其物理性质比多晶体更加稳定;而多晶体则由许多小颗粒组成,因此其物理性质会因颗粒的大小和排列方式不同而有所变化。
3.晶体缺陷晶体缺陷是指晶体中存在的各种不完整或失序的结构,包括点缺陷、线缺陷和面缺陷。
点缺陷是指原子位置上的缺失或替换,线缺陷是指原子排列方向上的错位或位错,面缺陷是指晶体表面上的断裂或滑移。
4.材料性质材料性质是指材料在特定条件下表现出来的物理、化学和力学特征。
其中包括弹性模量、硬度、延展性、热膨胀系数等。
材料性质受到其结构和组成的影响,因此不同类型的材料具有不同的性质。
三、材料制备技术1.金属制备技术金属制备技术包括熔融法、粉末冶金法、电化学法等。
其中,熔融法是最常用的制备金属材料的方法之一,它通过将金属加热至其熔点以上使其熔化,并在冷却过程中形成固态结构;粉末冶金法则是通过将金属粉末压制成形,然后进行高温烧结,以形成致密的金属材料。
2.陶瓷制备技术陶瓷制备技术包括干压成型、注塑成型、挤出成型等。
其中,干压成型是最常用的一种方法,它通过将粉末与有机添加剂混合均匀后,在模具中施加高压力进行塑性变形,并在高温下进行烧结以形成致密的陶瓷材料。
3.高分子制备技术高分子制备技术包括聚合法、溶液法、膜拉伸法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九、三元相图分析法总结1.两相平衡
凝固中成分变化蝶形
规则等温截面上,共轭线,可用杠杆
定律
变温截面上,判定转变温度范围,不
能用杠
杆定律。
2.三相平衡
等温截面中:直边三角形,三顶点为
相成分
点,可用重心法则F4-30(d)
变温截面:曲边三角形或多边形F4-25
三相反应的判定:
1. 变温截面上F4-43
2. 投影图上
,
F4-28液相单变量线穿
过两旁固相成分点连线的为二元共晶型,而单
变线穿
过两旁
固相成分点连线延长线为二元包晶反应,
且靠近单变线的为生成相
3.四相平衡
反应类型判断:液相面投影图指向结点单变量线数为产物数变温截面上,根据水平线上、下方三相区判断(见
实例)
4.三元相图截面图上相区接触法则
相数差为1的两相邻相区线段为界差大小1或等于零的为点接触等温截面上单相区边界线走向F4-45
5.Fe-Cr-C系三相区1-6 及四相平衡转变
1:L+δ→γ
2:L→γ+C1
3:γ→α+C2
4:γ+C1→C2
5:γ→α+C1
6:γ+C1→C3
1175℃L+C1→γ+C3
295℃γ+C2→α+C1
760℃γ+C1→α+C3
2Cr13法结晶过程(0.2%C):L→δ,L+δ→γ,δ→γ,γ-C2,γ→α+C2,α→C2
室温组织,球光体(共析产物)和碳化物Cr12(2%C):L→γ,L→γ+C1,γ→α+C1,α→C1室温组织:球光体和莱氏体(共晶体)
/classes_website/cailiaoxuejichu/unit_4/a4.5.html
五、固态有限溶解的三元共晶相图1.立体模型
F4-18 固态有限溶解三元共晶模型
三个液相面
三个固溶体相面
一个三元共晶固相面
三个二元共晶完毕固相面
三组二元共晶开始面
三组六个固溶度面
F4-20:固溶度面
三条同析线及构成的一个同析台
2.合金的凝固过程和组织
合金I、II、III(合金x),VI、V、IV
合金VI L→α,L→α+β,nα β,F4-23:凝固过程投影图
合金VI:L→β,L→β+γ,
L→β+α+γ α → β 同析反应n γ
表4-2:各相区合金凝固过程及组织
3.等温截面F4-24:不同温度下等温截面
.变温截面F4-25:xy变温截面x1:L→α+β,L→α+β+γ
x2:L→α,L→α+β+γ
x3:L→α,L→α+γ,L→α+β+γx4:L→α,L→α+γ,α β n
γ
x5:L→α,L→α+γ,α γ
F4-26:OP变温截面
,。