《材料成形原理》重点及答案

合集下载

材料成型原理答案

材料成型原理答案

一、填空(共10空,每空2分,共20分)1.液体的分类(按液体结构和内部作用力):原子液体,分子液体,离子液体。

2.接触角也为润湿角,当接触角为锐角时为润湿,接触角为钝角时为不润湿。

3.固相无扩散而液相有限扩散凝固过程的三个阶段:最初过渡区、稳定状态区和最后过渡区。

4.根据偏析范围的不同,可将偏析分为:微观偏析和宏观偏析两大类。

二、名词解释(共5题,每题2分,共10分)1.焊接:通过加热或加压,或两者并用,并且用或不用填充材料,使焊件达到原子结合的一种加工方法。

2.均质形核:形核前液相金属或合金中无外来固相质点,而液相自身发生形核的过程。

3.碳当量:碳当量是反映钢中化学成分对硬化程度的影响,它是把钢中合金元素(包括碳)按其对淬硬(包括冷裂、脆化等)的影响程度折合成碳的相当含量。

4.偏析:合金在凝固过程中发生的化学成分不均匀的现象称为偏析。

5.凝固收缩:金属从液相线冷却到固相线所产生的体收缩,称为凝固收缩。

三、简答题(共3题,每题10分,共30分)1. 黏度对成型质量的影响。

(1)影响铸件轮廓的清晰程度;(2)影响热裂、缩孔、缩松的形成倾向;(3)影响钢铁材料的脱硫、脱磷、扩散脱氧;(4)影响精炼效果及夹杂或气孔的形成:(5)熔渣及金属液粘度降低对焊缝的合金过渡有利。

2. 金属氧化还原方向的判据是什么?若氧在金属-氧-氧化物系统中:{pO2}---实际分压为,pO2----金属氧化物的分解压{pO2}>pO2 时,金属被氧化;{pO2}=pO2 时,处于平衡状态;{pO2}<pO2 时,金属被还原。

3. 什么是重力偏析?防止或减轻重力偏析的方法有哪些?重力偏析:是由于重力作用而出现的化学成分不均匀现象。

防止或减轻重力偏析的方法:(1)加快铸件的冷却速度,缩短合金处于液相的时间,使初生相来不及上浮或下沉。

(2)加入能阻碍初晶沉浮的合金元素。

(3)浇注前对液态合金充分搅拌,并尽量降低合金的浇注温度和浇注速度。

材料成型原理第一章答案

材料成型原理第一章答案

第一章1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆Hm 约为气化潜热∆Hb的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

《材料成形原理》重点及答案29-推荐下载

《材料成形原理》重点及答案29-推荐下载
“成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界 面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。这种仅由熔体存在的负温度梯度所造成的过 冷,习惯上称为“热过冷” 。 内生生长和外生生长-晶体自型壁生核,然后由外向内单向延伸的生长方式,称为“外生生长”。 平面 生长、胞状生长和柱状枝晶生长皆属于外生生长。等轴枝晶在熔体内部自由生长的方式则称为“内生生 长”。 枝晶间距-指相邻同次枝晶间的垂直距离。它是树枝晶组织细化程度的表征。 共生生长-是指在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相 晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一 相提供生长所需的组元,彼此偶合的共同向前生长。 离异生长-两相的析出在时间上和空间上都是彼此分离的,因而形成的组织没有共生共晶的特征。这 种非共生生长的共晶结晶方式称为离异生长,所形成的组织称离异共晶。
溶质平衡分配系数 K0—特定温度 T*下固相合金成分浓度 CS*与液相合金成分 CL*达到平衡时的比值。
均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点 而从液相自身发生形核的过程,亦称“自发形核” 。非均质形核(Hetergeneous nucleation) :依靠外来质 点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。 粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有 50%左右被固相原子 所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。 光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少 数空位或台阶,从而形成整体上平整光滑的界面结构。也称为“小晶面”或“小平面”。

材料成型原理重点整理

材料成型原理重点整理

材料成型原理重点整理第一篇:材料成型原理重点整理液态金属结构可以这样描述:液态金属由许多近程有序的原子集团组成,这些原子集团原子排列规则,有激烈的原子热运动和大量空穴,存在较大的能量起伏。

同时,这些原子集团和空穴时聚时散,时大时小,处于瞬息万变的状态。

液态金属冷却到冷却到平衡结晶温度Tm(熔点)时,并没有开始结晶,而是冷却到低于Tm时,固相才开始结晶析出(形核并长大),这种现象叫做过冷平衡结晶温度Tm与实际结晶温度T之间的温度差称为过冷度(△T),△T= Tm –T。

金属凝固的驱动力,主要取决于过冷度△T。

过冷度越大,凝固的驱动力越大。

液相内部出现晶核时系统自由能对变化:当过冷液体中出现晶核时,系统自由能将产生变化。

系统自由能的变化由两部分组成,一部分是体积自由能变化,即固、液相之间的体积自由能差△GV。

它使系统的自由能降低,它是相变的驱动力;另一部分是界面能变化,由于晶核形成的同时,也形成了新的液一固相界面,因而产生了新的界面能△Gi。

这部分能量将导致系统的自由能增大,它是相变的阻力。

图为在三种曲率不同的表面上形核的示意图,它们具有相同的润湿角和晶核曲率半径,但是显然包含的原子数不同。

显然在凸面上形成的晶核包含原子数最多,平面上次之,凹面上最少。

可见,即使是同一种物质作为形核基底,起形核能力也不同,跟界面的曲率方向和大小有关,凹面的形核能力最强。

一般来说形核剂应该满足以下几个条件:1.失配度小、完全共格对应,方式的界面能最低,促进非自发形核的能力最强,形核率也最大。

2.粗糙度大、在基底上存在凹坑时,形核能力较强。

故表面粗糙不平的形核剂对促进形核有利。

3.分散性好、若形核剂聚集成团,大大降低了有效基底面积,对形核有不利影响。

4.高温稳定性好,形核剂在高温熔体中使用,如发生分解、氧化,或者与熔体发生一些化学反应,形核剂将发生变质,不能起到促进形核的作用。

金属结晶为什么需要过冷度呢?结晶在什么条件下才能自发进行呢?这是由结晶的热力学条件所决定的。

合工大版材料成型原理课后习题参考答案(重要习题加整理)

合工大版材料成型原理课后习题参考答案(重要习题加整理)

第二章 凝固温度场P498. 对于低碳钢薄板,采用钨极氩弧焊较容易实现单面焊双面成形(背面均匀焊透)。

采用同样焊接规范去焊同样厚度的不锈钢板或铝板会出现什么后果?为什么?解:采用同样焊接规范去焊同样厚度的不锈钢板可能会出现烧穿,这是因为不锈钢材料的导热性能比低碳钢差,电弧热无法及时散开的缘故;相反,采用同样焊接规范去焊同样厚度的铝板可能会出现焊不透,这是因为铝材的导热能力优于低碳钢的缘故。

9. 对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存在一定长度的未焊透,分析其产生原因并提出相应工艺解决方案。

解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊件熔透,因此会出现一定长度的未焊透。

(2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔透后再恢复到正常焊接规范。

生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。

第四章 单相及多相合金的结晶 P909.何为成分过冷判据?成分过冷的大小受哪些因素的影响? 答: “成分过冷”判据为:R G L <NLD RLL L e K K D C m δ-+-0011当“液相只有有限扩散”时,δN =∞,0C C L =,代入上式后得R G L<000)1(K K D C m L L -( 其中: G L — 液相中温度梯度 R — 晶体生长速度 m L — 液相线斜率 C 0 — 原始成分浓度 D L — 液相中溶质扩散系数 K 0 — 平衡分配系数K )成分过冷的大小主要受下列因素的影响:1)液相中温度梯度G L , G L 越小,越有利于成分过冷 2)晶体生长速度R , R 越大,越有利于成分过冷 3)液相线斜率m L ,m L 越大,越有利于成分过冷 4)原始成分浓度C 0, C 0越高,越有利于成分过冷 5)液相中溶质扩散系数D L, D L 越底,越有利于成分过冷6)平衡分配系数K 0 ,K 0<1时,K 0 越 小,越有利于成分过冷;K 0>1时,K 0越大,越有利于成分过冷。

材料成型原理04答案

材料成型原理04答案

04答案一、判断题(本题共10小题,每题1分,共10分)(正确打“√”,错误打“X”)1、在滑移线场中,当α线与β线构成右手坐标系时,则代数值最大的主应力σ1的作用线位于第一和第三象限。

(√)2、低碳钢焊接熔合区,具有明显的化学成分不均匀性,导致组织、性能不均匀,影响焊接接头的强度、韧性,是焊热影响区性能最差的区域。

()3、焊接热循环中的冷却时间t表示从峰值冷却到100︒C的冷却时间。

100(√)4、稳定温度场通常是指温度场内各点的温度不随时间而变的温度场。

(√)5、同样体积大小相同的情况下,球状铸件的凝固时间大于块状铸件的凝固时间。

(X)6、焊前预热、焊后后热的根本作用在于,通过减小冷却速度而降低淬硬组织形成倾向,从而达到消除冷裂的目的。

()7、晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。

金属的塑性越好。

(√)8、滑移线就是塑性变形体内最大切应力的轨迹线。

(√)9、根据溶渣离子理论,碱性渣中自由氧离子的浓度远大于酸性渣,所以一定具有很高的氧化性。

()10、两块等厚薄板对焊,采用从两头向中间焊接,较从中间向两头焊的横向应力小。

(X )二、选择题:(本题共10小题,每题2分,共20分)(请选择一个你认为最好的答案)1、用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为B 。

A、解析法;B、主应力法;C、上限法;D、滑移线法;2、滑移线场理论假设材料为均匀、各向同性的理想刚塑性体,其应力应变关系用 表示。

;A 、B 、C 、D 、3、以下 工艺措施不利于解决Al-Mg 合金铸造过程中出现的“浇不足”缺陷。

A 、加大充型压;B 、预热铸型C 、提高浇注温度;D 、使用大蓄热系数的铸型;4、下图表示的是 中凝固时的温度分布曲线。

A 、厚壁砂型B 、内表面有大热阻涂料的铸型C 、厚壁金属型D 、水冷薄壁金属型5、已知两个应力张量分别为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧0000201001070,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧0000401001050,应力张量不变量公式为:z y x I σσσ++=1)()(2222zx yz xy x z z y y x I τττσσσσσσ+++++-=)(22223zx y zx y yz x zx yz xy z y x I τστστστττσσσ++-+=以下论述错误的是 。

材料成型原理复习题答案

材料成型原理复习题答案

《材料成形原理》复习题(铸)第二章液态金属的结构和性质1.粘度。

影响粘度大小的因素?粘度对材料成形过程的影响?1)粘度:是液体在层流情况下,各液层间的摩擦阻力。

其实质是原子间的结合力。

2)粘度大小由液态金属结构决定与温度、压力、杂质有关:(1)粘度与原子离位激活能U成正比,与相邻原子平衡位置的平均距离的三次方成反比。

(2)温度:温度不高时,粘度与温度成反比;当温度很高时,粘度与温度成正比。

(3)化学成分:杂质的数量、形状和分布影响粘度;合金元素不同,粘度也不同,接近共晶成分,粘度降低。

(4)材料成形过程中的液态金属一般要进行各种冶金处理,如孕育、变质、净化处理等对粘度有显著影响。

3)粘度对材料成形过程的影响(1)对液态金属净化(气体、杂质排出)的影响。

(2)对液态合金流动阻力与充型的影响,粘度大,流动阻力也大。

(3)对凝固过程中液态合金对流的影响,粘度越大,对流强度G越小。

2.表面张力。

影响表面张力的因素?表面张力对材料成形过程及部件质量的影响?1)表面张力:是金属液表面质点因受周围质点对其作用力不平衡,在表面液膜单位长度上所受的紧绷力或单位表面积上的能量。

其实质是质点间的作用力。

2)影响表面张力的因素(1)熔点:熔沸点高,表面张力往往越大。

(2)温度:温度上升,表面张力下降,如Al、Mg、Zn等,但Cu、Fe相反。

(3)溶质元素(杂质):正吸附的表面活性物质表面张力下降(金属液表面);负吸附的表面非活性物质表面张力上升(金属液内部)。

(4)流体性质:不同的流体,表面张力不同。

3)表面张力影响液态成形整个过程,晶体成核及长大、机械粘砂、缩松、热裂、夹杂及气泡等铸造缺陷都与表面张力关系密切。

3.液态金属的流动性。

影响液态金属的流动性的因素?液态金属的流动性对铸件质量的影响?1)液态金属的流动性是指液态金属本身的流动能力。

2)影响液态金属的流动性的因素有:液态金属的成分、温度、杂质含量及物理性质有关,与外界因素无关。

材料成型原理复习资料及试题库

材料成型原理复习资料及试题库

1过冷度:金属的理论结晶温度和实际结晶温度的差值2均质形核:在没有任何外来的均匀熔体中的形核过程3异质形核:在不均匀的熔体中依靠外来杂质或者型壁面提供的衬底进行形核的过程4异质形核速率的大小和两方面有关,一方面是过冷度的大小,过冷度越大形核速率越快。

二是和界面有关界面和夹杂物的特性形态和数量来决定,如果夹杂物的基底和晶核润湿,那么形核速率大。

5形核速率:在单位时间单位体积内生成固相核心的数目6液态成型:将液态金属浇入铸型之,凝固后获得具有一定形状和性能的铸件或者铸锭的方法7复合材料:有两种或者两种以上物理和化学性质不同的物质复合组成一种多相固体8定向凝固:使金属或者合金在熔体中定向生长晶体的方法9溶质再分配系数:凝固过程当中,固相侧溶质质量分数和液相侧溶质质量分数的比值10流动性是确定条件下的充型能力,液态金属本身的流动能力叫做流动性11液态金属的充型能力是指液态金属充满铸型型腔获得完整轮廓清晰的铸件能力影响充型能力的因素:(1)金属本身的因素包括金属的密度、金属的比热容、金属的结晶潜热、金属的粘度、金属的表面张力、金属的热导率金属的结晶特点。

(2)铸型方面的因素包括铸型的蓄热系数、铸型的温度、铸型的密度、铸型的比热容、铸型的涂料层、铸型的透气性和发气性、铸件的折算厚度(3)浇注方面的因素包括液态金属的浇注温度、液态金属的静压头、浇注系统中的压头总损失和。

12影响液态金属凝固过程的因素:主要因素是化学成分冷却速度是影响凝固过程的主要工艺因素液态合金的结构和性质以及冶金处理(孕育处理、变质处理、微合金化)等对液态金属的凝固也有重要影响13液态金属凝固过程当中的液体流动主要包括自然对流和强迫对流,自然对流是由于密度差和凝固收缩引起的流动,由密度差引起的对流成为浮力流。

凝固过程中由传热。

传质和溶质再分配引起液态合金密度的不均匀,密度小的液相上浮,密度大的下沉,称为双扩散对流,凝固以及收缩引起的对流主要主要产生在枝晶之间,强迫对流是由液体受到各种方式的驱动力产生的对流,例如压力头。

《材料成型原理》 2

《材料成型原理》 2

一、填空题1.液态原子的分布特征为近程有序远程无序2.液态金属本身的流动能力称为流动性,可以通过浇注螺旋形流动性试样或真空流动性试样衡量。

3.金属结晶过程中,随着成分过冷的增加,晶体的生长形貌变化是胞状晶、柱状晶、柱状枝晶、自由树枝晶。

4.根据界面结构的不同,共晶合金分为规则共晶合金和非规则共晶合金。

5.金属中气孔按气体来源不同分为析出性气孔、侵入性气孔、反应性气孔。

6.晶内偏析属于一种不平衡条件,工业生产上常采用均匀化退火来消除。

7.快速凝固技术可以分为急冷凝固和大过冷凝固两大类。

8.液态金属是由包含各种化学成分的原子集团,游离原子,空穴,夹杂物及气泡等组成的“浑浊”液体。

存在温度起伏、结构起伏以及成分(浓度)起伏。

9.影响液态金属表面张力的因素主要有熔点、温度、溶质元素。

10.影响充型能力的因素有金属性质、铸型性质、浇注条件、铸件结构。

11.焊条手工电弧焊时,焊接冶金反应区可以分为熔滴反应区、药皮反应区和熔池反应区。

12.熔渣在焊接过程中的作用机械保护、冶金处理和改善工艺性能。

13.熔渣中FeO的总量相同时,酸性渣比碱性渣对钢液的氧化性弱。

14.焊接热循环的主要参数有加热速度、反应时间、最高温度和冷却速度。

15.按产生裂纹的本质来分,大体可分为冷裂纹、热裂纹、消除应力裂纹、层状裂纹和应力腐蚀裂纹。

16.对结构钢焊接来说,氢的有害作用可分为两大类。

一类是暂态现象,包括氢脆和白点。

一类是永久性现象,包括气孔和冷裂纹。

17.钢材焊接过程中,影响产生冷裂纹的三大因素是钢的淬硬性、氢含量及分布和拘束应力的状态。

18.根据熔渣粘度随温度变化速率不同,熔渣可分为长渣和短渣,碱性渣属于短渣,酸性渣属于长渣。

19.低合金钢焊缝中,铁素体大致可分为先共析铁素体、侧板条铁素体、针状铁素体和细晶铁素体。

20.减少焊接残余应力的措施有热处理法、机械法和共振法。

21.描述不同应力状态下变形体内某点由弹性状态进入塑性状态,并使塑性状态持续进行缩必须遵循的条件称为屈服准则。

材料成型原理课后答案

材料成型原理课后答案

材料成型原理课后答案材料成型原理是指通过不同的成型工艺,将原料加工成所需形状和尺寸的零部件或制品的原理。

在工程制造领域中,材料成型是非常重要的一环,它直接影响着制品的质量和性能。

下面就材料成型原理的相关问题进行解答。

1. 什么是材料成型原理?材料成型原理是指将原料加工成所需形状和尺寸的零部件或制品的原理。

它是通过对原料进行加工,使其发生形状、尺寸和性能的改变,从而得到符合要求的制品。

材料成型原理是工程制造中的重要环节,它直接关系到制品的质量和性能。

2. 材料成型的基本过程是什么?材料成型的基本过程包括原料的预处理、成型工艺和制品的后处理。

首先,原料需要进行预处理,包括清洁、除杂、干燥等工序,以保证原料的质量和加工的顺利进行。

然后,根据制品的要求,选择合适的成型工艺,如锻造、压铸、注塑等,对原料进行加工成型。

最后,对成型后的制品进行后处理,包括去除余渣、表面处理、热处理等工序,以提高制品的质量和性能。

3. 材料成型原理的影响因素有哪些?材料成型原理的影响因素包括原料的性能、成型工艺、成型设备和操作技术等。

首先,原料的性能直接影响着成型的难易程度和制品的质量。

其次,成型工艺的选择和设计对成型效果起着决定性的作用。

成型设备的性能和精度也会影响成型的质量和效率。

操作技术则是保证成型过程顺利进行的重要因素。

4. 材料成型原理的发展趋势是什么?随着科学技术的不断发展,材料成型原理也在不断创新和完善。

未来,材料成型将更加注重节能环保、智能化和数字化。

新材料、新工艺、新设备的不断涌现,将推动材料成型原理朝着高效、精密、绿色的方向发展。

同时,数字化技术的应用将使成型过程更加智能化和可控化,提高生产效率和产品质量。

5. 如何提高材料成型的质量和效率?要提高材料成型的质量和效率,首先需要加强对原料的质量控制,保证原料的质量稳定。

其次,要优化成型工艺和设备,提高成型的精度和效率。

同时,加强操作技术的培训和管理,确保成型过程的稳定和可控。

材料成型原理课后答案

材料成型原理课后答案

材料成型原理课后答案材料成型原理是指通过一定的方法和工艺,将原料加工成所需形状的工程材料的过程。

在工程实践中,材料成型原理是非常重要的,因为它直接影响着材料的性能和质量。

下面是一些关于材料成型原理的课后答案,希望能够帮助大家更好地理解这一知识点。

1. 请简要说明材料成型原理的基本概念。

材料成型原理是指利用一定的方法和工艺,将原料加工成所需形状的工程材料的过程。

这个过程包括了原料的选择、加工工艺的设计、成型设备的选择等多个方面,是一个复杂的系统工程。

2. 什么是材料的塑性变形?请举例说明。

材料的塑性变形是指在一定条件下,材料可以经受外力作用而发生形状和尺寸的变化,而且在去除外力后,能够保持变形的一种性质。

例如金属材料在加工过程中经受压力而产生的变形,就是一种塑性变形。

3. 请简要说明材料的成型工艺对材料性能的影响。

材料的成型工艺对材料性能有着直接的影响。

不同的成型工艺会对材料的组织结构、晶粒大小、内部应力等产生影响,从而影响材料的硬度、强度、韧性等性能。

4. 请简要说明材料成型原理在工程实践中的应用。

材料成型原理在工程实践中有着广泛的应用。

例如在汽车制造中,各种金属材料需要经过成型工艺才能制成车身和零部件;在航空航天领域,各种复杂的零部件需要通过成型工艺才能完成加工。

5. 请简要说明材料成型原理的发展趋势。

随着科学技术的不断发展,材料成型原理也在不断地发展和完善。

未来,随着新材料、新工艺的不断涌现,材料成型原理将更加注重对材料性能的精细调控,以及对环境的友好性。

以上就是关于材料成型原理的一些课后答案,希望能够帮助大家更好地理解和掌握这一知识点。

材料成型原理是工程材料学中的重要内容,对于工程实践具有重要的指导意义。

希望大家能够在学习和工作中充分应用这一知识,不断提高自己的专业水平。

材料成形原理重点及答案

材料成形原理重点及答案

一、名词解释1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。

表面张力是由于物体在表面上的质点受力不均匀所致。

2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。

或作用于液体表面的应力τ大小及垂直于该平面方向上的速度梯度dvx/dvy的比例系数。

3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。

4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。

5 液态金属的流动性-是液态金属的工艺性能之一,及金属的成分、温度、杂质含量及其物理性质有关。

6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。

7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场稳定温度场-不随时间而变的温度场(即温度只是坐标的函数):8 温度梯度—是指温度随距离的变化率。

或沿等温面或等温线某法线方向的温度变化率。

9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*及液相合金成分CL*达到平衡时的比值。

10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。

非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。

11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。

粗糙界面在有些文献中也称为“非小晶面”。

光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。

也称为“小晶面”或“小平面”。

12 “成分过冷”及“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。

材料成型基本原理课后答案

材料成型基本原理课后答案

1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。

表面张力是由于物体在表面上的质点受力不均匀所致。

2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。

或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。

3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。

4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。

5 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。

6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。

7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场稳定温度场-不随时间而变的温度场(即温度只是坐标的函数):8 温度梯度—是指温度随距离的变化率。

或沿等温面或等温线某法线方向的温度变化率。

9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。

10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。

非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。

11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。

粗糙界面在有些文献中也称为“非小晶面”。

光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。

也称为“小晶面”或“小平面”。

12 “成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。

材料成型基本原理作业及答案要点

材料成型基本原理作业及答案要点

第二章凝固温度场4. 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。

解:一般在体积相同的情况下上述物体的表面积大小依次为:A 球<A 块<A 板<A 杆根据 K R =τ 与 11A V R = 所以凝固时间依次为: t 球>t 块>t 板>t 杆。

5. 在砂型中浇铸尺寸为300⨯300⨯20 mm 的纯铝板。

设铸型的初始温度为20℃,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点660℃,且在铸件凝固期间保持不变。

浇铸温度为670℃,金属与铸型材料的热物性参数见下表:热物性材料导热系数λ W/(m ·K) 比热容C J/(kg ·K) 密度ρ kg/m 3 热扩散率a m 2/s 结晶潜热 J/kg 纯铝212 1200 2700 6.5⨯10-5 3.9⨯105 砂型 0.739 1840 1600 2.5⨯10-7试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度s,并作出τ-s 曲线;(2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间,并分析差别。

解:(1) 代入相关已知数解得: 2222ρλc b =,=1475 ,()()[]S i T T c L T T b K -+ρπ-=10112022 = 0.9433 (m s m /)根据公式K ξτ=计算出不同时刻铸件凝固层厚度s 见下表,τξ-曲线见图3。

τ (s) 020 40 60 80 100 120 ξ (mm)0 4.22 6.00 7.31 8.44 9.43 10.3(2) 利用“平方根定律”计算出铸件的完全凝固时间:图3 τξ-关系曲线取ξ =10 mm , 代入公式解得: τ=112.4 (s) ;利用“折算厚度法则”计算铸件的完全凝固时间:11A V R = = 8.824 (mm) 2⎪⎭⎫ ⎝⎛=K R τ = 87.5 (s) 采用“平方根定律”计算出的铸件凝固时间比“折算厚度法则”的计算结果要长,这是因为“平方根定律”的推导过程没有考虑铸件沿四周板厚方向的散热。

材料成型原理第五章答案

材料成型原理第五章答案

第五章1.铸件典型宏观凝固组织是由哪几部分构成的,它们的形成机理如何?答:铸件的宏观组织通常由激冷晶区、柱状晶区和内部等轴晶区所组成。

表面激冷区的形成:当液态金属浇入温度较低的铸型中时,型壁附近熔体由于受到强烈的激冷作用,产生很大的过冷度而大量非均质生核。

这些晶核在过冷熔体中也以枝晶方式生长,由于其结晶潜热既可从型壁导出,也可向过冷熔体中散失,从而形成了无方向性的表面细等轴晶组织。

柱状晶区的形成:在结晶过程中由于模壁温度的升高,在结晶前沿形成适当的过冷度,使表面细晶粒区继续长大(也可能直接从型壁处长出),又由于固-液界面处单向的散热条件(垂直于界面方向),处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,以表面细等轴晶凝固层某些晶粒为基底,呈枝晶状单向延伸生长,那些主干取向与热流方向相平行的枝晶优先向内伸展并抑制相邻枝晶的生长,在淘汰取向不利的晶体过程中,发展成柱状晶组织。

内部等轴晶的形成:内部等轴晶区的形成是由于熔体内部晶核自由生长的结果。

随着柱状晶的发展,熔体温度降到足够低,再加之金属中杂质等因素的作用,满足了形核时的过冷度要求,于是在整个液体中开始形核。

同时由于散热失去了方向性,晶体在各个方向上的长大速度是相等的,因此长成了等轴晶。

2.试分析溶质再分配对游离晶粒的形成及晶粒细化的影响。

答:对于纯金属在冷却结晶时候没有溶质再分配,所以在其沿型壁方向晶体迅速长大,晶体与晶体之间很快能够连接起来形成凝固壳。

当形成一个整体的凝固壳时,结晶体再从型壁处游离出来就很困难了。

但是如果向金属中添加溶质,则在晶体与型壁的交汇处将会形成溶质偏析,溶质的偏析容易使晶体在与型壁的交会处产生“脖颈”,具有“脖颈”的晶体不易于沿型壁方向与其相邻晶体连接形成凝固壳, 另一方面,在浇注过程和凝固初期存在的对流容易冲断“脖颈”,使晶体脱落并游离出去,形成游离晶。

一些游离晶被保留下来并发生晶体增殖,成为等轴晶的核心,形成等轴晶,从而起到细化晶粒的作用。

单、多选题判断题及答案(材料成型原理)答案

单、多选题判断题及答案(材料成型原理)答案

单、多选题判断题及答案(材料成型原理)答案单选题1、影响液态金属的凝固过程的起伏不包括(D )A温度起伏B结构起伏C成分起伏D组织起伏2、影响液态金属粘度的主要因素不包括(B )A化学成分B熔点C温度D夹杂物3、当润湿角θ为(C )时,称为绝对润湿A大于90° B小于90° C等于0° D等于180°4、不属于影响液态金属表面张力的因素是(B )A熔点B化学成分C温度D溶质元素5、使液态金属表面张力下降的溶质元素叫做(C)A非表面活性元素B负吸附元素C表面活性元素D以上都不对6、以下说法不正确的是(C )A粘度越大,对流强度越小B粘度越大,流动阻力越大C在材料成形过程中,金属夜的流动性以分层流方式流动最好D流体的流动分为分层流和紊流7.液态金属本身的流动能力称为(A)A.流动性B.充型能力C.刚直性D.自然对流8. 液态金属本身的流动性与下列(D)无关A.成分B.温度C.杂质含量D.外界因素9.下列不属于液态金属的凝固方式的是(C)A.逐层凝固B.中间凝固D.糊状凝固10.下列不属于液态金属凝固过程中传热方式的是(C)A.传导传热B.对流换热C.结晶散热D.辐射换热11.液态金属充满铸型的时刻至凝固完毕所需要的时间为铸件的(B)A.充型时间B.凝固时间C.结晶时间D.蓄热时间12.液态金属的流动性好,其充型能力(A)A.强B.弱C.时强时弱D.无关13.液态金属从液态变为固态的过程为(C)A.结晶B.充型C.凝固D.对流14.纯金属、成分接近共晶成分的液态金属其凝固方式为(A)A.逐层凝固B.中间凝固C.流动凝固D.糊状凝固15.结晶温度范围大的液态金属其凝固方式为(D)A.逐层凝固C.流动凝固D.糊状凝固16.液态金属在流动方向上所受的压力越大,其充型能力(A)A.越强B.越弱C.时强时弱D.无关17、有关液态金属的凝固过程的描述错误的是(C )A降低系统自由能B是一种相变C增加系统自由能D自发过程18、晶体从缺陷处生长的种类不包括(D )A螺旋位错生长B旋转孪晶生长C反射孪晶生长D平行位错生长19、晶体宏观长大方式包括(B )A螺旋位错生长B平面方式生长C反射孪晶生长D旋转孪晶生长20、晶体宏观长大方式包括(A )A树枝晶方式生长B旋转孪晶生长C反射孪晶生长D螺旋位错生长21、异质形核速率与下列哪种方式无关(D )A过冷度B界面C液态金属的过热D操作22、根据构成能障的界面情况的不同,形核方式包括(D)A螺旋位错生长B旋转孪晶生长C反射孪晶生长D均质形核23.除纯金属外,单相合金的凝固过程一般是在一个(C)的温度区间内完成的A.固相B液相C固液两相D固液气三相24.平衡凝固是,溶质的再分配取决于(B)A凝固时间t B热力学参数k C扩散系数Ds D动力学条件25.最终凝固结束时,固相成分为(B)A.平衡固相溶质浓度B液态合金原始成分C.平衡液相溶质浓度D.Cs和Cl26.达到稳态时需要的距离X取决于(B)A.R/D l B R/D l和k C.k D.D l27在稳态阶段,由固相中排出的溶质量(B)界面处液相中扩散的量A大于B等于C小于 D.不确定28.(C)是介于液相中完全混合和液相中只有扩散之间的情况A固相无扩散,液相均匀混合的溶质再分配B固相无扩散,液相无对流而只有有限扩散的溶质再分配C.固相无扩散,液相有对流的溶质再分配D.非平衡凝固29.搅拌对流越强时,凝固析出的固相的稳态成分(B)A。

材料成型原理课后答案

材料成型原理课后答案

材料成型原理课后答案材料成型原理是指在材料加工过程中,通过施加外力或温度等条件,使材料发生形状、结构或性能的改变,从而达到所需形状和性能的加工过程。

在工程实践中,材料成型原理是非常重要的,它涉及到材料的加工工艺、成型设备、成型模具等方面的知识。

下面我们来看一下材料成型原理课后答案。

首先,材料成型原理的基本原理是什么?材料成型原理的基本原理是利用外力或温度等条件,使材料发生形状、结构或性能的改变,从而达到所需形状和性能的加工过程。

在材料成型过程中,通常会施加挤压力、拉伸力、压缩力等外力,或者通过加热、冷却等温度条件,来改变材料的形状和性能。

其次,材料成型原理的主要分类有哪些?根据加工方式的不同,材料成型原理可以分为塑性成型和非塑性成型两大类。

塑性成型是指在加工过程中,材料会发生塑性变形,通常包括挤压、拉伸、冲压、锻造等工艺。

非塑性成型则是指在加工过程中,材料不会发生塑性变形,通常包括切割、焊接、涂覆等工艺。

再次,材料成型原理的影响因素有哪些?材料成型过程受到多种因素的影响,包括材料的性能、成型设备、成型模具、加工工艺等。

其中,材料的性能是影响成型质量的关键因素,包括材料的塑性、韧性、硬度等性能。

成型设备和成型模具的设计也会直接影响成型的效果,加工工艺的选择和控制也是影响成型质量的重要因素。

最后,材料成型原理的发展趋势是什么?随着科学技术的不断进步,材料成型原理也在不断发展。

未来,材料成型技术将更加注重节能环保、智能化、精准化和柔性化,同时也会更加注重材料的功能性和多功能性。

同时,材料成型原理也将更加注重与其他工艺的集成和协同,实现材料加工的高效、低成本和高质量。

综上所述,材料成型原理是材料加工中的重要理论基础,它涉及到材料的加工工艺、成型设备、成型模具等方面的知识。

在学习和掌握材料成型原理的过程中,我们需要深入理解其基本原理、主要分类、影响因素和发展趋势,从而更好地应用于工程实践中,为材料加工提供更好的技术支持。

材料成形原理课后习题解答汇总

材料成形原理课后习题解答汇总

材料成型原理第一章(第二章的内容)第一部分:液态金属凝固学1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。

原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。

(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。

1.2答:液态金属的表面张力是界面张力的一个特例。

表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。

表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。

附加压力是因为液面弯曲后由表面张力引起的。

1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。

而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。

提高液态金属的冲型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大;④粘度、表面张力大。

(2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。

(3)浇注条件方面:①提高浇注温度;②提高浇注压力。

(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。

1.4 解:浇注模型如下:显然 r =21×0.1cm =0.05cm 则 ρ=410*5.05.1*2-=6000Pa 不产生机械粘砂所允许的压头为H =ρ/(ρ液*g )=10*75006000=0.08m 1.5 解: 由Stokes 公式 上浮速度 92(2v )12r r r -= r 为球形杂质半径,γ1为液态金属重度,γ2为杂质重度,η为液态金属粘度γ1=g*ρ液=10*7500=75000γ2=g 2*ρMnO =10*5400=54000所以上浮速度 v =0049.0*95400075000(*10*1.0*223)-)(-=9.5mm/s 3.1解:(1)对于立方形晶核 △G 方=-a 3△Gv+6a 2σ①令d △G 方/da =0 即 -3a 2△Gv+12a σ=0,则临界晶核尺寸a *=4σ/△Gv ,得σ=4*a △Gv ,代入① △G 方*=-a *3△Gv +6 a *24*a △Gv =21 a *2△Gv 均质形核时a *和△G 方*关系式为:△G 方*=21 a *3△Gv (2)对于球形晶核△G 球*=-34πr *3△Gv+4πr *2σ 临界晶核半径r *=2σ/△Gv ,则△G 球*=32πr *3△Gv 所以△G 球*/△G 方*=32πr *3△Gv/(21 a *3△Gv) 将r*=2σ/△Gv ,a *=4σ/△Gv 代入上式,得△G 球*/△G 方*=π/6<1,即△G 球*<△G 方*3-7解: r 均*=(2σLC /L)*(Tm/△T)=319*6.618702731453*10*25.2*25)+(-cm =8.59*10-9m △G 均*=316πσLC 3*Tm/(L 2*△T 2) =316π*262345319*)10*6.61870(2731453*10*10*25.2()+()-=6.95*10-17J3.2答: 从理论上来说,如果界面与金属液是润湿得,则这样的界面就可以成为异质形核的基底,否则就不行。

材料成型原理考试重点

材料成型原理考试重点

一绪论1 塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力2 塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法称为塑性变形。

也称塑性加工或压力加工3 金属塑性成形的特点:1、组织性能好2、材料利用率高3、尺寸精度高4、生产效率高,适用于大批量生产。

4 金属塑性成形的分类分为块料成形和板料成形(冲压)块料成形分为(1)一次加工(轧制、挤压、拉拔)(2)二次成形(自由锻、模锻)板料成形分为(1)分离工序(2)成形工序5 塑性加工按成形时工件的温度可分为 1、热成形(在充分进行再结晶温度以上所完成的加工如热轧、热锻、热挤压)2、冷成形(在不产生回复和再结晶温度以下进行的加工如冷轧、冷冲压、冷锻、冷挤压)3、温成形(是在介于冷热成形之间的温度下进行的加工如温锻、温挤压)6 对金属塑性成形工艺应提出如下要求:(1)使金属具有良好的塑性(2)使变形抗力小(3)保证塑性成形件质量,即使成形件组织均匀,颗粒细小,强度高,残余应力小等:(4)能了解变形力,以便为选择成形设备,设计模具提供理论依据7 主应力法也叫切块法8 塑性成形原理的另一个重要内容是塑性成性力学9人们对塑性成型过程的应力应变和变形力的求解逐步建立了很多理论和求解的方法,如滑移线法,逐次单元分析法,工程计算法。

变形功法,上限法,上限元法,有限元法99 美国的汤姆逊视塑性法可以根据实验确定的速度场求解变形体内的应力场和应变场10塑性成形问题的力学分析方法(滑移线法、上限法、有限元法)第二章金属塑性变形的物理基础1 多晶体的塑性变形包括(晶粒内部变形和晶界变形)2晶内变形的主要方式和单晶体一样为滑移和孪生其中滑移变形是很主要的,而孪生变形时次要的,一般反起调节作用但在体心立方金属、特别是密排六方金属中,孪生变形也起着重要作用3 滑移:所谓滑移是指晶体(此处可理解为单晶体或者构成多晶体中的一个晶粒)在力的作用下,晶体的一部分沿一定的晶面和晶向相对于晶体的另一部分发生相对移动或切变。

材料成型原理课后题答案

材料成型原理课后题答案

第三章:8:实际金属液态合金结构与理想纯金属液态结构有何不同?答:纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成的,是近程有序的.液态中存在着很大的能量起伏。

而实际金属中存在大量的杂质原子,形成夹杂物,除了存在结构起伏和能量起伏外还存在浓度起伏。

12:简述液态金属的表面张力的实质及其影响因数。

答:①实质:表面张力是表面能的物理表现,是是由原子间的作用力及其在表面和内部间排列状态的差别引起的。

②影响因数:熔点、温度和溶质元素。

13:简述界面现象对液态成形过程的影响。

答:表面张力会产生一个附加压力,当固液相互润湿时,附加压力有助于液体的充填。

液态成形所用的铸型或涂料材料与液态合金应是不润湿的,使铸件的表面得以光洁。

凝固后期,表面张力对铸件凝固过程的补索状况,及是否出现热裂缺陷有重大影响.15:简述过冷度与液态金属凝固的关系.答:过冷度就是凝固的驱动力,过冷度越大,凝固的驱动力也越大;过冷度为零时,驱动力不存在。

液态金属不会在没有过冷度的情况下凝固.16:用动力学理论阐述液态金属完成凝固的过程。

答:高能态的液态原子变成低能态的固态原子,必须越过高能态的界面,界面具有界面能.生核或晶粒的长大是液态原子不断地向固体晶粒堆积的过程,是固液界面不断向前推进的过程。

只有液态金属中那些具有高能态的原子才能越过更高能态的界面成为固体中的原子,从而完成凝固过程.17:简述异质形核与均质形核的区别。

答:①均质形核是依靠液态金属内部自身的结构自发形核,异质形核是依靠外来夹杂物所提供的异质界面非自发的形核。

②异质形核与固体杂质接触,减少了表面自由能的增加。

③异质形核形核功小,形核所需的结构起伏和能量起伏就小,形核容易,所需过冷度小。

18:什么条件下晶体以平面的方式生长?什么条件下晶体以树枝晶方式生长?答:①平面方式长大:固液界面前方的液体正温度梯度分布,固液界面前方的过冷区域及过冷度极小,晶体生长时凝固潜热析出的方向与晶体的生长方向相反.②树枝晶方式生长:固液界面前方的液体负温度梯度分布,固液界面前方的过冷区域较大,且距离固液界面越远过冷度越大,晶体生长时凝固潜热析出的方向与晶体生长的方向相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、名词解释1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。

表面张力是由于物体在表面上的质点受力不均匀所致。

2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。

或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。

3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。

4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。

5 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。

6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。

7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场稳定温度场-不随时间而变的温度场(即温度只是坐标的函数):8 温度梯度—是指温度随距离的变化率。

或沿等温面或等温线某法线方向的温度变化率。

9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。

10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。

非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。

11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。

粗糙界面在有些文献中也称为“非小晶面”。

光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。

也称为“小晶面”或“小平面”。

12 “成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。

这种仅由熔体存在的负温度梯度所造成的过冷,习惯上称为“热过冷” 。

13 内生生长和外生生长-晶体自型壁生核,然后由外向内单向延伸的生长方式,称为“外生生长”。

平面生长、胞状生长和柱状枝晶生长皆属于外生生长。

等轴枝晶在熔体内部自由生长的方式则称为“内生生长”。

14 枝晶间距-指相邻同次枝晶间的垂直距离。

它是树枝晶组织细化程度的表征。

15 共生生长-是指在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元,彼此偶合的共同向前生长。

15离异生长-两相的析出在时间上和空间上都是彼此分离的,因而形成的组织没有共生共晶的特征。

这种非共生生长的共晶结晶方式称为离异生长,所形成的组织称离异共晶。

16 孕育与变质-孕育主要是影响生核过程和促进晶粒游离以细化晶粒;而变质则是改变晶体的生长机理,从而影响晶体形貌。

变质在改变共晶合金的非金属相的结晶形貌上有着重要的应用,而在等轴晶组织的获得和细化中采用的则是孕育方法。

17 联生结晶-熔池边界未熔母材晶粒表面,非自发形核就依附在这个表面,在较小的过冷度下以柱状晶的形态向焊缝中心生长,称为联生结晶(也称外延生长)。

18 择优生长-那些主干取向与热流方向平行的枝晶,较之取向不利的相邻枝晶生长得更为迅速。

它们优先向内伸展并抑制相邻枝晶的生长。

在逐渐淘汰趋向不利的晶体过程中发展成柱状晶组织。

这种互相竞争淘汰的晶体生长过程称为晶体的择优生长。

19 快速凝固-是指采用急冷技术或深过冷技术获得很高的凝固前沿推进速率的凝固过程。

20 气体的溶解度—在一定温度和压力条件下,气体溶入金属的饱和浓度。

影响溶解度的主要因素是温度及压力、气体的种类和合金的成分。

21 熔渣的碱度-是熔渣中的碱性氧化物与酸性氧化物浓度的比值(分子理论)或液态熔渣中自由氧离子的浓度(或氧离子的活度)(离子理论)。

22、长渣和短渣-熔渣的粘度随温度增高而急剧下降(快速)变化的渣称之为短渣;反之为长渣。

23 熔渣的氧化和还原能力-是指熔渣向液态金属中传入氧(或从液态金属中导出氧)的能力。

24 扩散脱氧-是在液态金属与熔渣界面上进行的,利用(FeO)与[FeO]能够互相转移, 趋于平衡时符合分配定律的机理进行脱氧。

25沉淀脱氧-是指溶解于液态金属中的脱氧剂直接和熔池中的[FeO]起作用,使其转化为不溶于液态金属的氧化物,并脱溶沉淀转入熔渣中的一种脱氧方式。

26真空脱氧-钢液的熔化过程是在真空条件下进行,利用抽真空降低气相中CO分压来加强钢液中碳的脱氧能力。

27 偏析-合金在凝固过程中发生的化学成分不均匀现象。

28微观和宏观偏析-微观偏析是指微小范围(约一个晶粒范围)内的化学成分不均匀现象,有晶界和晶内偏析之分。

宏观偏析是指宏观尺寸上的偏析,包括:正常偏析、逆偏析、V形偏析和逆V形偏析、带状偏析与层状偏析和重力偏析。

29 气孔-因气体分子聚集而产生的孔洞。

气孔有析出性气孔、反应性气孔和侵入性气孔之分。

30、冷裂纹和热裂纹-金属凝固冷却至室温附近发生的开裂现象称之为冷裂纹;在固相线附近发生的裂纹称之为热裂纹。

31 溶质再分配-由于合金凝固过程中随温度的变化,固液界面前沿溶质富集并形成浓度梯度。

所以,溶质必须在液、固两相重新分布,即所谓的“溶质再分配”。

32 热流密度-单位时间内通过单位面积的热量。

33焊接-通过加热或加压,或者两者并用,用或不用填充材料,使两个分离的工件(同种或异种金属或非金属,也可以是金属与非金属)产生原子(分子)间结合而形成永久性连接的工艺工程。

34热影响区-焊接过程中,焊缝周围未熔化的母材在加热和冷却过程中,发生显微组织和力学性能变化的区域。

该区主要发生物理冶金过程。

35焊接线能量E-单位长度上的焊接热输入量,E = IU/v36 焊接的合金化-把需要的合金元素加入到金属中去的过程。

合金化的目的:首先,补偿在高温下金属由于蒸发或氧化造成的损失;其次是为了消除缺陷,改善焊缝金属的组织与性能,或为了获得具有特殊性能的堆焊金属。

37 合金化的过渡系数-表征合金元素利用率高低的参数。

η等于它在熔敷金属中的实际含量与它的原始含量之比。

或者单位长度焊条中药皮重量与焊芯重量之比。

38 熔合比-焊缝中局部熔化母材所占比例39内力-在外力作用下,变形体内各质点就会产生相互作用的力。

40内应力—没有外力的作用条件下,平衡物体内部的应力。

41焊接瞬时应力—在焊接加热冷却过程中某一瞬时中存在的应力。

42焊接残余应力—焊件完全冷却、温度均匀化后残留于焊件中的应力。

43焊接变形-在焊接过程中,由于不均匀加热和冷却收缩,势必使构件产生局部鼓曲、歪曲、弯曲或扭转等。

焊接变形的基本形式有纵、横向收缩,角变形,弯曲变形,扭曲变形和波浪形等。

实际的焊接变形常常是几种变形的组合。

44 裂纹-在应力与致脆因素的共同作用下,使材料的原子结合遭到破坏,在形成新界面时产生的缝隙称为裂纹。

45 塑性-指金属材料在外力作用下发生变形而不破坏其完整性的能力。

46热塑性变形-金属在再结晶温度以上的变形。

47、张量-由若干个当量坐标系改变时满足转换关系的所有分量的集合。

48 塑性-指固体材料在外力作用下发生永久变形而不被破坏其完整性的能力。

49 简单加载-是指在加载过程中各应力分量按同一比例增加,应力主轴方向固定不变。

50、应力球张量-也称静水应力状态,不能使物体产生形状变化,而只能产生体积变化,即不能使物体产生塑性变形。

51、加工硬化-随着变形程度的增加,(位错运动所受到的阻力增大),金属的强度和硬度增加,而塑性和韧性下降,即产生了加工硬化。

52、应变速率-单位时间内的应变,又称变形速度。

53、滑移-晶体在外力的作用下,其一部分沿着一定的晶面和该晶面上的一定晶向,相对于另一部分产生的相对移动。

54、主切应力平面-一般把切应力有极值的平面称为主切应力平面55、平面应变状态-如果物体内所有质点都只在同一个坐标平面内发生变形,而在该平面的法线方向没有变形,这种变形称为平面变形。

56、附加应力-由于变形体各部分之间的不均匀变形受到整体性的限制,在各部分之间必将产生相互平衡的应力,该应力叫附加应力。

二、简答题1 实际液态金属的结构实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。

2 液态金属表面张力的影响因素1)表面张力与原子间作用力的关系:原子间结合力u0↑→表面内能↑→表面自由能↑→表面张力↑2)表面张力与原子体积(δ3)成反比,与价电子数Z成正比3)表面张力与温度:随温度升高而下降4)合金元素或微量杂质元素对表面张力的影响。

向系统中加入削弱原子间结合力的组元,会使u0减小,使表面内能和表面张力降低。

3 简述大平板铸件凝固时间计算的平方根定律τ=ξ2/K2,即金属凝固时间与凝固层厚度的平方成正比。

K为凝固系数,可由试验测定。

当凝固结束时,ξ为大平板厚度的一半。

4 铸件凝固方式的分类(3分)根据固、液相区的宽度,可将凝固过程分为逐层凝固方式与体积凝固方式(或糊状凝固方式)。

当固液相区很窄时称为逐层凝固方式,反之为体积凝固方式。

固液相区宽度介于两者之间的称为“中间凝固方式”。

5 简述Jackson因子与界面结构的关系Jackson因子α可视为固—液界面结构的判据:凡α≤2的物质,晶体表面有一半空缺位置时自由能降低,此时的固—液界面形态被称为粗糙界面,大部分金属属于此类;凡属α>5的物质凝固时界面为光滑面,有机物及无机物属于此类;α=2~5的物质,常为多种方式的混合,Bi、Si、Sb等属于此类。

6 试写出“固相无扩散,液相只有有限扩散”条件下“成分过冷”的判据,并分析哪些条件有助于形成“成分过冷”。

“固相无扩散,液相只有有限扩散”条件下“成分过冷”的判据:00(1)LLG m C K R D K-<下列条件有助于形成“成分过冷”:(1)液相中温度梯度G L小,即温度场不陡。

(2)晶体生长速度快(R大)。

(3)液相线斜率m L大。

(4)原始成分浓度C0高。

(5)液相中溶质扩散系数D L低。

(6)K0<1时,K0小;K0>1时,K0大。

7 写出成分过冷判别式(在“固相无扩散,液相为有限扩散”条件下),讨论溶质原始含量C0、晶体生长速度R、界面前沿液相中的温度梯度GL对成分过冷程度的影响,并以图示或文字描述它们对合金单相固溶体结晶形貌的影响。

答:成分过冷判别式为:00(1)L lG m C KR K-<;(1)随着C0增加,成分过冷程度增加;(2)随着R增加,成分过冷程度增加;(3)随着GL减小,成分过冷程度增加;如图所示,当C0一定时,GL减小,或R增加,晶体形貌由平面晶依次发展为胞状树枝晶、柱状树枝晶、等轴树枝晶;而当GL、R一定时,随C0的增加晶体形貌也同样由平面晶依次发展为胞状树枝晶、柱状树枝晶、等轴树枝晶。

相关文档
最新文档