线性代数试题库(1)答案
线性代数试题库(1)答案
线性代数试题库(1)答案一、选择题:(3×7=21分)1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。
A ij =(-1) n M ij C 。
A ij =(-1)j i +M ij D 。
A ij =-M ij2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A ) A . 当m < n 时,有非零解 B .当m > n 时,无解C .当m=n 时,只有零解D .当m=n 时,只有非零解 3.在n 维向量空间V 中,如果σ,τ∈L (V )关于V 的一个基{n αα,,1 }的矩阵分别为A ,B.那么对于a ,b ∈F ,a σ+b τ关于基{n αα,,1 }的矩阵是( C ) A .A+B B .aA+B C .aA+bB D .A+Bb 4.已知数域F 上的向量321,,ααα 线性无关,下列不正确的是( D )A 1α,2α线性无关B .32,αα线性无关C .13,αα线性无关D .321,,ααα中必有一个向量是其余向量的线性组合。
5.R n 中下列子集,哪个不是子空间( C ) A .RnB .∑===∈ni i i n a n i R a a a 11}0,,1,|),,{(且C .∑===∈ni i i n a n i R a a a 11}1,,1,|),,{(且 D .{0}6.两个二次型等价当且仅当它们的矩阵( A )A 。
相似B .合同C .相等D .互为逆矩阵 7.向量空间R 3的如下变换中,为线性变换的是( C )A .)1,1|,(|),,(1321x x x x =σB .),,1(),,(321321x x x x x x +=σC .)0,,(),,(32321x x x x x =σD .),,(),,(232221321x x x x x x =σ二.填空题(3X10=30分)1.当且仅当k=(-1或3)时,齐次线性方程组⎪⎩⎪⎨⎧=++=+-=++09030322132`1321x k x x kx x x x x x 有非零解2.设A=()0,,,0321321≠=≠⎪⎪⎪⎭⎫ ⎝⎛b b b B a a a ,则秩(AB )为(1)。
线性代数试题1及答案
线性代数试题1及答案一. 填空题(每空3分,共15分)1. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111c b a c b a c b a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111d b a d b a d b a B 且4=A ,1=B 则=+B A 20 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围是44 t -3. A 为3阶方阵,且21=A ,则=--*12)3(A A 2716-4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是0,21====n n λλλ5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 n二. 选择题(每题3分,共15分)6. 设线性方程组⎪⎩⎪⎨⎧=+=+--=-0322313221ax cx bc bx cx ab ax bx ,则下列结论正确的是(A ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则(C )成立(A) B A B A +=+ (B) BA AB =(C) BA AB = (D) 111)(---+=+B A B A8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=331332123111131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P 则(C )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB (D ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ⨯矩阵,r A r =)(<n ,那么A 的n 个列向量中(B ) (A )任意r 个列向量线性无关 (B) 必有某r 个列向量线性无关(C) 任意r 个列向量均构成极大线性无关组(D) 任意1个列向量均可由其余n -1个列向量线性表示三. 计算题(每题7分,共21分)11. 设⎪⎪⎪⎭⎫⎝⎛=300041003A 。
线性代数习题1(附答案)
线性代数复习题1(广工卷)一.填空题(每小题4分,共20分) 1.设五阶矩阵 123230,2A A A A A ⎡⎤=⎢⎥⎣⎦是3阶方阵,122,1A A ==,则 A = .2.设 123,,a a a 线性无关,若 112223331,,b a ta b a ta b a ta =+=+=+ 线性无关,则 t 应满足条件 .3.向量组112α⎛⎫⎪= ⎪⎪⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛-=113β,⎪⎪⎪⎭⎫ ⎝⎛-=201γ线性 关4.如果矩阵 14000400x x x x A x xx ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭是不可逆的, 则 x = . 5.设 n 阶(3n ≥)矩阵 1111a a a a a a A aa a a aa⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭的秩为 1n -, 则 a 必为 二.单项选择题(每小题4分,共20分)1. 设 ,A B 为同阶可逆矩阵, 则 ( ) (A) .A B B A = (B) 存在可逆矩阵 ,P 使 1.P AP B -= (C) 存在可逆矩阵,C 使 .TC AC B = (D)存在可逆矩阵P 和,Q 使 .PAQ B = 2.设A,B 都是n 阶非零矩阵,且 0A B =,则A 与B 的秩是 ( ). (A) 必有一个等于零. (B) 都小于n.(C) 都等于n. (D) 一个小于n, 一个等于n.3. 设n 元齐次线性方程组 0A x =中 ()R A r =, 则0A x = 有非零解的充要条件是 ( )(A) r n =. (B) r n ≥. (C) .r n < (D) .r n >4. 若 向量组,,a b c 线性无关,,,a b d 线性相关, 则 ( )(A) a 必可由 ,,b c d 线性表示. (B) b 必不可由 ,,a c d 线性表示. (C) d 必可由 ,,a b c 线性表示. (D) d 必不可由 ,,a b c 线性表示.5. 设⎪⎪⎭⎫ ⎝⎛=1011A ,则12A 等于 ( ) (A ) ⎪⎪⎭⎫ ⎝⎛1101111 (B ) ⎪⎪⎭⎫ ⎝⎛10121 (C ) ⎪⎪⎭⎫ ⎝⎛11121(D ) ⎪⎪⎭⎫⎝⎛1201212三.(14分) 设 3521110513132413D --=----D 的(,)i j 元的余子式和代数余子式依次记作,,ij ij M A 求11121314112131.A A A A M M M M ++++++及 四. (10分) 已知 21311122,20,13225A B --⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦求 X AX B =使.五.(10分) 判定下列向量组的线性相关性, 求出它的一个极大线性无关组, 并将其余向量用极大线性无关组线性表示.()()()()()123451,1,2,4,0,3,1,2,3,0,7,141,2,2,0,2,1,5,10a a a a a =-===-=六.(10分) 用基础解系表示下面方程组的全部解:12341234123422124522x x x x x x x x x x x x a+-+=⎧⎪+++=⎨⎪++-=⎩七(16分) 已知A 是n 阶方阵,且满足 220(A A E E +-=是n 阶单位阵). (1) 证明 A E + 和 3A E - 可逆,并求逆矩阵; (2) 证明 2A E +不可逆线性代数复习题1(广工卷)一.填空题(每小题4分, 共24分) 1.144。
线性代数复习题部分参考答案
线性代数复习题部分参考答案线性代数试题(一) 一、填空题(每小题4分)1.行列式4100031000210001的值 242.设a b 为实数,则当a= 0 且b= 0 时,10100--a b b a =03.10111111)(-=x x f 中,x 的一次项系数是 -1 4.已知矩阵A 3×2 B 2×3 C 3×3,则B A ⋅为 3 × 3 矩阵 5.A 为n 阶方阵,且d A =,则A K ⋅=d K n ⋅ 二、选择题(4分/题) 1.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3.用一初等矩阵左乘一矩阵B ,等于对B 施行相应的 ① 变换 ①行变换 ②列变换 ③既不是行变换也不是列变换4.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④25.向量组r ααα⋅⋅⋅21线性无关的充要条件是 ②①向量组中不含0向量 ②向量组的秩等于它所含向量的个数 ③向量组中任意r -1个向量无关 ④向量组中存在一个向量,它不能由其余向量表出 6.向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t7.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②设解 ③只有0解 ④有非0解8.当K= ④ 时,(2. 1. 0. 3)与(1. -1. 1. K )的内积为2 ①-1 ②1 ③23 ④329.已知A 2=A ,则A 的特征值是 ③①λ=0 ②λ=1 ③λ=0或=λ1 ④λ=0和λ=110.1111111111111111b a a +-+的值为 ④ ①1 ②0 ③a ④-a 2b线性代数试题(二)一、填空题(4分/题)1.行列式21064153247308021的值为 0 2.二次型yz xy z y x yz x f 222)(2221-+-+=对应的实对称矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---110121011 3.10110111)(--=x x f 中x 的一次项系数是 -14.已知A 为3×3矩阵,且A =3,则A 2= 24二、选择题(4分/题) 1.下列各式中 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3. 向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t4.齐次线性方程组Ax=0是Ax=B 的导出组则①Ax=0只有零解,Ax=B 有唯一解 ②Ax=0有非零解,Ax=B 有无穷多解 ③U 是Ax=0的通解,X0是Ax=B 的一个解,则X0+U 是Ax=B 的通解 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα线性代数试题(三) 一、填空题(4分/题)1.向量)1.0.0.1(=α )0.1.1.0(-=β,则2βα+= (2. 1. -1. 2)2.设aER bER ,则当a= 0 ,b= 0 时10100b a a b -=03.10111111)(-=x x f 中,x 的一次项系数是 1 4.已知A 为3×3矩阵,且1=A ,则A 2= 85.已知A3×3 B3×2 C2×4,则矩阵A.B.C 为 3 × 4 矩阵6.用一初等矩阵右乘矩阵C ,等价于对C 施行 初等列变换7.向量组γααα⋅⋅⋅21.可由向量组s βββ⋅⋅⋅21线性表示且γααα⋅⋅⋅21.线性无关则 s ≤γ 8.如果线性方程组Ax=B 有解则必有)(A γ=)~(A γ9.行列式1111141111311112的值为 6 10.当K= 2 时(1. 0. 0. 1)与(a. 1. 5. 3)的内积为5 二、选择题(4分/题)1.已知矩阵满足A 2=3A ,则A 的特征值是 ③ ①λ=1 ②λ=0 ③λ=3或λ=0 ④λ=3和λ=02.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②没解 ③只有零解 ④有非0解3.矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④2 4.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②D 中对角线上元素全为0 ③D 中有两行含有相同的公因子 ④D 中有一行元素与另一行元素对应成比例 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα三、复习题及参考答案1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 12 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=⎽⎽⎽⎽1⎽⎽⎽。
线性代数试题(完整试题与详细答案)
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数期末试卷及答案1
2 线性代数(必修) A 卷(答案写在答题纸上,写在试题纸上无效)一、填空题(每小题3分,共15分) 1. .已知行列式12121a a b b =,12123a a c c =,则121122a abc b c --=______.2. 设A 为2阶矩阵,且3=A ,则13--A =______.3. 齐次线性方程组123230x x x ++=的基础解系所含解向量的个数为______.4. 设3阶矩阵A 的特征值为-1,0,2,则|A |=______.5. 设向量α=(3,-4)T ,则α的长度||α||=______. 二、选择题(每小题3分,共15分)1. 设a ,b 为实数,且000101abb a -=--,则必有( )(A )a =0,b =0 (B) a =1,b =0 (C) a =0,b =1 (D) a =1,b =1 2. 设4阶矩阵A 的元素均为3,则r(A )= ( )(A )1 (B )2 (C )3 (D ).4 3. 设A 为m ×n 矩阵,A 的秩为r ,则( )A. r =m 时,Ax =0必有非零解B. r =n 时,Ax =0必有非零解C. r <m 时,Ax =0必有非零解D. r <n 时,Ax =0必有非零解 4. 下列命题中错误..的是( ) (A )只含一个零向量的向量组线性相关;(B )由3个2维向量组成的向量组线性相关; (C )由一个非零向量组成的向量组线性相关; (D )两个成比例的向量组成的向量组线性相关5. 若向量α=(1,1,t )与β=(1,1,1)正交,则t =( ) A. 0 B. -1 C. -2 D. 1 三、 计算题(本题60分)1.(10分)计算4阶行列式1234234134124123D =。
课程考试试题学期 学年拟题人:校对人:拟题学院(系): 适 用 专 业:2.(10分)已知矩阵112012435A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,112210B --⎡⎤=⎢⎥⎣⎦ (1)求1A -;(2)解矩阵方程XA B =。
大学线性代数试题及答案
线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC=,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_____________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫⎝⎛=-1230120011A ,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()T k 11=α与()T 121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8- C.34D.34- 3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
c)(A *kA)(B *A k n )(C *-A k n 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
华中科技大学线性代数试题及答案 (1)
第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数试题及答案
线性代数试题及答案 线性代数是数学的重点知识,多进⾏试题练习提⾼⾃⼰的能⼒。
以下是由店铺整理线性代数试题及答案,希望⼤家喜欢! 线性代数试题及答案(⼀) 说明:在本卷中,AT表⽰矩阵A的转置矩阵,A*表⽰矩阵A的伴随矩阵,E表⽰单位矩阵。
表⽰⽅阵A的⾏列式,r(A)表⽰矩阵A的秩。
⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分) 在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错癣多选或未选均⽆分。
1.设3阶⽅阵A的⾏列式为2,则 ( )A.-1B. C. D.1 2.设则⽅程的根的个数为( )A.0B.1C.2D.3 3.设A为n阶⽅阵,将A的第1列与第2列交换得到⽅阵B,若则必有( ) A. B. C. D. 4.设A,B是任意的n阶⽅阵,下列命题中正确的是( ) A. B. C. D. 5.设其中则矩阵A的秩为( )A.0B.1C.2D.3 6.设6阶⽅阵A的秩为4,则A的伴随矩阵A*的秩为( )A.0B.2C.3D.4 7.设向量α=(1,-2,3)与β=(2,k,6)正交,则数k为( )A.-10B.-4C.3D.10 8.已知线性⽅程组⽆解,则数a=( ) A. B.0 C. D.1 9.设3阶⽅阵A的特征多项式为则 ( )A.-18B.-6C.6D.18 10.若3阶实对称矩阵是正定矩阵,则A的3个特征值可能为( )A.-1,-2,-3B.-1,-2,3C.-1,2,3D.1,2,3 ⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分) 请在每⼩题的空格中填上正确答案。
错填、不填均⽆分。
11.设⾏列式其第3⾏各元素的代数余⼦式之和为__________. 12.设则 __________. 13.设A是4×3矩阵且则 __________. 14.向量组(1,2),(2,3)(3,4)的'秩为__________. 15.设线性⽆关的向量组α1,α2,…,αr可由向量组β1,β2,…,βs线性表⽰,则r与s的关系为__________. 16.设⽅程组有⾮零解,且数则 __________. 17.设4元线性⽅程组的三个解α1,α2,α3,已知则⽅程组的通解是__________. 18.设3阶⽅阵A的秩为2,且则A的全部特征值为__________. 19.设矩阵有⼀个特征值对应的特征向量为则数a=__________. 20.设实⼆次型已知A的特征值为-1,1,2,则该⼆次型的规范形为__________. 三、计算题(本⼤题共6⼩题,每⼩题9分,共54分) 21.设矩阵其中均为3维列向量,且求 22.解矩阵⽅程 23.设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(3,2,-1,p+2)T问p为何值时,该向量组线性相关?并在此时求出它的秩和⼀个极⼤⽆关组. 24.设3元线性⽅程组 , (1)确定当λ取何值时,⽅程组有惟⼀解、⽆解、有⽆穷多解? (2)当⽅程组有⽆穷多解时,求出该⽅程组的通解(要求⽤其⼀个特解和导出组的基础解系表⽰). 25.已知2阶⽅阵A的特征值为及⽅阵 (1)求B的特征值; (2)求B的⾏列式. 26.⽤配⽅法化⼆次型为标准形,并写出所作的可逆线性变换. 四、证明题(本题6分) 27.设A是3阶反对称矩阵,证明|A|=0. 线性代数试题及答案(⼆)【线性代数试题及答案】。
线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx
A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。
线性代数习题1(附答案)
线性代数复习题1(广工卷)一.填空题(每小题4分,共20分) 1.设五阶矩阵 123230,2A A A A A ⎡⎤=⎢⎥⎣⎦是3阶方阵,122,1A A ==,则 A = .2.设 123,,a a a 线性无关,若 112223331,,b a ta b a ta b a ta =+=+=+ 线性无关,则 t 应满足条件 .3.向量组112α⎛⎫⎪= ⎪⎪⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛-=113β,⎪⎪⎪⎭⎫ ⎝⎛-=201γ线性 关4.如果矩阵 14000400x x x x A x xx ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭是不可逆的, 则 x = . 5.设 n 阶(3n ≥)矩阵 1111a a a a a a A aa a a aa⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭的秩为 1n -, 则 a 必为 二.单项选择题(每小题4分,共20分)1. 设 ,A B 为同阶可逆矩阵, 则 ( ) (A) .A B B A = (B) 存在可逆矩阵 ,P 使 1.P AP B -= (C) 存在可逆矩阵,C 使 .TC AC B = (D)存在可逆矩阵P 和,Q 使 .PAQ B = 2.设A,B 都是n 阶非零矩阵,且 0A B =,则A 与B 的秩是 ( ). (A) 必有一个等于零. (B) 都小于n.(C) 都等于n. (D) 一个小于n, 一个等于n.3. 设n 元齐次线性方程组 0A x =中 ()R A r =, 则0A x = 有非零解的充要条件是 ( )(A) r n =. (B) r n ≥. (C) .r n < (D) .r n >4. 若 向量组,,a b c 线性无关,,,a b d 线性相关, 则 ( )(A) a 必可由 ,,b c d 线性表示. (B) b 必不可由 ,,a c d 线性表示. (C) d 必可由 ,,a b c 线性表示. (D) d 必不可由 ,,a b c 线性表示.5. 设⎪⎪⎭⎫ ⎝⎛=1011A ,则12A 等于 ( ) (A ) ⎪⎪⎭⎫ ⎝⎛1101111 (B ) ⎪⎪⎭⎫ ⎝⎛10121 (C ) ⎪⎪⎭⎫ ⎝⎛11121(D ) ⎪⎪⎭⎫⎝⎛1201212三.(14分) 设 3521110513132413D --=----D 的(,)i j 元的余子式和代数余子式依次记作,,ij ij M A 求11121314112131.A A A A M M M M ++++++及 四. (10分) 已知 21311122,20,13225A B --⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦求 X AX B =使.五.(10分) 判定下列向量组的线性相关性, 求出它的一个极大线性无关组, 并将其余向量用极大线性无关组线性表示.()()()()()123451,1,2,4,0,3,1,2,3,0,7,141,2,2,0,2,1,5,10a a a a a =-===-=六.(10分) 用基础解系表示下面方程组的全部解:12341234123422124522x x x x x x x x x x x x a+-+=⎧⎪+++=⎨⎪++-=⎩七(16分) 已知A 是n 阶方阵,且满足 220(A A E E +-=是n 阶单位阵). (1) 证明 A E + 和 3A E - 可逆,并求逆矩阵; (2) 证明 2A E +不可逆线性代数复习题1(广工卷)一.填空题(每小题4分, 共24分) 1.144。
线性代数试题库
题号
一
二
三
四
五
六
总分
得分
评卷人
一、选择题:(3X5=15 分)
1.n 阶行列式 D 的元素 a ij 的余子式 M ij 与 a ij 的代数余子式 A ij 的关系 是( C )
A . A ij =M ij
B。 A ij =(-1)
M n ij
C。A ij =(-1) i
M j ij
D。 A ij =-M ij
22
1,1 T 分别单位化,得 1
T
22
,
,
22
3.设二次型 f ( x1 , x2 , x3 )
x12
2
x
2 2
5x32
2x1 x2
2x1 x3
6x2x3 ,回答下列问题:
(1)将它化为典范型。
(2)二次型的秩为何?
(3)二次型的正、负惯性指标及符号差为何?
(4)二次型是否是正定二次型?
( 10 分)
线性代数试题库( 1)答案
题号
一
二
三
四
五
六
总分
得分
评卷人
一、选择题:(3×7=21 分) 1.n 阶行列式 D 的元素 a ij 的余子式 M ij 与 a ij 的代数余子式 A ij 的关系是( C )
A . A ij =M ij B。 A ij =(-1) n M ij C。A ij =(-1) i j M ij D。A ij =-M ij 2.设 A 是数域 F 上 m x n 矩阵,则齐次线性方程组 AX=O ( A ) A . 当 m < n 时,有非零解 B.当 m > n 时,无解 C.当 m=n 时,只有零解 D.当 m=n 时,只有非零解 3.在 n 维向量空间 V 中,如果 , L(V )关于 V 的一个基 { 1 , , n } 的矩阵分别为 A ,B.那么对于 a,b F,
线性代数考试题库及答案(一)
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
大一线性代数试卷1含答案
111
3. 设 A 为方阵,满足 A2 A 2E 0 ,则 A1 _________。 4. A, B,C 同阶方阵, A 0 ,若 AB AC ,必有 B C ,则 A 应为_______矩阵。
5. 设 A 为 n 阶方阵, Ax 0 有非零解,则 A 必有一个特征值为_________。
2 2 4
3 1 3
X
2 5
13
1 2 3
3 0 1
求X ?
四. (10 分)设向量组 A:
1 1,4,1,0,2 2,1,1,3,3 1,0,3,1,4 0,2,6,3
求向量组 A 的秩及一个最大无关组.
五. 12 分)讨论方程组的解的情况
x1 x1
x2 x2
x3 x3
9. 二次型 f 5x2 6 y2 4z2 4xy 4xz 的正定性为________。
1 10.若 A 2
0 2
1 3 ,且
RA
3
,则 t
_________。
1 3 t
二. (8 分)计算 2n 阶行列式
a
b
a
0
b
0
ab
0
D2n
cd
c
0
d
c
d
三. (8 分)解矩阵方程
1 2 3
1 (1, 1, 0)T 2
3
3
3, 2 2,2
2
(0,
1, 1)T
,标准化3
1 (0, 1, 1)T 2
因而 P (1 ,2 ,3 ) ,且 f 3 y22 3 y32
九. 令
1
2
3
n
1 1 1 1
2 2
2
考研线性代数习题及答案(一)
考研线性代数基础习题及答案(一)1.计算下列二阶行列式:.计算下列二阶行列式: (1)3125--; (2)log 11log a b b a )1b ,a 0,¹>且(b a ;(3)x x y x yx+-; (4)21111t t t +-+. 解:1)= (-3)×5-(-1)×2=-132)=log log 10b aa b ×-= 3)=22()()x x y x y y -+-= 4)=(t +1)(t 2-t +1)-1=t 32.计算下列三阶行列式:.计算下列三阶行列式: (1)111101112---; (2)12111516312---; (3)0230ba cbc a-; (4)111c b ca b a---. 解:1) =1×0×(-2)+1×1×(-1)+(-1)×1×1-(-1)×0×(-1)-1×1×1-(-2)×1×1=-1 2) =1×15×(-2)+2×16×3+(-1)×(-1)×1-(-1)×15×3-16×1×1-(-2)×2×(-1)=92 3) =2()30000b c ac a b c abc ´´+-´´+---= 4) =22222211abc abc b a c a b c +-+++=+++3.求下列各排列的逆序数,并说明它们的奇偶性:.求下列各排列的逆序数,并说明它们的奇偶性: (1)264315; (2)542163. 解:1)6G = 偶排列偶排列 2)9G = 奇排列奇排列4.确定i 和j 的值,使得9级排列级排列 (1)1 2 7 4 i 5 6 j 9成偶排列;成偶排列;(2)3 9 7 2 i 1 5 j 4成奇排列. 解:1)当8,3i j ==时成偶排列时成偶排列 2)当8,6i j ==时成奇排列时成奇排列5.利用行列式定义计算下列行列式.利用行列式定义计算下列行列式(1)010010100101001D =; (2)12340000000000a a D a a =. 解:1)(2143)21124334(1)1D a a a a G =-= 2)(2143)142332411234(1)D a a a a a a a a G=-=6.利用行列式性质计算下列行列式:.利用行列式性质计算下列行列式:(1)313023429722203-; (2)3211040220110102;(3)1234234134124123; (4)213131071242115-----. (5)xy x y y x y x x yxy+++; (6)222a b c a b c b c a b cac a b++++++. 解:1) =312103430455223121--=-=--- 2) =10100002602100302=--3) =100010001113110010101601222124411111104-==-------- 4) =10001001138100085521005725401151143==------5) =00x x x y x x y yx y x x y x xx y y x y +++++=0000xyx y y x x y x y y x y x yx y x-++--- 332()x yxyx y x y xy x x y y =+=-+-+-6) =222a b c a bc b c a b c a c a b++++++ =22a b ca b c a b c c b c ab ca c ab ++------++++ 111()22a b c cb c ab cac a b--=++++++=111()022022a b c b c a b c a c c a b --++++++++ 111()0()022a b c a b c a b a cc a b--=++++-++++ =32()a b c ++7.计算下列行列式:.计算下列行列式:(1)1123103230n n nD --=--;(2)111222121212n n n n a a a n a a a nD a a a n++++++=+++(n ≥2);(3)11221110001100011000010011n n n n a a a a D a a a +-----=---;(4)0121111111000101210001n i n na a a D a i n a a +-=¹=(其中0,,,,,).解:1) 10001200!1n D n n-==-2) 1°当n =2时,12n D a a =-2°当n >2时,11111222222122120212n nn n n n a a a n a a na a a n a a n D a a a na a n++++++++=+=++++3) 110000110000110010001000011n D+--==-4) 01211201111110000000010000nn n i i n na a a D a a a a a a a +=-æö==-ç÷èøå8.解方程:.解方程:(1)2212134526032113212x x ---=--+-- (2)11001()01001x y z x x y z y z=其中、、均为实数. 解:1)22(9)(1)0x x --=3x =±或1x =± 2)22211x y z ---=0x y z ===9.用克拉默法则解下列线性方程组:.用克拉默法则解下列线性方程组: (1)123123133243421132411x x x x x x x x x --=ìï+-=íï-+=î(2)1234123423412342513232222420x x x x x x x x x x x x x x x -++=ìï++-=ïí++=-ïï-++=î解:1)1234112412141142311234111124311432113,,1211211211342342342324324324x xx --------====------------2) 12251115112111113121311231032223220222214201422042D D D -----===----34251125111121113243220322211214D D ----==---- 312412341,0,,1DDDDx x x x DDDD\=======-10.k 取何值时,下面的方程组仅有零解?取何值时,下面的方程组仅有零解?(1)320720230x y z kx y z x y z +-=ìï+-=íï-+=î(2)0020kx y z x ky z x y z ++=ìï+-=íï-+=î解:1) ) 当当32163725630,,5213kk k --=-¹¹-即时仅有零解仅有零解2) ) 当当1111(1)(4)0,14,211kk k k k k -=+-¹¹¹-即且时仅有零解仅有零解(B )1.填空题.填空题 (1)设1234134()124123x f x x x=,则方程f (x )=0的根为____________; (2)1111111111111111xx y y +-+-=________________;(3)设行列式3040222207005322--,则第四行各元素余子式之和的值为__________;(4)n 阶行列式阶行列式00010000001n a a D a a==__________ (5)设n 阶行列式阶行列式13521120010301n n D n-=则D n 的第一行各元素的代数余子式之和11121n A A A +++= ______________. 解:1) ()(2)(3)(4)0f x x x x =---= 2,3,4x x x \===2) =22x y 3) -284) 2nn a a--5) 21!(1)nk nk =-å2.选择题.选择题(1)下列行列式中,不等于零的是()下列行列式中,不等于零的是( ). A .1231110.50.50.5---B. 1231110.5 1.5 2.5 C. 1531210.54 2.5D. 111412125---- (2)已知2122231112132122233111321233133132331121122213232223322a a a a a a a a a m a a a a a a a a a a a a a a a =---+++,则=( ). A .6m B .-6m C .12m D .-12m(3)多项式10223()71043173x x x f x x-=--中的常数项是(中的常数项是( ). A .3 B .-3 C .15 D .-15 (4)设行列式1234123412341234()a a a a x a a a x a f x a a xa a a xa a a --=--,则方程()f x =0的根为(的根为(). A .1234,a a a a ++ B .12340,a a a a +++ C .1234,a a a a --D .12340,a a a a ----(5)n 阶行列式D n 为零的充分条件是(为零的充分条件是( ). A .主对角线上的元素全为零.主对角线上的元素全为零B .有(1)2n n -个元素都等于零个元素都等于零 C .至少有一个(n -1)阶子式为零)阶子式为零D .所有(n -1)阶子式均为零)阶子式均为零 解:D 、A 、A 、B 、D 3.证明:32222()22a b c a a b b c a b a b c ccc a b----=+---. 证明证明: : : 左左=111()2222a b c bb c a bc cc a b++---- 33111()00()0a b c b c aa b c c a b=++---=++---4.证明:1111111112222222222a bb cc aa b c a b b c c a a b c a b b c c a a b c ++++++=+++. 解:11111111112222222222ab c c a b b c c a ab c c a b b c c a a b c c a b b c c a ++++=+++++++++左 =1112222ab cab c a b c5.计算下列n 阶行列式:阶行列式:(1)0000100002001000000nD n n=-; (2)123121221321321221n n n n n D n n nn n ---=---- ; (3)210001210000021012n D ---=--;(4)12323413452121n n D n n =-. 解:解: 1) (1)(2)((1),(2)1,)2(1)!(1)!n n n n nnD n n --G --=-=-2) 11111111110222111120022211111nn n n n Dn n n ------------=--=---12(1)2(1)n nn --=-+3) 100000210001200100012n D n ---=--=+-- 4) 1231341(1)145221111n n n n D n +=- =1230111(1)01112111n n n n n-+-(1)12(1)(1)2n n n n n +-+=-×6.用数学归纳法证明.用数学归纳法证明2112122222122122121111n n n n n n na a a a a a a a a a D a a a a a a a a ++==++++12cos sin(1)sin n q qq+=2cos sin 3sin q q q==sin(1)sin k qq=sin(2)sin k qq=又又111x x x =解:211112122212111()1n n i j j i n n nn n a a a a a a D a a a a a --£££-==-Õ123,0n D D D x D ===== 11231,0n D x x x x D \======10.若齐次线性方程且.若齐次线性方程且1234123412341234020300x x x ax x x x x x x x x x x ax bx +++=ìï+++=ïí+-+=ïï+++=î有非零解,则a 、b 应满足什么条件?应满足什么条件?解:当11112110113111a a b =-即2(1)4a b +=时,方程组有非零解方程组有非零解..。
线性代数练习题及答案解析(一)
线性代数练习题及答案解析(一)一、行列式1、排列25341的逆序数为 7 ;2、排列643125的逆序数是 9 ;3、方程211123049x x =的根为 2,3 ;(范德蒙行列式) 4、行列式D=162021304---中,元素-3的代数余子式是( A )(A )10 (B )2 (C )-10 (D )-2 考点:代数余子式定义5、(1)三阶行列式det()ij D a =中含有因子1322a a 的项为 132231-a a a ,含有因子1223a a 的项为 122331a a a . 考点:行列式展开式的定义规则(2)四阶行列式det()ij D a =中含有因子1123a a 的项为 12233144a a a a 或12233441-a a a a .6、设n 阶行列式60D =,且D 中的每列的元素之和为6,则D 中的第三行的代数余子式之和为 10 .考点:行列式的性质6,行列式按行(列)展开7、(1)设n 阶行列式det()ij D a =,j i A 是D 中元素j i a 的代数余子式,则下列各式中正确的是( C ). 考点:行列式按自己的行(列)展开等于行列式,如行(列)与代数余子式的行(列)不一致则等于零。
A 、10nijij i aA ==∑;B 、10nijij j aA ==∑; C 、1nijij j aA D ==∑; D 、121ni i i aA D==∑(2)若4阶行列式D 中第2行的元素212223242,1,3,0,a a a a ====余子式212M =,2223241,3,0M M M ===则D= -12 .注意:代数余子式与余子式的区别。
行列式的展开只与代数余子式有关。
(3)若3阶行列式D 中第1行的元素1112133,2,5,a a a ===代数余子式114A =,12131,2,A A =-=则D= 20 .8、行列式112233440000000a b a b b a b a =( B )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数试题库(1)答案
一、选择题:(3×7=21分)
1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。
A ij =(-1) n M ij C 。
A ij =(-1)j i +M ij D 。
A ij =-M ij
2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A ) A . 当m < n 时,有非零解 B .当m > n 时,无解C .当m=n 时,只有零解D .当m=n 时,只有非零解 3.在n 维向量空间V 中,如果σ,τ∈L (V )关于V 的一个基{n αα,,1Λ}的矩阵分别为A ,B.那么对于a ,b ∈F ,a σ+b τ关于基{n αα,,1Λ}的矩阵是( C ) A .A+B B .aA+B C .aA+bB D .A+Bb 4.已知数域F 上的向量321,,ααα 线性无关,下列不正确的是( D )
A 1α,
2α线性无关 B .32,αα线性无关 C .13,αα线性无关 D .321,,ααα中必有一个向量是其余向量的线性组合。
5.R n 中下列子集,哪个不是子空间( C ) A .R
n
B .∑===∈n
i i i n a n i R a a a 1
1}0,,1,|),,{(且ΛΛ
C .∑===∈n
i i i n a n i R a a a 1
1}1,,1,|),,{(且ΛΛ D .{0}
6.两个二次型等价当且仅当它们的矩阵( A )
A 。
相似
B .合同
C .相等
D .互为逆矩阵 7.向量空间R 3的如下变换中,为线性变换的是( C ) A .)1,1|,(|),,(1321x x x x =σ
B .),,1(),,(321321x x x x x x +=σ
C .)0,,(),,(32321x x x x x =σ
D .),,(),,(2322
21321x x x x x x =σ 二.填空题(3X10=30分)
1.当且仅当k=(-1或3)时,齐次线性方程组⎪⎩⎪
⎨⎧=++=+-=++0
9030
322132`1321x k x x kx x x x x x 有非零解
2.设A=()0,,,0321321≠=≠⎪⎪⎪
⎭
⎫
⎝⎛b b b B a a a ,则秩(AB )为(1)。
3.向量(x ,y ,z )关于基(0,1/2,0),(1/3,0,0),(0,0,1/4)的坐标为 。
4.设向量空间F 2的线性变换
=--=+=),)((),0,(),(),,(),(,21212122121x x x x x x x x x x x τστστσ则为(2x 1,x 2)。
5.已知V={}02|),,,(4214321=-+x x x x x x x ,则dimV=(3)。
6.已知实矩阵A= 是正交阵,则b=(0)。
7.设,,V 43214321,,,ααααααααα--+=的一个标准正交基是四维欧氏空间
()()().1),(,6,3,,2||,321=⎪⎭
⎫
⎝⎛==〉〈=-+=βαπθβαβαααααβd 的夹角与则
三、计算题
1.求矩阵方程的解 ⎪⎪⎭
⎫
⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛3113101121101x , (10分) )0(,3131>⎪
⎪⎪⎪⎭⎫
⎝⎛a
b a ⎪
⎭⎫
⎝
⎛41,21,31。