随机过程简史
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H a r b i n I n s t i t u t e o f T e c h n o l o g y
课程设计(论文)
课程名称:应用随机过程
设计题目:随机过程简史
院系:电气工程学院
班级:11S0104
设计者:孙延博
学号:11S001070
指导教师:田波平
设计时间:2011-10-23
随机过程简史
摘要
本文简要地介绍了随机过程从20世纪初创立至今,100年的发展历程考察了导致随机过程产生的历史契机,以及早期数学家在这方面作出的杰出工作。并简要介绍了随机过程的概念,研究方法
和研究内容,在现代工程技术领域的应用。
关键词:随机过程平稳随机过程平稳随机序列
1.随机过程的概念研究方法及研究内容
随机过程是现代概率论研究的一个重要分支。数学上的随机过程是由实际随机过程概念引起的一种数学结构。人们研究这种过程,是因为它是实际随机过程的数学模型,或者是因为它的内在数学意义以及它在概率论领域之外的应用。数学上的随机过程可以简单的定义为一组随机变量,即指定一参数集,对于其中每一参数点t指定一个随机变量x(t)。如果回忆起随机变量自身就是一个函数,以ω表示随机变量x(t)的定义域中的一点,并以x(t,ω)表示随机变量在ω的值,则随机过程就由刚才定义的点偶(t,ω)的函数以及概率的分配完全确定。如果固定t,这个二元函数就定义一个ω的函数,即以x(t)表示的随机变量。如果固定ω,这个二元函数就定义一个t的函数,这是过程的样本函数。由于物理学生物学,通讯和控制管理科学等学科的需要随机过程逐步发展起来的。马尔柯夫最早研究了随机过程。研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、停时和随机微分方程等;另一类是分析的方法,其中用到测度轮、微分方程、半群理论、函数堆和希尔伯特空间等。实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔可夫过程、概率与位势及各种特殊过程的专题讨论等。中国学者在平稳过程、马尔科夫过程、鞅论、极限定理、随机微分方程等方面做出了较好的工作。
2.随机过程的历史
1900年,Bachelier在分析股票市场波动时.发现了随机过程的一个重过程——独立增量过程的特恻。1905年,物理学家Einstein在研究Brown运动时,也遇到了相同的过程.1923年,Wiener 给出了Brown运动的数学描述- wiener过程。
Lunbderg在1903年研究一个保险公司所承担索赔累计数的变化规律时.导出了另一类型的随机过程——Lundberg过程。而众所周知、应用甚广的Poisson过程是当所有得付出的索赔总数中每一笔数目都相同时的Lundberg过程。
1909年,Erlang在研究电话业务时引入了Poisson过程,并被物理学家Rutherford和Geiger用于分析放射性蜕变。这些早期对随机过程的研究都是同实际问题紧密联系在一起的。虽然在数学上用了不太严密的方法,却表现出了直观处理这些概念和方法的绝妙能力。
系统地严密地研究随机过程始于本世纪30年代。1931年,柯尔莫哥洛夫发表了一篇极有影响的论文《概率论的解析方法》,他进行了一般性的马氏过程的研究。马氏过程为经典的马尔柯夫链概念的自然推广,得到著名的向前方程。这一工作为揭示概率论同二阶偏微分方程之间的联系莫定了基础。在这之前,物理学家Plank曾建立过抛物型方程同马氏链及直线上的马尔柯夫游动的联系,得到部分的结果。柯尔莫哥洛夫的结论更完善,并广泛地应用于物理生物,化学以及工程技术方面。
时齐独立增量过程是拇尔莫哥格夫在1932年的工作中得到的。它使得wiener过程和Lunbdberg 风险过程成为特例。
1934年,苏联数学家辛欣发表了平稳过程的奠基性文章,而且指出当系统的过去的历史对未来发展有本质影响的情况下。马氏过程是不能描述的。平稳过程的发现为统计力学,气象和经济学等领域找到一个台适的数学模型,特别是为显示出周期性行为趋向的现象的研究以及应用于信息论开辟了前景。
1944年.柯尔莫哥洛夫对离散时问的平稳过程进行了研究.发现具有二阶矩的所有随机变量组成一个Hilbert空间,而离散时间的随机过程就成为其中的一个点序列。对于随机变量的平稳序列,柯尔莫哥洛夫运用Hilbert空间理论,以一种简单的方法导出过去所有已知的结果。这一开创性的工作首次把Hilbert空间这种抽象理论用于随机变量和随机过程的研究.
在实际中遇到的很多随机现象有如下的共同特性:它的未来的演变,在已知它目前状态的条件下与以往的状况无关。描述这种随时间推进的随机现象的演变模型就是马尔可夫过程。
20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。近年来,鞅论方法也已渗透到马尔可夫过程的研究中,它与随机微分方程结合在一起,已成为目前处理多维扩散过程的工具。此外,马尔可夫过程与分析学中的位势论有密切的联系。对马尔可夫过程的研究,推动了位势理论的发展,并为研究偏微分方程提供了概率论的方法。最近十多年发展起来的吉布斯随机场和无穷粒子随机系统,是由于统计物理的需要而提出的。
许多自然的和生产过程中的随机现象表现出某种平稳性。一种平稳性是过程在任意一些时刻上的联合概率分布随时间推移不变,这种平稳性称为严平稳性。严平稳过程的研究与遍历理论有密切的联系。如果上述对概率分布的要求放宽为仅对二阶相关矩的要求,即过程在任意两时刻上的协方