大一期末考试微积分试题带答案汇编

合集下载

(完整版)大一期末考试微积分试题带答案

(完整版)大一期末考试微积分试题带答案

(完整版)⼤⼀期末考试微积分试题带答案第⼀学期期末考试试卷⼀、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每⼩题3分,共15分.)1. =→xx x 1sin lim 0___0_____.2. 设1)1(lim )(2+-=∞→nx xn x f n ,则)(x f 的间断点是___x=0_____.3. 已知(1)2f =,41)1('-=f ,则12()x df x dx -== _______.4. ()ax x '=_______.5. 函数434)(x x x f -=的极⼤值点为________.⼆、单项选择题(从下列各题四个备选答案中选出⼀个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每⼩题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(.2. 设对任意的x ,总有)()()(x g x f x ≤≤?,使lim[()()]0x g x x ?→∞-=,则lim ()x f x →∞______.A.存在且⼀定等于零B. 存在但不⼀定等于零C.不⼀定存在D. ⼀定存在. 3. 极限=-→xx x xe 21lim0________.A. 2eB. 2-eC. eD.不存在.4. 设0)0(=f ,1)0(='f ,则=-+→xx f x f x tan )2()3(lim0________.A.0B. 1C. 2D. 5.5. 曲线221xy x=-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.)求20sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)求21lim(cos )x x x +→. 五、(请写出主要计算步骤及结果,8分.)确定常数,a b , 使函数2(sec )0()0x x x x f x ax b x -?>=?+≤?处处可导.六、(请写出主要计算步骤及结果,8分.)设21()arctan ln(1)2f x x x x =-+,求dy .dy=arctanxdx七、(请写出主要计算步骤及结果,8分.)已知2326x xy y -+=确定y 是x 的函数,求y ''. ⼋、(请写出主要计算步骤及结果,8分.)列表求曲线523333152y x x =-+的凹向区间及拐点.九、证明题(请写出推理步骤及结果,共6+6=12分.)1. 设)(x f 在[,]a b 上连续,且(),(),f a a f b b <>证明在开区间(,)a b 内⾄少存在⼀点ξ,使()f ξξ=.2. 设函数)(x f 在]1,0[上连续,在)1,0(内可导, 且0)1(=f ,求证:⾄少存在⼀点)1,0(∈ξ,使得3'()()0f f ξξξ+=.第⼀学期期末考试参考答案与评分标准⼀、填空题(3×5=15)2、 0x = 3 、4- 4、()1ln 1ax a x x a x -?+ 5、3x = ⼆、单项选择题(3×5=15)1、C2、C3、A4、B5、D三、(8×1=8)220000sin 1sin 1lim lim 2sin cos lim 62sin 1lim 822x x x x x x x x e x e x x x e x xe x →→→→----=-=+==分分分四、(8×1=8)()200ln cos 1lim1sin cos lim 112lim (cos )268x x x x x x x xx e e e+→++→→---===分分分五、(8×1=8)因为()f x 在(),-∞+∞处处可导,所以()f x 在0x =处连续可导。

大一微积分期末试卷及答案

大一微积分期末试卷及答案

微积分期末试卷选择题(6X2)1•设f(x) 2cosx,g(x) (1严在区间(0,—)内()。

2 2A f (x)是增函数,g (x)是减函数Bf (x)是减函数,g(x)是增函数C二者都是增函数D二者都是减函数2、x 0时,e2x cosx与sinx相比是()A高阶无穷小E低阶无穷小C等价无穷小D同阶但不等价无价小13、x = 0 是函数y = (1 -sinx)紺勺()A连续点E可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 nA X n ( 1)nB X n si n -n n 21 1C X n-(a 1)D X n cosa n5、若f "(x)在X0处取得最大值,则必有()A f /(X。

)o Bf /(X。

)oCf /(X。

)0且f''( X o)<O Df''(X o)不存在或f'(X o) 0、4)6、曲线y xe x( )A仅有水平渐近线E仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1~6 DDBDBD一、填空题1、d ) = -^― dxx +12、求过点(2,0 )的一条直线,使它与曲线y= -相切。

这条直线方程为:x2x3、函数y=二一的反函数及其定义域与值域分别是:2x+14、y=匹的拐点为:2 ,5、若lim X2a2,则a,b的值分别为:1 x+ 2x-3x1 In x 1 ;2 y x3 2x 2x;3 y也厂,©1)^ 4©0)lim (x 1)(x m) 5 解:原式=x 1 (x 1)(x 3) m 7 b limU 」2 x 1 x 3 4 7,a 6 1、 2、 、判断题 无穷多个无穷小的和是无穷小 lim 沁在区间(, X 0 X 是连续函数() 3、 f"(x 0)=0—定为f(x)的拐点 () 4、若f(X)在X o 处取得极值,则必有 f(x)在X 0处连续不可导( )5、 (x) 在 0,1 f '(x) 0令 A f'(0) f'(1),C f(1) f (0),则必有 A>B>C()1~5 FFFFT 二、计算题 1用洛必达法则求极限 x im 01e x2解:原式=lim x 0 1 x lime x2( 2x x 0J 2x 31 lim e xx 02 若 f (x)(x 3 10)4,求f ''(0) 解: 4( x 3 24x f'(x) f ''(x) f ''(x) 0 3 2 2 , 3 10) 3x 12x (x.3 3 2 3(x 10) 12x 3 (x 10) 3x 10)33 . 3 34 , 3 224x (x 10)108x (x 10)4I o 2 3 求极限 lim(cos x)xx 04 ,2I ncosx解:原式=lim e xx 05 tan3xdx2=sec x tan xdx tan xdx6 求xarctanxdxQ lim p Incosxx 0x2原式e2I>解:In y5ln3x11 Jx 1cosxI>yy1 5 3 11y 2 x 212(x 1)12(x 2)1cosx(sin x)tanxlim lim xx x 0 x x 0 x2224Incosxlim / e x 0解:原式=tan2xtanxdx2(sec x 1)tanxdx=tan xd tan x=tan xd tan xsin x , dxcosx1 . dcosxcosx= -ta n2x In cosx c解:原式=1 arcta nxd(x 2)1(x 2 arcta nx2 22arcta nx四、证明题。

大一微积分试题及答案详解

大一微积分试题及答案详解

大一微积分试题及答案详解一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-∞, +∞)上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:A解析:函数f(x) = x^2的导数为f'(x) = 2x,当x > 0时,f'(x) > 0,说明函数在x > 0的区间内是增函数;当x < 0时,f'(x) < 0,说明函数在x < 0的区间内是减函数。

由于整个定义域内没有区间使得函数单调递减,所以函数在整个定义域上是增函数。

2. 下列函数中,满足f(-x) = -f(x)的是:A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = sin(x)答案:A解析:选项A中的函数f(x) = x^3是奇函数,因为对于所有x,都有f(-x) = (-x)^3 = -x^3 = -f(x)。

选项B是偶函数,选项C和D不满足奇函数的性质。

3-10. (类似上述格式,继续编写选择题及答案详解)二、填空题(每题4分,共20分)1. 极限lim (x→0) [sin(x)/x] 的值是 _______。

答案:1解析:根据极限的性质,我们知道sin(x)/x在x趋近于0时的极限是1,这是著名的极限lim (x→0) [sin(x)/x] = 1。

2. 函数f(x) = 2x^3 - 6x^2 + 9x + 1在x = 2处的导数是 _______。

答案:23解析:首先求出函数f(x)的导数f'(x) = 6x^2 - 12x + 9,然后将x = 2代入得到f'(2) = 6(2)^2 - 12(2) + 9 = 24 - 24 + 9 = 9。

3-5. (类似上述格式,继续编写填空题及答案详解)三、解答题(共50分)1. (15分)求曲线y = x^3 - 3x + 2在点(1, 0)处的切线方程。

微积分考试题目及答案

微积分考试题目及答案

微积分考试题目及答案一、选择题(每题5分,共30分)1. 函数f(x)=x^2+3x+2在区间(-∞,-1)上是:A. 增函数B. 减函数C. 常数函数D. 非单调函数答案:B2. 函数f(x)=x^3-3x的导数为:A. 3x^2-3B. x^2-3C. 3x^2+3D. x^2+3答案:A3. 曲线y=x^2+2x+1在点(1,4)处的切线斜率为:A. 2B. 4C. 6D. 8答案:B4. 函数f(x)=sin(x)的不定积分为:A. -cos(x)+CB. cos(x)+CC. sin(x)+CD. -sin(x)+C答案:B5. 曲线y=e^x与直线y=1所围成的面积为:A. 1B. e-1C. 0D. ∞答案:B6. 函数f(x)=x^2在区间[0,1]上的平均值为:A. 0.25B. 0.5C. 0.75D. 1答案:B二、填空题(每题5分,共20分)1. 函数f(x)=x^3的二阶导数为______。

答案:6x2. 定积分∫[0,1] x^2 dx的值为______。

答案:1/33. 函数f(x)=ln(x)的反函数为______。

答案:e^x4. 曲线y=cos(x)在x=π/2处的切线方程为______。

答案:x+y=π/2三、计算题(每题10分,共40分)1. 计算定积分∫[0,2] (x^2-2x+1) dx。

答案:∫[0,2] (x^2-2x+1) dx = [1/3x^3 - x^2 + x] | [0,2] = (8/3 - 4 + 2) - (0) = 2/32. 求函数f(x)=x^3-6x^2+9x+1在区间[1,3]上的极值。

答案:f'(x) = 3x^2 - 12x + 9令f'(x) = 0,解得x=1或x=3。

f(1) = -4,f(3) = 1,f(2) = -1。

因此,函数在区间[1,3]上的极大值为1,极小值为-4。

3. 计算曲线y=x^2从x=0到x=1的弧长。

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。

微积分期末试题及答案

微积分期末试题及答案

微积分期末试题及答案一、选择题(每题4分,共20分)1. 函数y=x^3-3x+2的导数是()。

A. 3x^2 - 3B. x^3 - 3xC. 3x^2 - 3xD. 3x^2 + 3x答案:A2. 极限lim(x→0) (sin x/x)的值是()。

A. 0B. 1C. 2D. -1答案:B3. 曲线y=x^2在点(1,1)处的切线方程是()。

A. y=2x-1B. y=2x+1C. y=x+1D. y=x-1答案:A4. 若f(x)=x^2+3x-2,则f'(-1)的值是()。

A. 0B. 2C. -2D. 4答案:C5. 定积分∫(0 to 1) (2x-1)dx的值是()。

A. 1/2B. 1C. 3/2D. 2答案:B二、填空题(每题4分,共20分)1. 若f(x)=ln(x),则f'(x)=______。

答案:1/x2. 函数y=e^x的原函数是______。

答案:e^x3. 曲线y=x^3与直线y=2x+1在x=1处的交点坐标是______。

答案:(1,3)4. 函数y=x^2-4x+4的极小值点是______。

答案:x=25. 定积分∫(0 to 2) x dx的值是______。

答案:4三、计算题(每题10分,共30分)1. 求函数y=x^2-6x+8的极值点。

答案:函数y=x^2-6x+8的导数为y'=2x-6,令y'=0,解得x=3。

将x=3代入原函数,得到极小值点为(3,-1)。

2. 求定积分∫(0 to 3) (x^2-2x+1)dx。

答案:首先求出原函数F(x)=1/3x^3-x^2+x,然后计算F(3)-F(0)=1/3*27-9+3-0=6。

3. 求曲线y=x^3在点(1,1)处的切线方程。

答案:首先求导得到y'=3x^2,将x=1代入得到y'|_(x=1)=3,切线方程为y-1=3(x-1),即y=3x-2。

四、证明题(每题10分,共30分)1. 证明:若f(x)在[a,b]上连续,则∫(a to b) f(x)dx存在。

(最新整理)大一微积分练习题及答案

(最新整理)大一微积分练习题及答案

(2)
由(1)(2)知 a b 1
十.试证明不等式:当 x 1时, e x ex 1 xex e (8 分) 2
证:(法一)设 f t et t 1, x 则由拉格朗日中值定理有
ex 1 e x e e x 1 e x x 1
整理得: e x ex 1 xex e 2
大一微积分练习题及答案
大一微积分练习题及答案
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(大一微积分练习题及答案)的 内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的 源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为大一微积分练习题及答案的全部内容。
1 2
f
x0
2.下列极限不存在的有( )
A. lim x sin 1
x0
x2
1
C. lim e x x0
B. lim x2 2x x x 1
D. lim 3x2 1 3 x 2x6 x
3.设 f (x) 的一个原函数是 e2x ,则 f (x) ( )
A. 2e2x
B. e 2x
C. 4e 2x
x
C.当 f a f b时,至少存在一点 a,b,使 f 0 ;
D.至少存在一点 a,b,使 f b f a f b a; 6. 已知 f x 的导数在 x a 处连续,若 lim f x 1,则下列结论成立的有( )
xa x a
2
A. x a 是 f x 的极小值点;

大一微积分期末试卷及答案汇编

大一微积分期末试卷及答案汇编

微积分期末试卷选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。

A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线1~6 DDBDBD一、填空题1d 12lim 2,,x d xax ba b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。

这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-31 In 1x + ;2 322y x x =-; 3 2log ,(0,1),1xy R x=-; 4(0,0) 5解:原式=11(1)()1mlimlim 2(1)(3)3477,6x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、判断题1、 无穷多个无穷小的和是无穷小( )2、 0sin limx xx→-∞+∞在区间(,)是连续函数()3、 0f"(x )=0一定为f(x)的拐点()4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )5、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT三、计算题1用洛必达法则求极限212lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x--→→→-===+∞- 2 若34()(10),''(0)f x x f =+求 解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 324lim(cos )xx x →求极限4I cos 224I cos lim 022000002lim 1(sin )4cos tan cos lim cos lim lim lim lim 22224n xx x n x xx x x x x x e e x In x x x x In x x x x xxe →→→→→→→-=---=====-∴=解:原式=原式4 (3y x =-求 511I 31123221531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=⋅+⋅-⋅---⎤=-+-⎥---⎦解:53tan xdx ⎰2222tan tan sec 1)tan sec tan tan sin tan tan cos 1tan tan cos cos 1tan cos 2x xdx x xdx x xdx xdx xxd x dx x xd x d xxx In x c=----++⎰⎰⎰⎰⎰⎰⎰⎰解:原式=( = = = =6arctan x xdx ⎰求22222222211arctan ()(arctan arctan )22111(arctan )2111arctan (1)211arctan 22xd x x x x d x x x x dx x x x dx x x xx c=-+--+⎡⎤--⎢⎥+⎣⎦+-+⎰⎰⎰⎰解:原式= = = =四、证明题。

大一微积分期末试卷及答案.doc

大一微积分期末试卷及答案.doc

微积分期末试卷1TTL设/⑴=2*"(]) = (土)血在区间(0,#)内()。

2 2A/'(x)是增函数,g⑴是减函数B/Cx)是减函数,g(i)是增函数C二者都是增函数D二者都是减函数2> x — Otl'j,疽* _cosx与sinMfl比是()A高阶无穷小B低阶无穷小C等价无穷小D同阶但不等价无价小£3、x = 0 是函数y = ( 1 -sinx)v的()A连续点B可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为()AX=(-l)n-- BX=sin —11〃n 2CX n= —(a>l)D X n =cos-a n5、都”⑴在X。

处取得最大值,贝IJ必有()Af,(X°) = o Bf‘(X())voCf,(X o) = O_ar( X°)vO Df”(x°)不存在或f'(Xo)= O(±)6^ 曲线y = xe x2()A仅有水平渐近线B仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1 〜6DDBDBD填空题=2,则以的值分别为:5解: 1、 d ( ) =—^—dxx+12、 求过点(2,0)的一条直线,使它与曲线y =-相切。

这条直线方程为:X2X_ 3、 函数y =——的反函数及其定义域与值域分别是:2X4- 1 4、 y =Vxf|<J 拐点为:2止,. x + ax+ b gm —- n x +2x~31 Inx + l| ;2 y = x 3-2x 2;3 y = log,工,(0,1), R ; 4(0,0)■(x-l)(x +77?) x^m 1 + m c b hm ---- --------- = hm =-------------------- = 2 原式=ATI (X-l)(% + 3) XTl x + 3 4/• m = 7 :.b — —7, a = 6 二、判断题 1、无穷多个无穷小的和是无穷小()2、 lim —在区间(-8,+ 8)是连续函数() K ) X3、r (x 0)二o 一定为f (x )的拐点()4、 若f (X )在X 。

大一《微积分》考试试题及答案

大一《微积分》考试试题及答案

《微积分(1)》考试一.单项选择题1.设()0x f '存在,则下列等式成立的有( ) A . ()()()0000limx f x x f x x f x '=∆-∆-→∆ B .()()()0000lim x f xx f x x f x '-=∆-∆-→∆C .()()()00002limx f h x f h x f h '=-+→ D .()()()0000212lim x f h x f h x f h '=-+→2.下列极限不存在的有( )A .201sin lim xx x → B .12lim 2+-+∞→x x x xC . xx e1lim → D .()xx xx +-∞→632213lim3.设)(x f 的一个原函数是x e 2-,则=)(x f ( )A .x e 22--B .x e 2-C .x e 24-D . x xe 22--4.函数⎪⎩⎪⎨⎧>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。

A .跳跃间断点;B .无穷间断点;C .可去间断点;D .振荡间断点5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0<b f a f 时,至少存在一点()b a ,∈ξ,使()0=ξf ; B . 对任何()b a ,∈ξ,有()()[]0lim =-→ξξf x f x ;C . 当()()b f a f =时,至少存在一点()b a ,∈ξ,使()0='ξf ;D .至少存在一点()b a ,∈ξ,使()()()()a b f a f b f -'=-ξ; 6. 已知()x f 的导数在a x =处连续,若()1lim-=-'→ax x f ax ,则下列结论成立的有( )A .a x =是()x f 的极小值点;B .a x =是()x f 的极大值点;C .()()a f a ,是曲线()x f y =的拐点;D .a x =不是()x f 的极值点,()()a f a ,也不是曲线()x f y =的拐点; 二.填空: 1.设⎪⎭⎫⎝⎛=x f y 1arcsin,f 可微,则()='x y 2.若32325-+-=x x x y ,则()=6y3.过原点()1,0作曲线x e y 2=的切线,则切线方程为4.曲线()2142-+=x x y 的水平渐近线方程为 铅垂渐近线方程为 5.设x x f +='1)(ln ,则()='x f ()=x f三.计算题:(1)321lim 221-+-→x x x x (2)32lim +∞→⎪⎭⎫⎝⎛-x x x x(3)xx x x 3sin )1ln(lim 20+→ (4)()[]221ln x y -= 求dy(5)053=-+x y exy求=x dxdy四.试确定a ,b ,使函数()()⎩⎨⎧<-≥+++=0,10,2sin 1x e x a x b x f ax在0=x 处连续且可导。

高等数学微积分期末试卷及答案

高等数学微积分期末试卷及答案

大一高等数学微积分期末试卷 选择题(6×2)1~6 DDBDBD一、填空题 1 In 1x + ; 2 322y x x =-; 3 2log ,(0,1),1xy R x =-; 4(0,0)5解:原式=11(1)()1mlim lim 2(1)(3)3477,6x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、判断题1、 无穷多个无穷小的和是无穷小( )2、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )3、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT三、计算题1用洛必达法则求极限2120lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞-2 若34()(10),''(0)f x x f =+求解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 3 240lim(cos )x x x →求极限4 (3y x =-求5 3tan xdx ⎰6arctan x xdx ⎰求四、证明题。

1、 证明方程310x x +-=有且仅有一正实根。

证明:设3()1f x x x =+-2、arcsin arccos 1x 12x x π+=-≤≤证明() 五、应用题1、 描绘下列函数的图形3.4.补充点7179(2,).(,).(1,2).(2,)2222---50lim (),()0x f x f x x →=∞∴=有铅直渐近线 6如图所示:2.讨论函数22()f x x Inx =-的单调区间并求极值 由上表可知f(x)的单调递减区间为(,1)(0,1)-∞-和单调递增区间为(1,0)1-+∞和(,)且f(x)的极小值为f(-1)=f(1)=1。

大学微积分试题及答案

大学微积分试题及答案

大学微积分试题及答案一、选择题(每题5分,共30分)1. 函数y=x^3-6x+8的导数为:A. 3x^2-6B. x^3-6C. 3x^2+6D. x^3-6x答案:A2. 曲线y=x^2+3x+5在x=1处的切线斜率为:A. 4B. 5C. 6D. 7答案:C3. 定积分∫(0到1) x^2 dx的值为:A. 1/3B. 1/2C. 1D. 2答案:B4. 函数y=sin(x)的不定积分为:A. -cos(x)B. cos(x)C. sin(x)D. -sin(x)答案:B5. 函数y=e^x的不定积分为:A. e^xB. e^x + 1C. e^x - 1D. e^x + x答案:A6. 函数y=ln(x)的导数为:A. 1/xB. xC. ln(x)D. 1答案:A二、填空题(每题5分,共20分)1. 函数y=x^2-4x+4的最小值为______。

答案:02. 函数y=e^x的n阶导数为______。

答案:e^x3. 定积分∫(0到π) sin(x) dx的值为______。

答案:24. 函数y=x^3的原函数为______。

答案:1/4x^4 + C三、解答题(每题10分,共50分)1. 求函数y=x^2-4x+4的极值点。

答案:函数y=x^2-4x+4的极值点为x=2,此时y=0。

2. 求曲线y=x^3-6x+8在x=1处的切线方程。

答案:切线方程为y=3x-2。

3. 求定积分∫(0到1) (x^2-2x) dx。

答案:∫(0到1) (x^2-2x) dx = (1/3x^3 - x^2) | 0到1 = 1/3 - 1 = -2/3。

4. 求函数y=ln(x)的不定积分。

答案:∫ln(x) dx = xln(x) - x + C。

5. 求函数y=e^x的原函数。

答案:原函数为y=e^x + C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期期末考试试卷
一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)
1. =→x
x x 1
sin lim 0___0_____.
2. 设1
)1(lim )(2+-=∞→nx x
n x f n ,则)(x f 的间断点是___x=0_____.
3. 已知(1)2f =,4
1
)1('-=f ,则
12
()x df x dx -== _______.
4. ()a
x x '=_______.
5. 函数434)(x x x f -=的极大值点为________.
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写
在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(.
2. 设对任意的x ,总有)()()(x g x f x ≤≤ϕ,使lim[()()]0x g x x ϕ→∞
-=,则
lim ()x f x →∞
______.
A.存在且一定等于零
B. 存在但不一定等于零
C.不一定存在
D. 一定存在. 3. 极限=-→x
x x x
e 21lim
0________.
A. 2e
B. 2-e
C. e
D.不存在.
4. 设0)0(=f ,1)0(='f ,则=-+→x
x f x f x tan )
2()3(lim
0________.
A.0
B. 1
C. 2
D. 5.
5. 曲线2
21x
y x
=-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.) 求2
0sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)
求2
1
lim(cos )x x x +
→. 五、(请写出主要计算步骤及结果,8分.)
确定常数,a b , 使函数2(sec )0
()0x x x x f x ax b x -⎧>=⎨+≤⎩处处可导.
六、(请写出主要计算步骤及结果,8分.)
设21
()arctan ln(1)2
f x x x x =-+,求dy .dy=arctanxdx
七、(请写出主要计算步骤及结果,8分.) 已知2326x xy y -+=确定y 是x 的函数,求y ''. 八、(请写出主要计算步骤及结果,8分.)
列表求曲线52
3
333152
y x x =-+的凹向区间及拐点.
九、证明题(请写出推理步骤及结果,共6+6=12分.)
1. 设)(x f 在[,]a b 上连续,且(),(),f a a f b b <>证明在开区间(,)a b 内至少存在一点ξ,使()f ξξ=.
2. 设函数)(x f 在]1,0[上连续,在)1,0(内可导, 且0)1(=f ,求证:至少存在一点
)1,0(∈ξ,使得3'()()0f f ξξξ+=.
第一学期期末考试参考答案与评分
标准
一、填空题(3×5=15)
1、0
2、 0x = 3 、4- 4、()1ln 1a
x a x x a x -⋅+ 5、3x = 二、单项选择题(3×5=15)
1、C
2、C
3、A
4、B
5、D
三、(8×1=8)
22
0000sin 1sin 1lim lim 2sin cos lim 62sin 1lim 822
x x x x x x x x e x e x x x e x
x
e x →→→→----=-=+==L L L L L L L L L 分分
分 四、(8×1=8)
()2
00ln cos 1
lim
1
sin cos lim 1
1
2
lim (cos )268x x x x x x x x
x e e
e +→+
+
→→-
⋅--
===L L L L L L L L L 分


五、(8×1=8)
因为()f x 在(),-∞+∞处处可导,所以()f x 在0x =处连续可导。

……1分 因为
()20
lim (sec )02lim 34x x x x x ax b b x b +--→→=+==L L L L L L L L L 分分
f 分
所以 0b =5L L L 分 又因为
()()0200
0lim (sec )00lim 1x x x ax b f a x
x x f x
-
+-→-+→+-'==-'== 所以 1a = ………8分
六、(8×1=8)
()22
112arctan 5121arcsin 6arcsin 8x
f x x x x x x dy xdx '=-⋅-⋅++==L L L L L L L L L 分分分
七、(8×1=8)
22
22
22
2223042272322(22)(23)(22)(26)()823(23)x y xy y y x y y x y x y y x y x y yy y x y x y ''--+=-'=-''------'''==--L L L L L L L L L 分


八、(8×1=8) (1)定义域为 (),-∞+∞;
(2)
2
13
3
143
34
312121333
3y x x x y x x x ---'=-+''=+=L L L L L L 分

令0y ''=得11
2
x =-,又20x =为y ''不存在的点4L L L 分
(3)列表:
8L L L 分
625
Q =时利润最大,最大利润为()6251250L =………8分
九、证明题(6×2=12)
1. 设()()F x f x x =- ,则有()F x 在[,]a b 上连续,………2分
()()0,()()0,4F a f a a F b f b b =-<=->L L L 分
根据零值定理可得在开区间(,)a b 内至少存在一点ξ,使()0F ξ=, 即()f ξξ=………6分
2.设
()(),F x x =
则231
()()()3
F x x f x x -''=。

………2分
显然()F x 在[0,1]内连续,在(0,1)内可导,且(0)(1)0F F ==。

………4分
由罗尔定理知:至少存在一点(0,1)ξ∈使
2
31()()()0
3
()()0
F f f f ξξξξξξξ-''=+='+=即3 ………6分。

相关文档
最新文档